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Introduction
Enzymes are a type of biocatalysts, widely applied in 
several applications in the food industry, such as baking, 
beverages, meat, dairy, fats and oils, as an effective, safe 
and eco-friendly alternative for food production. Enzymes 
have been used as food preservatives for long years, and 
nowadays they are enabling a variety of food industries 
to give the quality and stability of their products, 
along with better production efficiency. They provide 
clean, environment friendly and specific methods for 
biochemical reactions in moderate conditions.1-3 However, 
the use of enzymes is limited due to their high cost and 
low reusability. Moreover, the lack of proper mechanism 
to protect enzymes against protease attack, occurring in 
almost all biological systems, is another major hurdle to 
achieve optimal activity.4 Additionally, the low operational 
stability of some enzymes during any biochemical reaction 
is problematic. Therefore, enzyme stabilization is the 
main objective of enzyme technology. The attainment of 
stable and active enzymes is a highly challenging effort. In 
order to overcome these limitations, the immobilization 
of enzymes with functional efficiency is useful to solve 
the enzyme problems and decrease the costs. The 
immobilization method involves the inclusion of enzymes 

in matrices or binding them on various surfaces.5,6 The 
immobilization of enzymes on hydrophobic supports is 
a general method. There are various chemical catalyst 
carriers to immobilize enzymes, one of which is the use of 
hydrogel matrixes, hydrogels may be used as appropriate 
carriers for enzymes.3 The ideal carrier matrix should 
have the following properties: (a) to be economical, (b) 
inertness, (c) stability, (d) physical strength, (e) ability 
to enhance enzyme specificity/activity, (f) regenerability, 
(g) ability to reduce product inhibition, and (h) ability 
to prevent nonspecific adsorption and bacterial 
contamination. Immobilization usually stabilizes the 
enzyme structure, allowing the hydrogels’ use under harsh 
environmental conditions (pH, temperature, and presence 
of organic solvents).7 Hydrogels are water-insoluble three-
dimensional hydrophilic polymer networks that possess all 
the mentioned ideal carrier properties with a high ability 
to retain water and other liquids.8 Therefore, the aquatic 
environment of hydrogels can reduce the denaturation of 
enzymes and help their catalytic function.9,10 Hydrogels, 
as smart materials, can respond to many environmental 
stimuli, including temperature,11 pH12 by showing 
changes in structure, shape and interaction with their 
loaded substrates. They have several applications, such as 
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Abstract
Enzymes are one of the main biocatalysts with various applications in the food industry. 
Stabilization of enzymes on insoluble carriers is important due to the low reuse, low operational 
stability, and high cost in applications. The immobility and the type of carrier affect the activity 
of the immobile enzyme. Hydrogels are three-dimensionally cross-linked macromolecular 
network structures designed from various polymers. Hydrogels can provide a matrix for an 
immobile enzyme due to their extraordinary properties such as high water absorbing capacity, 
carrier of bioactive substances and enzymes, biocompatibility, safety, and biodegradability. 
Therefore, this study mainly focuses on some enzymes (lactase, lipases, amylases, pectinase, 
protease, glucose oxidase) that are of special importance in the food industry. These enzymes 
could be immobilized in the hydrogels constructed of macromolecules such as kappa-
carrageenan, chitosan, Arabic gum, pectin, alginate, and cellulose. At last, in the preparation of 
these hydrogels, different enzyme immobilization methods in macromolecular hydrogels, and 
effect of hydrogels on enzyme activity were discussed.
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drug delivery, release,13 enzyme trapping, releasing8 and 
biosensor.14 In this study, some important enzymes in the 
food industry immobilized in hydrogels, various natural 
polymers used in the preparation of hydrogels, methods 
of enzyme immobilization in matrix hydrogels and 
hydrogels effect on the activity of enzymes are discussed. 
Figure 1 summarized the different enzymes which can be 
immobilized on hydrogels with different methods.

Enzymes
The enzymes play a variety of roles in the food industry. 
Some of these roles are listed in Table 1.

β-Galactosidase (lactase)
β-Galactosidase is from the hydrolase family of enzymes. 
It is an enzyme usually used to hydrolyze lactose in dairy 
products. Lactose is the predominant disaccharide in milk 
and dairy products that some people are unable to consume 
due to sensitivity. The β-galactosidase enzyme by lactose 
hydrolysis, makes the consumption of dairy products 
possible for people with lactose intolerance. Also recently, 
this enzyme has been used to produce oligosaccharides, 
known as prebiotic products. Therefore, the use of the 
β-galactosidase enzyme facilitates the production of 
useful products in the food industry. Since enzymes have 
low stability, their immobilization and stabilization on 
suitable carriers are essential. Immobilization of enzymes 
is an easy procedure with several benefits, including 
enzyme reusability, persistent process, increased stability 
under operation and storage state.15-18 

Lipases
One of the widely used biocatalysts is lipase. Lipases 
are from the hydrolase family of enzymes. They are 
effective enzymes with various applications in medicine, 
pharmaceuticals, cosmetics, detergents, paper production 
and the food industry. They are good catalysts for the 
production of food additives and ingredients. They have 
great potential for synthesizing short-chain esters to be 
used in the food industry as flavor modifiers or fragrance 
compositions. Lipases play an important role in the dairy 

industry, including hydrolyzing milk fat, accelerating 
cheese ripen, increasing the flavor of cheese and lipolyzing 
butter. In the lipid industry, lipases can be applied to 
retailor animal and vegetable oils. The industrial use of 
lipases is limited due to the high cost of their production, 
the lack of long-term stability and difficulty in recycling 
them; thus, immobilizing them on suitable matrices, such 
as hydrogels, can be very effective.19-21 

Amylases
Amylases are from the hydrolase family of enzymes. They 
are widely found in microbial, plant, and animal sources 
and are one of the important industrial enzymes with many 
applications in the food and beverage industries. Amylase 
is the essential enzyme in the bread industry, which breaks 
down damaged starch in wheat flour into small dextrins 
and strengthens the dough, resulting in improved bread 
volume. Further, small oligosaccharides and sugars such 
as glucose and maltose, produced by this enzyme increase 
Millard response responsible for browning the shell and 
creating an attractive cooked taste.22-24

Pectinase
Pectinase is from the hydrolase family of enzymes. The 
enzyme is used in processing pectin, the main component 
in the middle lamella of the plant cell wall. Pectinases 
are widely used in the food industry, such as extracting 
and clarifying wine and fruit juices, macerating fruit, 
reducing the viscosity of fruit juices, extracting vegetable 
oil, fermenting coffee and tea, and valorizing industrial 
wastes; due to these extensive applications, they make 
up 25% of the world’s enzymes. Though, like many other 
industrial enzymes, pectinase has a limited yield and low 
efficiency in its economic generation.25-27

Protease
The protease enzyme belongs to the family of hydrolases. 
The origin of protease enzymes is plant, animal, and 
microbial. Protease or peptidase is an enzyme that 
hydrolyzes peptide bonds, which is the main commercial 
and industrial enzyme. The proteases represent the largest 

Figure 1. The scheme summarized the different enzymes which can be immobilized on hydrogels with different methods.
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group of commercially available enzymes worldwide, 
accounting for 60% of the industrial enzymes market 
due to their wide range of applications in food, beverage, 
detergent, medical diagnosis, leather industries, as well as 
research and development activities. In the food industry, 
it is widely used in producing cheese by coagulating 
milk, improving the digestibility and nutritional value 
of biscuits, pastries, wafers, cookies through protein 
hydrolysis, producing gluten-free pasta and producing 
functional products. Therefore, its immobilization in the 
hydrogel matrix reduces costs and makes it easy to be 
widely used in the food industry.28-30

Glucose oxidase
Glucose oxidase is an oxidoreductase that catalyzes 
the oxidation of glucose to gluconic acid and hydrogen 
peroxide. It has many uses; for example, it scavenges 
oxygen in the food industry effectively, catalyzes the 
reaction of glucose and oxygen that generates glucuronic 
acid, and successfully removes oxygen from food and 
beverages to prolong their shelf life.31,32

Hydrogel matrixes as enzyme carriers
Hydrogels are three-dimensional, polymeric and 
hydrophilic networks. They are formed from both 
synthetic and natural hydrophilic polymers that are 
water-insoluble, able to swell, absorb, and retain major 
amounts of water. Over the years, researchers have 
defined hydrogels in many different ways. The most 
commonly used definition is that the hydrogel is a water-
swollen and cross-linked polymeric network, produced by 
the simple reaction of one or more monomer/polymer/
cross-linker units. One more description is that it is a 
polymeric material that exhibits the ability to swell and 
retain a large amount of water in its three-dimensional 
network, however, will not dissolve in water.33,34 
Hydrogels have good biocompatibility and can provide 
a suitable microenvironment32 and they are widely used 
in different fields including drug delivery systems, tissue 
engineering, protein and cell immobilization, agriculture 
and horticulture and food industry.35,36 In recent years, 
development of responsive hydrogels has been observed 

in various field. In particular, hydrogels of polymers 
such as chitosan, alginate, kappa-carrageenan, etc. have 
been used as supports for enzyme immobilization. Some 
studies have reported the immobilization of various 
enzymes including lipase, lactase, protease, and amylase 
on polymer-based hydrogels. Enzymes immobilization on 
soft and solid supports, such as hydrogels, is an efficient 
procedure amongst diverse enzyme immobilization 
techniques. Because of retaining a large amount of water 
inside the three-dimensional network, they provide 
efficient physiological conditions for enzyme activity. The 
aqueous environment of polymeric hydrogels can reduce 
the denaturation of enzymes and help enzymatic functions. 
Therefore, it can be expected to maintain enzyme activity 
due to the immobility in the hydrogel polymer matrix.37 

Kappa-carrageenan based hydrogel 
Kappa-carrageenan, thermo-reversible gel, is a linear, 
negatively charged sulfated polysaccharide extracted 
from marine red algae. Kappa-carrageenan is widely 
used in food, cosmetics, and drug controlled release 
and encapsulation due to high biodegradability and 
biocompatibility. In the food field, due to gelling 
capabilities in the presence of counter-ions, especially 
K, it is used for many applications.38-40 Zhang et al40 
immobilized β-galactosidase enzymes into kappa-
carrageenan-based hydrogel beads. As shown in studies 
conducted by them, the immobilization of β-galactosidase 
enzyme into carrageenan-based bead hydrogels improved 
enzyme activity at pH and medium temperature 
conditions; the physicochemical origin of this effect was 
attributed to the ability of K ions used to cross-link the 
polysaccharide chains to increase the stability and activity 
of β-galactosidase.

Chitosan based hydrogel 
Chitosan-based hydrogels have received substantial 
interest recently in enzyme immobilization, drug delivery, 
agriculture, biomedicine and food industry. Chitosan is a 
nontoxic natural polymer produced by the deacetylation 
of chitin and compound of glucosamine (70%) and 
acetylglucosamine (30%) units with a molecular weight 

Table 1. Application of immobilized enzymes in food industry

Enzyme Application in food industry REF

β-Galactosidase 
(lactase)

β-Galactosidase is an enzyme widely used in dairy products to hydrolyze of lactose, makes it possible consumption of dairy 
products for people who are lactose intolerance, used to produce oligosaccharides, that are known as prebiotic products

15-18

Lipase
play an important role in the dairy industry, including hydrolyze milk fat, accelerating cheese ripen, increase the flavor of 
cheese and lipolysis of butter. In lipid industry, lipases can be applied to retailoring of animal and vegetable oils

19-21

Amylase
Amylase is most important enzymes in the bread industry, which breaks down damaged starch in wheat flour into small 
dextrins and strengthens the dough, resulting in improved bread volume

22-24

Pectinase
extracting and clarifying wine and fruit juices, fruit maceration, reducing the viscosity of fruit juices, extraction of vegetable oil, 
coffee and tea fermentation and valorization of industrial wastes

25-27

Protease
production of cheese by coagulating milk, improving the digestibility and nutritional value of biscuits, pastries, wafers, cookies 
through protein hydrolysis, the production of gluten-free pasta and the production of functional products

28-30

Glucose oxidase
oxygen scavenger, catalyzes the reaction of glucose and oxygen and remove oxygen from food and beverages to prolong their 
shelf life

31,32
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ranging from 


50 to 


1000 kDa. It is the second most 
abundant polysaccharide in nature after cellulose.41 
Chitosan due to beneficial hydrophilic, cationic, and 
biodegradable properties, applied in several fields, such 
as agricultural, food, and pharmaceutical industries.42 
This natural polymer has a high potential to produce 
gels, films, fibers and particularly hydrogels.43–46 Facin 
et al,47 Wolf et al,48 and Wolf and Paulino,49 and Ricardi 
et al50 immobilized β-galactosidase enzyme. Pereira et 
al51 immobilized lipase enzyme in the chitosan-based 
hydrogel and showed that chitosan-based hydrogels can 
be useful for carrying the enzymes.

Arabic gum based hydrogel 
Acacia gum, also known as Arabic gum, is an edible gum 
extracted from the trunks and branches of Acacia senegal 
and Acacia seyal rich in low-viscosity soluble fibers. A 
type of natural amorphous, non-toxic, water-soluble, 
odorless, colorless. and tasteless polysaccharide; it has 
been widely applied from ancient times to the present 
for different purposes in pharmaceutical, food, and other 
industries.52,53 Its molecular structure has a complex 
mixture of glycoproteins and sugars acting as active 
sites on immobilization processes. It includes mainly 
of polysaccharides arabinose and galactose, calcium, 
magnesium, and potassium salts.54 Wolf et al,48 and Wolf 
and Paulino 49 immobilized β-galactosidase enzymes 
in the Arabic gum-based hydrogel and showed Arabic 
gum-based hydrogels to be good solid matrices for the 
β-galactosidase enzyme immobilization, able to be used 
for hydrolysis of lactose in dairy foods.

Pectin based hydrogel 
Pectin is a frequently used thickening and gelling agent 
in several food and non-food industries with high 
consumer acceptance. It is a natural heteropolysaccharide 
extracted from the skin of apple and citrus fruits. Pectin 
can be applied in various food applications, being a 
gelling agent, emulsifier, stabilizer, glazing agent, and 
fat replacer.55 Predominantly, it consists of α-1,4-linked 
galacturonic acid-based units. Pectin due to its unique 
properties including biocompatibility, degradability, and 
great transparency, can be used as a matrix to carry useful 
materials such as enzymes.34,56 Cargnin et al immobilized 
β-Galactosidase enzyme in the pectin-based hydrogel 
and indicated it to be excellent solid supports for the 
immobilization of enzymes. The immobilization of 
β-Galactosidase in pectin-based hydrogels can be used 
in the hydrolysis of lactose of dairy products for lactose-
intolerant individuals18; also, Hasanah et al57 immobilized 
lipase enzyme in the pectin-based hydrogel.

Alginate based hydrogel 
Alginate is a natural polymer. It, due to its properties 
such as non-toxicity, biocompatibility, low cost, gelation, 
chemically compatibility, availability, and degradability, 

is a suitable polymer for many scientific studies.58 In the 
food industry, it is a favorite ingredient, food additive, 
and carrier of effective ingredients in alginate gel 
encapsulation. Alginate, as an anionic polysaccharide, 
can be modified using chemical and physical reactions 
to be a good candidate for three-dimensional (3D) 
scaffolding derivatives such as hydrogels, microspheres, 
microcapsules, sponges, foams, and fibers.59-61 Fabra et al62 
and Traffano-Schiffo et al63 immobilized β-Galactosidase 
enzyme; Oliveira et al64 immobilized pectinase enzyme; 
also, Mohammadi et al65 immobilized lipase enzyme in 
the alginate-based hydrogel; they showed that in order to 
better maintain the activity of the enzyme in the alginate 
matrix, alginate alone was not enough and the 

Cellulose based hydrogel 
Cellulose is the most abundant polymer in nature, it 
is found in natural plants and fibers including cotton 
and linen. Cellulose is the starting material for a wide 
range of uses in the food industry as food additives and 
gelling agents.66 Cellulose based hydrogels are important 
due to their biocompatibility, non-toxicity and natural 
originality; they have potential to be used in dye or metal 
ion adsorption, drug delivery, and enzyme support.67-69 
Park et al70 and Jo et al71 immobilized lipase enzyme in 
cellulose-based hydrogel and showed that cellulose 
hydrogel could be applied as a support for lipase and 
suitable for the immobilization of enzymes.

Polyacrylamide based hydrogel 
Polyacrylamide (PAAm), including acrylamide (AM), is 
a type of synthetic polymers that have several advantages, 
such as good flexibility, biocompatibility, and high 
solubility in water. It is used widely in liquid–solid 
separation in water and waste treatment, paper making, 
processing of minerals in mining, and oil recovery 
enhancement. Cross-linked polyacrylamide is used in 
the food industry as coating, films, and gelling agents. 
PAAm is a greatly utilized synthetic polymers in hydrogel 
production due to its great hydrophilicity. It also can be 
applied to immobilization of enzymes72–74; for example, 
Mulko et al22 successfully immobilized alpha amylase 
enzyme in the PAAm-based hydrogel. 

Polyvinyl alcohol (PVA) based hydrogel 
PVA is a non-toxic, soluble (in water), semi-crystalline 
plastic, synthetic, and biocompatible polymer. It is a 
linear synthetic polymer produced by polyvinyl acetate 
hydrolysis. Due to its great properties, such as solvent 
resistance, mechanical efficiency, water high solubility. 
and eco-friendly, it is widely used in the preparation 
of hydrogels.75,76 The internal network of polyvinyl 
alcohol hydrogel has free water, crystalline and swollen 
amorphous PVA domains; it creates a porous structure 
and can be effective for various applications, including 
enzyme immobilization.77,78 As shown in Table 2, the 
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various polymer based hydrogels was used in this field. 

 Enzyme immobilization method in hydrogel
There are different methods to immobilize enzymes. As 
can realize from Figure 2, these methods are generally 
divided into two types: physical and chemical. In the 
former, there is a weak interaction among the enzyme 
and the carrier substance, while in the latter, there is a 
strong interaction due to the presence of covalent bonds. 
These immobilization methods are very important since 
the stability and long-term use of the enzyme depend 
on them. Common methods of enzyme immobilization 
include adsorption, encapsulation, entrapment, covalent 
attachment, and cross-linking.79-81 In addition, each of 
these methods has advantages and disadvantages that are 
briefly listed in Table 3. 

Entrapment and encapsulation
The caging of enzyme can be achieved by any of the 
following strategies: (1) by inclusion if enzyme within 
a highly cross-linked polymer matrix, (2) by enzyme 
dissolution in a nonaqueous phase, or (3) by separating 
enzyme from a bulk solution by using a semipermeable 
microcapsule. In this method the enzyme is not bound to 
the support matrix unlike other methods. When an enzyme 
is trapped inside a matrix, it is said to be encapsulated. 
Encapsulation is a physical method with advantages such 
as being inexpensive and easy; however, its most imperative 
benefit for enclosing is that no chemical change of the 
enzyme is required, not causing significant changes in 
the structure and activity of the enzyme. For this method, 
there are porous and gel-like matrices. Hydrogels, with 
their hydrophilic and very porous polymer network, can 
be the most suitable structure for this method that is 
more efficient than free enzyme. Enzymes are physically 
encapsulated in the hydrogel network during the sol-gel 
transition that is a comparatively mild process, tending to 
protect the structural integrity and activity of the enzymes. 
The only drawback that has been mentioned in these 
studies is the leakage of the enzyme out during storage in 
aqueous solutions8,82; in recent studies on immobilization 
of enzymes in hydrogel, the encapsulation method has 
been used.

There are various methods of enzymes entrapment like 
fiber entrapping, gel entrapping, microencapsulation, etc. 

In C. rugosa, when the lipase enzyme was entrapped in 
chitosan hydrogel, it showed enhanced enzyme activity 
and entrapment efficiency. It also prevented friability 
and leaching. This is mainly because the support matrix 
is biocompatible and nontoxic; receptive to chemical 
modifications because of its hydrophilic nature it has high 
affinity toward proteins.83

Adsorption 
In this method, the enzyme molecules adhere to the surface 
of the carrier matrix by a combination of hydrophobic 
interactions and the formation of various salt linkages 
per molecule of enzyme. Adsorption immobilization is 
a physical method that results from van der Waals and 
other noncovalent interactions, including hydrophobic 
interactions and hydrogen bonding electrostatic linkages 
among the support and the attached enzyme.76 Adsorption 
immobilization method is a naive, inexpensive, and 
reversible technique of enzyme immobilization. The 
adsorbed enzymes are usually resistant to proteolysis and 
aggregation because of their hydrophobic interaction 
with interfaces.83 Other benefits of this technique are: it 
supports the lowest activation, or no preactivation at all 
is required so that no reagent is needed; it shields against 
aggregation, proteolysis, and main interactions, which 
could disrupt enzyme and carrier potentials, and no 

Table 2. Different types of hydrogels for immobilization of enzymes.

Group of polymers 
of hydrogel

Hydrogel base Enzyme Ref

Biopolymers

Kappa-carrageenan β-Galactosidase 38–40

Chitosan
β-Galactosidase 47–49

Lipase 51

Arabic gum β-Galactosidase 48,49

Pectin
β-Galactosidase 18

Lipase 57

Alginate

β-Galactosidase 62,63

Lipase 65

Pectinase 64

Cellulose Lipase 70,71

Synthetic polymers

Polyacrylamide Alpha amylase 22

Polyvinyl alcohol 
(PVA)

Protease 77

Glucose oxidase 78

Table 3. The advantages and disadvantages of different enzyme immobilization techniques

Technique Advantages disadvantages

Encapsulation/ 
Entrapment

Protection of enzyme activity, persistent action
Limitation of enzyme loading, catalysis carried out at interphase 
enzyme/substrate, mass transfer limitations

Adsorption Easy and cheap, without the need to use reagents, great catalytic activity Low stability, poor bonding on supports

Covalent 
attachment

Powerful bonding, inhibition of enzyme leakage, high thermal stability, 
increased operational stability, compatible with special process

Limitation of enzyme mobility, reduce of enzyme activity, 
conformational restriction

Cross-linking
Powerful bonding, prevention of leakage, reduce of desorption, easy to 
reuse

Loss of the enzyme activity, reduce of diffusion rate, weak 
mechanical properties, limitation of mass transfer
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working enzymes can be supplanted with new ones. The 
drawback of this technique is that the binding or linking 
forces among the enzyme and the carrier are weak from 
being established via hydrogen bonding, hydrophobic 
interactions, and ionic and van der Waals bonding forces. 

It was reported that when Yarrowia lipolytica lipase 
was immobilized on octyl-agarose and octadecyl-sepa 
hydrogel beads supports by physical adsorption, resulted 
in greater stability, higher yields, better process control, 
and quite economical as compared to free lipase. This was 
mainly because of the hydrophobicity of octadecyl-sepa 
beads that increases the enzyme and support affinity.83

Covalent attachment and cross-linking 
Other technique is covalent attachment and cross-linking 
in which covalent bonds, in general, are generated due 
to chemical reactions between enzymes and supported 
materials. This method is mainly depending on the 
formation of covalent bond between the enzyme and the 
support material. Covalent bond formation between the 
enzyme and the matrix happens through the side chain 
amino acids like histidine, arginine, aspartic acid, etc. 
Covalent bonds can prevent enzyme leakage and improve 
the stability and reusability of enzymes; however, there is 
a high risk of enzyme denaturation, possibly modifying 
enzymes chemically. Covalent bond formation between 
the enzyme and the matrix happens through the side 
chain amino acids like histidine, arginine, aspartic acid, 
etc. However, the reactivity depends on the presence 
of different functional groups such as carboxyl group, 
amino group, indole group, phenolic group, sulfhydryl 
group, thiol group, imidazole group, and hydroxyl group. 
It requires, however, only low amounts of enzymes to 
be immobilized, and enzyme catalytic activity may be 
lost to some extent84,85; for instance, Pereira et al51 used 
covalent attachment method for immobilizing lipase in 
chitosan-based hydrogel and showed this method to be 
performed by adding glutaraldehyde and binding between 
free aldehyde groups and amine groups (NH2) lipase, 
performing better than physical methods. Maintenance of 
immobilized enzymes structural and functional properties 

is very important which can be played by a cross-linking 
agent. Glutaraldehyde is one such cross-linking agent, due 
to its solubility in aqueous solvents and can form stable 
inter- and intrasubunit covalent bonds, popularly used as 
functional cross-linker.

Enzyme activity and release
Enzymes are applied as biocatalysts in the food industry. 
They are applied due to their different properties, such as 
selectivity, non-toxicity, usage of mild reaction conditions, 
and lack of secondary reactions. However, their use 
is limited due to low operational stability, low storage 
stability, and non-reusability. Therefore, the development 
of stable and recyclable enzymes for industrial applications 
is significant research effort.86,87 Polymeric hydrogels 
have recently emerged as a new matrix to immobilize 
enzymes, which can improve enzymatic activity and 
stability, and make them possible to be reused, and 
reduce costs. Hydrogels, due to their porous structure 
and water absorption properties, create a suitable 
environment for enzymatic activity and reduce enzymatic 
denaturation.88 The studies in this field clearly show that 
the immobilization of enzymes in hydrogels improves and 
even increases enzymatic activity as compared to the free 
state. For example, the encapsulation of lactase enzyme 
in carrageenan, chitosan, alginate, and pectin-based 
hydrogels have increased enzymatic activity and stability 
in different temperature and pH conditions.18,89-91 In a 
study conducted by Almulaiky et al the retention of alpha-
amylase using PAAm-based hydrogels reached 97.5%, 
indicating the ability of this hydrogel to protect enzymes, 
making them reusable.92 Also, in a study conducted by de 
Rajdeo et al the immobilization of pectinase in alginate-
based hydrogel showed high operational stability and 
maintained more than 80% of its initial activity after the 
third cycle of reuse.93

Conclusion
Hydrogels are extensively applied in the food industry since 
they consist of safe and degradable hydrophilic polymers. 
In recent years, significant progress in design of enzyme 

Figure 2. Different enzyme immobilization methods.
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immobilization, support matrix with different pore size, 
and surface modifications are developed. Designing 
ideal support material by modifying specific structural 
features required for a target enzyme is now possible 
by new simulations. The current review has provided 
a universal overview of the potentials of hydrogels for 
immobilizing enzymes to be applied in the food industry. 
β-Galactosidase, lipase, pectinase, amylase, protease, and 
glucose oxidase enzymes are widely applied in the food 
industry, and their use is limited due to the low stability 
and high cost. Hydrogels provide a suitable environment 
for enzyme activity and reduce enzyme denaturation 
due to their water absorption properties. Therefore, the 
immobilization of enzymes in polymeric hydrogels is 
a very effective approach in using them, leading to the 
optimal use of enzymes and cost reduction. It is our view 
that the future holds significant promise with increased 
usage of immobilized enzymes in pharmacological, 
clinical, food, biotechnological, and other industrial fields. 
Moreover, as the structure of enzyme and the mechanism 
of action is known, controlled immobilization methods 
can be developed in future.
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