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Introduction
Regulation of cellular functions are achieved by effective 
collaboration of varying types of bio-molecules such as 
DNAs, RNAs and proteins. Riboswitches1-4 as an example 
of regulatory RNAs, are a part of mRNA molecules 
and regulate the expression of corresponding genes by 
directly binding to the target metabolites and undergoing 
consequent structural changes.5-7 For instance, the 
riboswitch structural conformation alteration blocks the 
ribosome binding site and inhibits protein synthesis by the 
ribosome. Riboswitches are usually located in mRNAs’ 5’ 
un-translated regions.3 Riboswitches with similar sequence 
and secondary and tertiary structures perform similar 

tasks.8,9 Therefore, riboswitches are categorized to families 
according to their function, sequence conservation and 
structural similarities.10,11

Studies showed that riboswitches interact with 
antibiotics and regulate the expression of the 
corresponding gene. The interaction of antibiotics with 
riboswitches could be attributed at least partly to the 
action mechanism of the antibacterial agents.12 Sudarsan 
and colleagues13 showed the interaction of pyrithiamine 
with thiamine pyrophosphate riboswitch. Interaction of 
lysine riboswitch with antibiotics was reported by Blount 
and co-workers14 and interaction of roseoflavin antibiotic 
with FMN riboswitch was also confirmed.15-17 Our in-
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Abstract

Purpose: Riboswitches are special non-coding sequences usually located in mRNAs’ 
un-translated regions and regulate gene expression and consequently cellular function. 
Furthermore, their interaction with antibiotics has been recently implicated. This raises more 
interest in development of bioinformatics tools for riboswitch studies. Herein, we describe the 
development and employment of novel block location-based feature extraction (BLBFE) method 
for classification of riboswitches. 
Methods: We have already developed and reported a sequential block finding (SBF) algorithm 
which, without operating alignment methods, identifies family specific sequential blocks for 
riboswitch families. Herein, we employed this algorithm for 7 riboswitch families including 
lysine, cobalamin, glycine, SAM-alpha, SAM-IV, cyclic-di-GMP-I and SAH. Then the study was 
extended toward implementation of BLBFE method for feature extraction. The outcome features 
were applied in various classifiers including linear discriminant analysis (LDA), probabilistic 
neural network (PNN), decision tree and k-nearest neighbors (KNN) classifiers for classification 
of the riboswitch families. The performance of the classifiers was investigated according to 
performance measures such as correct classification rate (CCR), accuracy, sensitivity, specificity 
and f-score. 
Results: As a result, average CCR for classification of riboswitches was 87.87%. Furthermore, 
application of BLBFE method in 4 classifiers displayed average accuracies of 93.98% to 96.1%, 
average sensitivities of 76.76% to 83.61%, average specificities of 96.53% to 97.69% and 
average f-scores of 74.9% to 81.91%. 
Conclusion: Our results approved that the proposed method of feature extraction; i.e. BLBFE 
method; can be successfully used for classification and discrimination of the riboswitch families 
with high CCR, accuracy, sensitivity, specificity and f-score values.
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silico studies indicated that aminoglycosides including 
kanamycin interact with various riboswitches and their 
binding energies are comparable or sometimes higher 
than those of their native target molecules.18,19 Later, 
Baird and colleagues20 during their study, unexpectedly 
and interestingly noticed that kanamycin binds to cyclic 
diguanylate (cyclic-di-GMP) riboswitch and inhibits its 
binding with native ligand. Their in-vitro findings were 
in accordance with our in-silico results. Riboswitches 
could be considered as new targets for antibiotics and 
their interaction with antibiotics could explain new 
mechanisms for antibiotics’ functions and effects and 
consequently opens a new era for development of novel 
antibiotics. Established important role of riboswitches 
in the nature and development of novel therapeutic 
agents attracts increased attention for elucidation of 
riboswitches’ characteristics and development of new 
tools for riboswitch detection is accordingly in demand. 

Classification of riboswitches into their related families 
gives insight to their functionality and structural aspects. 
One of the common principles for classification of 
riboswitches relies on homology search.21 Based on this 
principle, various statistical methods have been developed 
such as hidden Markov models based methods22-25 
and CM or covariance model.26 Singh and Singh used 
mononucleotide and dinucleotide conservation based 
features to classify the riboswitches.27 Pse-in-One web 
server also generates various modes of pseudo components 
of RNA sequences which can be used as feature vectors for 
classification of riboswitches.28,29 

A non-alignment sequential block finding algorithm 
(SBF) was designed for identification of family specific 
RNA sequential blocks in different riboswitch families.30 
In the present study, we applied the SBF to 7 families of 
riboswitches and extracted the family specific sequential 
blocks. Then, we developed BLBFE method as a novel 
feature extraction method based on the locations of the 
detected blocks. The extracted features were utilized 
for classification of the riboswitches. For this, linear 
discriminant analysis (LDA),31 probabilistic neural 
network (PNN),32 decision tree33 and k-nearest neighbors 
(KNN)34 classifiers accompanied by V-fold cross-
validation35 were applied for classification of sequences 
into their related classes (families) based on the features 

extracted by block location-based feature extraction 
(BLBFE) method. Then, the performance of each classifier 
was presented by a confusion matrix. In the next step, 
performance measures such as accuracy, sensitivity, 
specificity and f-score were calculated for each classifier 
to study the performance validity of the developed feature 
extraction method.

Materials and Methods
Datasets
Table 1 shows seven families of riboswitches, whose seed 
data were used for block detection and classification in 
this study. The riboswitch families include lysine,36,37 
cobalamin,7,38-40 glycine,41-43 SAM-alpha,44,45 SAM-IV,46,47 
cyclic-di-GMP-I46,48,49 and SAH50,51 families, containing 47, 
430, 44, 40, 40, 155 and 52 seed members in each family, 
respectively. Datasets along with their sequential and 
secondary structure characteristics were downloaded from 
Rfam 13.0 database in un-gapped FASTA format.52,53 Table 
1 also represents calculated mean lengths and variance of 
lengths of the members for the studied families.

Application of the block finding algorithm 
We have previously designed a block finder program for 
detection of frequent RNA blocks in riboswitch families.30 
In this method, an algorithm was used to identify 
the frequently appearing specific sequential blocks in 
riboswitch families. These blocks are characteristic motifs 
of a certain riboswitch family which are present in a 
very high percentage of the riboswitch family members 
complying the sequence conservation of riboswitch 
families. Also in a high percentage of family members, 
location of the motifs on the sequences should be the 
same or in a close defined neighborhood. In this path, the 
algorithm first recognizes all potential blocks, then checks 
each block’s location on every member of the family and 
eliminates the excess blocks accordingly. Finally, for each 
riboswitch family a set of specific sequential blocks is 
determined. 

Feature extraction
We employed the locations of family-specific blocks on 
riboswitch sequences as features for classification of the 
riboswitches. To extract the features, first, sequential 

Table 1. Seven riboswitch families obtained from Rfam 13.0 database

Riboswitch family name Rfam accession number Number of seed data Average length of members (nucleotides) Variance of the length of members

Lysine RF00168 47 183 11.06

Cobalamin RF00174 430 203 15.54

Glycine RF00504 44 101 15.99

SAM-alpha RF00521 40 79 1.18

SAM-IV RF00634 40 116 4.13

Cyclic-di-GMP-I RF01051 155 87 6

SAH RF01057 52 85 15.4
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conserved blocks for the seven riboswitch families were 
detected using our previously reported SBF method. 
The detected blocks were then employed to produce 
observations related to each riboswitch family member. 
For this, the start point of each block on the sequence 
was considered as the block’s location in the sequence. 
Then, the locations of the blocks in the sequences were 
used as features. For the blocks which were not present 
in the sequence, the location was set to zero. For example, 
to produce an observation based on the following 10 
blocks [GGUUC, CCC, AAAAACUA, GUGC, UAUA, 
UCUACC, GGGC, GGAUG, GGG, CUGAGA] for a 
sample riboswitch sequence such as:
“CCGCAUUCUCAGGGCAGCGU GAAAUUCCCUA-
CU GGCGGUCAAGCG CGCGAGCGUU UGUU-
AUAAGGCAAAU CAGCAGAUUUGGUGAAAU UC-
CAAAGCCAA CAGUUACA GUCUGGA UGAAAG 
AGAGUAAAC”

The location of each block on the sequence is 
determined. Since block “GGUUC” (the first block) is 
not present in the sequence, its location is set to zero. 
The block “CCC” (the second block) starts from the 27th 
nucleotide of the sequence, so its location is set to 27. 
“AAAAACUA” and “GUGC” blocks are also not present 
in the sequence and their locations are considered as zero. 
The “UAUA” block is seen at the 59th nucleotide. Similarly, 
“UCUACC”, “GGGC”, “GGAUG”, “GGG” and “CUGAGA” 
blocks are located at 0th, 12th, 113th, 12th and 0th nucleotides, 
respectively. By finding the location of the all blocks, 
the observation associated with the above mentioned 
sequence is [0, 27, 0, 0, 59, 0, 12, 113, 12, 0] which is a 
1 by 10 array. Accordingly, for each riboswitch sequence 
in each family, an observation is generated based on 
detected sequential blocks. In other word, each sequence 
is demonstrated by an observation. Therefore, the overall 
number of observations equals to the total number of the 
7 riboswitch families’ members and the length of each 
array is equal to the number of total blocks for 7 families. 
The observations are then utilized for classification of the 
sequences into their associated families.

Cross-validation
To validate the generalization of the classifiers, V-fold 
cross-validation (VFCV) was used.35 VFCV, due to its mild 
computational cost, is the most popular CV procedure. 
For a dataset with N members, VFCV partitions the 
data randomly into V subsets with approximately equal 
cardinality of N/V. Each subset successively plays the role 
of test data while the rest of the data is used to train the 
classifier. The overall correct classification rate (CCR) is 
average of the CCRs of the V stages. Here, V=10 was used 
for cross-validation because of the good error estimation 
in addition to suitably low computational cost.31,54-56

The classifiers
Four classifiers were employed to study the performance 

of the proposed feature extraction method.
Linear discriminant analysis (LDA) classifier: This 

method finds a linear combination of features to 
characterize or discriminate two or more classes and uses 
the resulting combination as a linear classifier. The LDA 
method is a generalization of Fisher’s linear discriminant.31

Probabilistic neural network (PNN) classifier: The PNN 
algorithm estimates the class probability of an input data 
using the probability distribution function of each class. 
Then Bayes’ rule is employed to assign the input data to 
the class with highest posterior probability.32

Decision tree classifier: Decision tree method creates 
a predictive tree-like model using a series of carefully 
created questions. Based on the tree as the model, it goes 
from observations about an input data, represented by the 
branches of the tree, to decisions about the input data’s 
class label, represented by the leaves.33

K-nearest neighbors (KNN) classifier: In KNN 
classification, an input data is classified to the class most 
common among its K nearest neighbors. K is a positive 
integer number, usually small.34 In this study, the optimum 
K was equaled to 4.

Evaluation of classifiers’ performance 
Four performance measures of accuracy, sensitivity, 
specificity and f-score are calculated according to the 
confusion matrices using the equations (1) to (4)57-59:

Accuracy TP TN
TP FP TN FN

+
=

+ + +
                                       (1)

Sensitivity TP
TP FN

=
+

                                                         (2)

Specificity TN
FP TN

=
+

                                                         (3)

2F-score
2

TP
TP FP FN

=
+ +

                                                    (4)

TP denotes the true positive rate; i.e. the members of 
each class which are correctly classified to the right class. 
FP is the false positive rate; i.e. the sequences which are 
falsely annotated to another class. Also, TN and FN are 
the true negative and the false negative rates, respectively. 

Results and Discussion
Detection of family specific blocks
Frequently appearing RNA sequential blocks for seven 
riboswitch families were detected using SBF method.30 
Results of the block finder algorithm for 7 families are 
presented in Table 2.

As can be seen, our algorithm detected 2 blocks for 
the lysine family including ‘AGAGGUGC’ and ‘AGUAA’ 
blocks at locations 10 and 28, respectively. For the 
cobalamin family, 5 blocks including ‘CGGUG’, ‘GCA’, 
‘AGC’, ‘AGA’ and ‘GACC’ were recognized which are 
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located at locations 18, 77, 92, 175 and 180, respectively. 
Also, 2 blocks were detected for the glycine family 
including ‘GGAGA’ and ‘CCGA’ recognized at locations 
13 and 35, respectively. For the SAM-alpha riboswitch 
family, 3 blocks including ‘GUGGU’, ‘AUUUG’ and 
‘GCCACGU’ were recognized at locations 11, 17 and 
37, respectively. Five specific blocks were detected for 
SAM-IV family including ‘UCA’, ‘GAG’, ‘CAG’, ‘GCUGG’ 
and ‘CGGCAACC’ blocks located at 3, 7, 13, 32 and 38 
locations, respectively. For cyclic-di-GMP-I family, 2 
blocks of ‘GAAA’ located at 23 and ‘CGCAAAGC’ located 
at 35 nucleotides were identified. And finally 3 blocks 
were detected for SAH family including ‘GAGGAGCG’, 
‘UGC’ and ‘AGGCUCGG’ located at locations 7, 16 and 
36, respectively. Therefore, 22 sequential blocks were 
identified for 7 studied riboswitch families, in total.

Model validation
Our results for 7 riboswitch families were compared to the 
conserved regions observed in the alignment results from 
Rfam database (Figure 1). As seen, most of the detected 
blocks fall into the highly conserved regions (shown 
in red) in the studied families. For example, two 8 and 
5-mer blocks, ‘AGAGGUGC’ and ‘AGUAA’, were detected 
for lysine family. As shown in Figure 1a, these blocks are 
located exactly in the highly conserved areas of the lysine 
riboswitch structure. Also, Figures 1b-1g demonstrate 
the accordance of the detected blocks for cobalamin, 

Table 2. Results of the application of the sequential block finding (SBF) 
algorithm for 7 families of riboswitches

Riboswitch 
family name

Blocks
Approximate Location on 

the sequences

Lysine
AGAGGUGC 10

AGUAA 28

Cobalamin

CGGUG 18

GCA 77

AGC 92

AGA 175

GACC 180

Glycine
GGAGA 13

CCGA 35

SAM-alpha

GUGGU 11

AUUUG 17

GCCACGU 37

SAM-IV

UCA 3

GAG 7

CAG 13

GCUGG 32

CGGCAACC 38

Cyclic-di-GMP-I
GAAA 23

CGCAAAGC 35

SAH

GAGGAGCG 7

UGC 16

AGGCUCGG 36

Figure 1. Accordance of the detected family specific blocks to the conserved 
regions of secondary structures of studied riboswitch families (based on 
the Rfam database). The diagrams are related to secondary structures of: (a) 
lysine, (b) cobalamin, (c) glycine, (d) SAM-alpha, (e) SAM-IV, (f) cyclic-di-
GMP-I and (g) SAH riboswitches.

glycine, SAM-alpha, SAM-IV, cyclic-di-GMP-I and SAH 
riboswitches with the consensus segments of the families, 
respectively. 

Classification results
Using sequential based block finding algorithm, SBF, 22 
RNA sequential blocks [AGAGGUGC, AGUAA, CGGUG, 
GCA, AGC, AGA, GACC, GGAGA, CCGA, GUGGU, 
AUUUG, GCCACGU, UCA, GAG, CAG, GCUGG, 
CGGCAACC, GAAA, CGCAAAGC, GAGGAGCG, 
UGC, AGGCUCGG] were detected and determined as 
family specific blocks for 7 families. Having detected the 
specific blocks, observations were created using BLBFE 
method for classification of the riboswitches. Locations 
of these blocks on the family members are considered 
as features. The resulted 1 by 22 arrays are observations, 
each representing one of the riboswitches for designed 
classifier. As there are 808 members in total in 7 studied 
riboswitch families, 808 arrays of 1 by 22 as observations 
were produced. Of 808 created observations, 47, 430, 
44, 40, 40, 155 and 52 ones belong to lysine, Cobalamin, 
Glycine, SAM-alpha, SAM-IV, Cyclic-di-GMP-I and SAH 
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families, respectively. For each set of observations, LDA, 
PNN, decision tree and KNN classifiers accompanied by 
10-fold cross-validation were applied. Then, correct and 
incorrect classified samples for each set were counted.

Figure 2 shows the correct classification rates (CCRs) of 
the studied classifiers. With the BLBFE method, PNN with 
92.31% had the highest CCR while the other classifiers 
showed CCRs of 89.37% for decision tree classifier, 88.86% 
for KNN classifier and finally 80.94% for LDA classifier. 
Overall, the average CCR of four classifiers when using 
locations of specific sequential blocks as features was 
87.87%.

Evaluation results
Table 3 represents the multiclass confusion matrix for 
LDA classifier with the BLBFE. Also, the multiclass 
confusion matrices for PNN, decision tree and KNN 
classifiers with the same method of feature extraction are 
represented in Tables 4 to 6, respectively. Based on the 
confusion matrices, accuracy, sensitivity, specificity and 
f-score measures for the BLBFE method were calculated 
and illustrated in Figure 3.

As seen in Figure 3a, classification accuracy measures 
for LDA classifier is ranged between 99.09% for SAM-IV 
and 83.63% for glycine families. For PNN classifier, SAM-
IV family again displays the highest accuracy of 99.33% 
while the lowest accuracy is 87.66% for SAH family. 

Table 3. Multiclass confusion matrix for the LDA classifier, based on the features extracted by the block location-based feature extraction (BLBFE) method

Predicted/True Riboswitch Families Lysine Cobalamin Glycine SAM-alpha SAM-IV Cyclic-di-GMP-I SAH

Lysine 33 1 10 3 0 0 0

Cobalamin 13 363 46 3 1 1 3

Glycine 0 0 44 0 0 0 0

SAM-alpha 0 0 4 36 0 0 0

SAM-IV 0 0 4 0 36 0 0

Cyclic-di-GMP-I 0 0 52 0 0 103 0

SAH 0 0 12 0 1 0 39

TP 33 363 44 36 36 103 39

FP 13 1 128 6 2 1 3

TN 621 291 610 618 618 551 615

FN 14 67 0 4 4 52 13

Table 4. Multiclass confusion matrix for the PNN classifier, based on the features extracted by the block location-based feature extraction (BLBFE) method

Predicted/True Riboswitch Families Lysine Cobalamin Glycine SAM-alpha SAM-IV Cyclic-di-GMP-I SAH

Lysine 39 1 4 0 0 1 2

Cobalamin 6 407 7 3 1 5 1

Glycine 1 1 39 0 0 3 0

SAM-alpha 0 1 1 35 1 2 0

SAM-IV 0 1 0 1 37 1 0

Cyclic-di-GMP-I 1 2 7 2 0 141 2

SAH 0 0 2 0 0 2 48

TP 39 407 39 35 37 141 48

FP 8 6 21 6 2 14 53

TN 707 339 707 711 709 605 698

FN 8 23 5 5 3 14 52

Figure 2. Correct classification rates for 4 classifiers using block location-
based feature extraction method (BLBFE).

Decision tree classifier has maximum accuracy of 97.93% 
for SAM-alpha family and minimum accuracy of 88.07% 
for SAH family. At last, the highest accuracy for KNN 
classifier is 99.03% which belongs to SAM-IV family, and 
the lowest accuracy is 87.67% for SAH family.

Figure 3b shows individual sensitivities of 4 
classifications. The LDA classifier resulted in sensitivity 
of 100% for glycine family while the lowest sensitivity is 
66.45% for cyclic-di-GMP-I family. For PNN classifier, 
sensitivities are ranged between 94.65% for cobalamin and 
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48% for SAH families. The highest sensitivity for decision 
tree classifier is 93.49% for cobalamin family and the 
lowest is 44.09% for SAH family. Finally, KNN classifier 
results in sensitivities from 94.42% for cobalamin to 
44.09% for SAH families.

The specificities of 4 classifiers are demonstrated in 
Figure 3c. As demonstrated, the highest specificity for LDA 
classifier is 99.82% belonging to cyclic-di-GMP-I family 
and glycine family has the lowest specificity of 82.66%. For 
PNN classifier, specificities range from 99.72% for SAM-
IV to 92.94% for SAH families. SAM-alpha has the highest 
of 99.27% with decision tree classifier while cobalamin 
has the lowest specificity of 93.31%. For KNN classifier, 
the highest specificity, 100% belongs to SAM-IV family 
and the lowest is 89.14% belonging to cobalamin family. 

Finally, Figure 3d presents the f-scores of 4 classifiers. 
For LDA classifier, f-scores range from 92.31% for SAM-
IV to 40.74% for glycine families. The highest f-score 
with PNN classifier is 96.56% belonging to cobalamin 
family while the lowest f-score is 47.76% for SAH family. 
Application of decision tree classifier results in f-scores 
from 94.15% for cobalamin family to 46.07% for SAH. 
The KNN classifier also gives maximum f-score of 92.91% 
for cobalamin family in addition to minimum f-score of 
44.81% for SAH family.

Figure 4 shows the average performance measures of 

7 riboswitch families for the BLBFE method applied in 
4 classifiers. As can be seen, PNN classifier has the best 
average accuracy, equal to 96.1%. This is while, other 
classifiers also represent good average accuracies of 95.2% 
for KNN classifier, 94.79% for decision tree classifier and 
93.98% for LDA classifier. PNN classifier has the highest 
average sensitivity too. 83.61%, 82.3%, 76.81% and 76.76% 
are average sensitivities of PNN, LDA, decision tree and 
KNN classifiers, respectively. 

The highest average specificity, 97.69%, belongs to the 
PNN classifier, followed by 96.9%, 96.58% and 96.53% 
for LDA, decision tree and KNN classifiers, respectively. 
Finally, PNN classifier again has the best average f-score, 
81.91%. Other classifiers display average f-scores of 
78.44% for KNN classifier, 77.97% for LDA classifier and 
74.9% for decision tree classifier. 

Conclusion
The importance of riboswitches’ role in gene expression 
regulation and their interaction with antibiotics, 
have attracted more interest for development of new 
bioinformatics tools for recognition and characterization 
of riboswitches. Following development of SBF algorithm 
for detection of frequently appearing family specific 
sequential blocks in riboswitch families, in this paper we 
first elucidated the performance of the designed algorithm 

Table 5. Multiclass confusion matrix for the decision tree classifier, based on the features extracted by the block location-based feature extraction (BLBFE) 
method

Predicted/True Riboswitch Families Lysine Cobalamin Glycine SAM-alpha SAM-IV Cyclic-di-GMP-I SAH

Lysine 40 4 1 0 0 1 1

Cobalamin 11 402 8 1 7 1 0

Glycine 1 6 31 1 0 5 0

SAM-alpha 0 4 0 30 4 2 0

SAM-IV 1 0 1 1 34 3 0

Cyclic-di-GMP-I 1 7 2 1 11 131 2

SAH 1 1 0 1 5 3 41

TP 40 402 31 30 34 131 41

FP 15 22 12 5 27 15 44

TN 669 307 678 679 675 578 668

FN 7 28 13 10 6 24 52

Table 6. Multiclass confusion matrix for the KNN classifier, based on the features extracted by the block location-based feature extraction (BLBFE) method

Predicted/True Riboswitch Families Lysine Cobalamin Glycine SAM-alpha SAM-IV Cyclic-di-GMP-I SAH

Lysine 39 3 2 0 0 2 1

Cobalamin 4 406 9 1 0 7 3

Glycine 0 14 28 0 0 2 0

SAM-alpha 0 5 1 32 0 1 1

SAM-IV 1 5 0 0 33 0 1

Cyclic-di-GMP-I 2 9 2 1 0 139 2

SAH 1 2 5 0 0 3 41

TP 39 406 28 32 33 139 41

FP 8 38 19 2 0 15 49

TN 679 312 690 686 685 579 677

FN 8 24 16 8 7 16 52
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in detection of the family related blocks in lysine, 
cobalamin, glycine, SAM-alpha, SAM-IV, cyclic-di-GMP-I 
and SAH riboswitches. Results showed that the developed 
method detected most of the conserved motifs present in 
each family defined as family specific blocks. Then, the 
identified blocks on riboswitch sequences were used for 
classification of the members into their corresponding 
families. For this, we proposed a new feature extraction 
strategy called BLBFE, which employs the locations of 
the specified blocks on riboswitch sequences as features. 
Therefore, each riboswitch sequence is converted into a 
numerical array called an observation. In order to validate 
the performance of the proposed feature extraction 
method, 4 popular classifiers including LDA, PNN, 
decision tree and KNN were applied and their functions 
in classification of the riboswitches were evaluated 
and compared. Putting together the results, the BLBFE 
strategy led to suitable performance in classification of 
the riboswitches with average CCR of 87.87%. Having 
applied BLBFE, all the studied classifiers displayed closely 

Figure 3. The performance measures for classification of 7 riboswitch families by LDA, PNN, decision tree and KNN classifiers using block location-based feature 
extraction method (BLBFE), (a) accuracy, (b) sensitivity, (c) specificity and (d) f-score.

Figure 4. The average performance measures of 7 riboswitch families for the 
proposed method of BLBFE applied in 4 classifiers.

suitable performances, where PNN classifier performed 
the best according to its higher accuracy, sensitivity, 
specificity and f-score. Considering the proposed BLBFE 
method’s performance, it is concluded that the developed 
methods of SBF and BLBFE are promising strategies for 
classification of the riboswitches. More reports from 
our group in development and application of the BLBFE 
method for other groups of RNAs, DNAs and genes are in 
progress.
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