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Introduction
A lot of progress has been made in the area of 
nanotechnology over the last few decades. Nanoparticles 
(NPs) usually have a nano scale size, i.e., a diameter of 
less than or equal to 100 nm.1 Because of their unique 
properties, they have applications in numerous fields 
including cosmetics, electronics and medicine.2 Silver, 
gold, zinc oxide (ZnO), and titanium oxide (TiO2) NPs are 
used in cosmetics because of their excellent drug delivery 
system, skin whitening and moisture retention properties. 
Their use in cosmetics is safe as they do not penetrate the 
skin. Therefore, they are not as harmful as long as they are 
used dermally.3 NPs use in diagnostics and therapeutics 
is growing day by day. However, safety is needed to be 
ensured for their effective use in various fields like food, 
cosmetics, medicine, etc.4 Plants possess abundant radical 
scavenging molecules like vitamins, phenolic compounds, 
terpenoids, etc. These molecules have antioxidant activity, 
thus enabling them to reduce toxicity caused by NPs.5 
As NPs are toxic to health, workers dealing with them 
must wear personal protective equipment (PPE) such as 
respirators, nitrile gloves, lab coats, goggles and closed-
toed shoes. Fume hoods, gloves, biosafety cabinets should 
be employed for handling NPs.6

This review discusses different types of iNPs, their 

toxicity, factors affecting toxicity of iNPs, mechanisms 
behind their toxicity, strategies to avoid toxicity and the 
interaction between phytochemicals and inorganic NPs.

Types of inorganic nanoparticles and their toxicity
Of all the NPs, inorganic NPs (quantum dots, metallic 
NPs, etc) are among those that are most abundantly 
produced and used commercially.7 They are being used 
as therapeutic agents because of their anticancer and 
antimicrobial activities.8 They can be used to create 
antimicrobial nanocomposite films. TYiO2-NPs were 
incorporated into chitosan to produce a biocomposite 
membrane that reduced the oxidative stress levels and 
apoptosis in mouse fibroblast cells due to the superior 
porosity, crystallinity, mechanical strength and structural 
flexibility.9

However, their increased exposure may cause 
inflammation, genotoxicity, and oxidative stress, leading 
to cancer and metabolic diseases.10 Different types 
of inorganic NPs and their associated toxicities are 
mentioned in Table 1. 

Gold and silver nanoparticles toxicity
“Nanogold” is a suspension of sub-micrometer-sized gold 
particles in a fluid, usually water.16 Because of chemical 
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Abstract
During the last few decades, nanotechnology has gained many applications in almost all fields 
of life because of the unique properties of nanoparticles (NPs). Nanotechnology has specially 
marked its name in the field of medicine. However, NPs toxicity is detrimental to human health 
and is a prime concern in applied medicine. They can cause insomnia, vertigo, madarosis, 
epistaxis, hypokalemia, lymphopenia, Alzheimer’s and Parkinson’s diseases, etc. There is a 
gap in knowledge regarding the study of the toxicological effects of NPs. Mechanisms that 
are responsible for this toxicity are not fully understood yet. Phytochemicals have natural 
therapeutic effects of reducing metal NPs’ toxicity by acting as stabilizers and nontoxic 
reducing agents. However, the interaction between phytochemicals and NPs is remained to be 
elucidated. This review will provide in-depth knowledge about the various types of inorganic 
NPs and their associated toxicities, key parameters determining the toxic behaviour of NPs, and 
the mechanisms behind their cytotoxicity. It also emphasizes the need for further research to 
understand the interaction between various phytochemicals and NPs for therapeutic purposes.
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stability and good optical properties, gold nanoparticles 
(AuNPs) are being used in chemotherapy and drug 
delivery. They have shown the cytotoxicity in vitro on 
BALB/3T3 mouse fibroblasts.17

Silver nanoparticles (AgNPs), because of their 
antimicrobial activity, are used in medicine and drug 
delivery.18 Oxidation of AgNPs results in the release of 
silver ions that accounts for cytotoxicity related to the 
AgNPs.19 A study showed that reactive oxygen species 
(ROS) generation was more by AgNPs than bulk silver, 
due to which AgNPs are more toxic than bulk silver.20 
Actually, the toxicity of AgNPs is related to surface area; 
as the concentration of AgNPs per unit volume of reaction 
mixture increases, the surface area increases as well. It 
causes an increase in ROS production, which ultimately 
contributes to cell toxicity.21 Moreover, oxidative damage 
and subacute toxicity of AgNP-PVP and AgNP-20 on the 
kidneys, lungs and liver of mice have also been reported.22 

Carbon nanotubes toxicity
Carbon nanotubes (CNTs) are the allotropes of carbon 
and possess fiber-shaped nanostructures.23 In cell lines, 
CNTs can activate ROS-associated intracellular signalling 
pathways.24 They have also been reported to trigger the 
release of cytokines including TNF-α, IL-1β, IL-8 and 
IL-6 from macrophages and mesothelial cells.25 A study 
showed that nanocomposites of chitosan CNTs not only 
improved antimicrobial activity but also caused DNA 
damage in hepatic cells of Oreochromis niloticus.26

Titanium dioxide nanoparticles toxicity
Titanium dioxide nanoparticles (TiO2 NPs) are used in 
cosmetics, food additives and pharmaceutical products 
because of their chemical stability and photocatalytic 
properties. TiO2 NPs can induce cytotoxicity, genotoxicity 
and oxidative stress.27 They have induced indirect 
genotoxicity in two lung cell lines, i.e., A549 and BEAS-
2B due to impaired DNA repair processes.28 

Quantum dots nanoparticles toxicity
Quantum dots (QDs), the semiconductor NPs, are 
fluorescent and possess unique optical properties.29 Just 
like other NPs, QDs cytotoxicity depends on their shape, 
size, concentration, redox activity, mechanical stability, 
surface coatings and charge.30 Nitrogen and Sulphur co-

doped graphene QDs are less toxic and used as fluorescent 
nano-sensors in living cells.31

Factors affecting the toxicity of NPs 
Major factors associated with NPs toxicity are given 
below:

Dose and time of exposure
The toxicity of NPs is associated with their number. Cells 
with more particles have more toxic effects than cells 
with fewer particles. Both dose and time play a crucial 
role in determining the toxicity of NPs.32 However, NP 
penetration in the cells depends on their exposure time.

Concentration and aggregation
Increased concentration of NPs favours their aggregation 
as their size is in micrometers, they do not penetrate the 
cells and their toxicity is lost.33 On the other hand, another 
study suggested that aggregation of NPs affects their 
stability, making them more toxic.34 

Particle size and shape
The toxicity of NPs also depends on their size.35 Small-
sized NPs are toxic than large-sized NPs, e.g., AgNPs of 10 
nm have more significant toxicity than the larger AgNPs 
(20-100 nm).36 The shape is another factor that helps to 
determine the toxicity of NPs, i.e., different aspect ratios 
possess different toxicity levels.37 Long asbestos fibers 
(10 µm) can cause lung cancer, while short fibers (5-
10µm) can cause mesothelioma or asbestosis (2 µm).38 
Multi-walled CNTs embedded in pleural membrane 
activated macrophages that secreted IL-1β, which amplify 
inflammation in mesothelial cells.39

Crystal structure and route of exposure
Different crystalline structures of NPs can exhibit toxicity 
differently. NPs can show different oxidative mechanisms, 
cellular uptake and subcellular localization based upon 
their crystalline structure.33 Route of exposure regulates 
the initial interaction of NPs and cells.40 Dermal exposure 
of NPs activate the immune system while their systemic 
distribution causes spleen and liver toxicities.36

Pre-exposure and surface functionalization
Pre-exposure to low nanoparticle concentrations can 

Table 1. Inorganic nanoparticles and their toxicity

Type of inorganic nanoparticle Source reducing Agent Particle size Mechanism References

TMAT-AuNP Gold 1.3 nm Progression of eye pigmentation 11

Ag-NP Silver 10 nm Oxidative stress 12

Multi-walled carbon nanotubes Carbon nanotubes 15-50 nm Inflammation 13

TiO2 Titanium 5-90 nm Apoptosis 14

ZnS
CdS
Quantum dots (QD)

Cores: Zinc
Cadmium
Shells: Sulphide

10 ± 2 nm
8 ± 2 nm

Increased lipid peroxidation & catalase activity 15
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stimulate phagocytic activity and adapt the human body to 
these NPs.41 Whereas their surface properties have drastic 
effects on oxidation processes. NPs with cationic surface 
are more cytotoxic than NPs with anionic surface.42 

Mechanisms of nanoparticles cytotoxicity 
Nanoparticle toxicity mechanisms include DNA damage, 
oxidative stress, ROS production (Figure 1), and alteration 
of protein structures. Different mechanisms associated 
with nanoparticle cytotoxicity are mentioned in Table 2.
Two important cytotoxicity mechanisms are discussed 
below:

Inflammatory response and Oxidative stress
Inflammation is the defense mechanism of the body 
that involves many cytokines.48 Macrophages in the 
macrophage-rich organs, including spleen and liver, 
usually take up the NPs and release cytokines.49 ROS 
induction is the leading cause of nanotoxicity.50 A large 
number of nanomaterials have induced toxicity in human 
erythrocytes and skin fibroblasts through the production 
of ROS.51 Moreover, an imbalance in redox state of the 

cell causes the oxidative stress.52 Though ROS production 
is considered normal, but its excessive production is 
harmful to the cells. ZnO-NPs increase ROS inside cells 
and activate apoptosis via the caspase cascades in human 
gingival squamous cell carcinoma.53 

Epigenetic modifications
Epigenetic modifications refer to the heritable changes 
that are not due to alterations in the nucleotide sequence 
of DNA. Instead, they are due to the alterations in 
chromatin structure and DNA accessibility, e.g., histone 
modification and DNA methylation.54 Transcriptional 
machinery of the cell depends upon how tightly DNA 
is enfolded around histones, while DNA packaging 
depends upon histone post-translational modifications.55 
Nanoparticle exposure can lead to epigenetic changes. 
Inorganic nanoparticles (iNPs) can change the gene and 
chromatin packaging, e.g., Ag-NPs can cross the nuclear 
membrane and interfere with chromatin remolding 
enzymes that affect condensation of chromatin and 
accessibility of DNA, thus altering the expression of 
genes.56 

Figure 1. Different mechanisms associated with nanoparticle toxicity

Table 2. Inorganic nanoparticles and their cytotoxicity

Type of inorganic nanoparticle Source reducing agent Particle size Mechanism of cytotoxicity References

Au-NP Gold 25-30 nm Oxidative stress 43

Ag20Pep Silver 20 nm ROS formation & calcium dysregulation 44

Long and short multi-walled carbon nanotubes Carbon 7-26 nm Lipid peroxidation and oxidative stress 45

TiO2 Titanium ~26.4 ± 1.2 nm ROS production and apoptosis 46

CdTe quantum dots Cadmium 2.3 nm ROS generation and apoptosis 47
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Strategies to avoid toxicity caused by inorganic 
nanoparticles 
The main cause of iNPs toxicity is oxidative stress, so 
their toxicity can be overcome by preventing oxidative 
stress. Interestingly, it is reported that vitamin C can 
decrease ROS production in acute myeloid leukaemia 
cells treated with AgNPs.57 Another strategy that can 
be used to avoid oxidative stress is to use methods that 
slow down the release of metal ions since metal ions play 
a role in the induction of oxidative stress, e.g., slowing 
down the release of silver ions produced by AgNPs can 
reduce AgNP-induced toxicity.58,59 NPs can be coated 
with antioxidants or a polymer like polyethylene glycol 
(PEG) to reduce ROS formation. PEG-coated iron oxide 
NPs reduce cytotoxicity by blocking the interaction of 
ROS with Fe2O3-NPs.60 PVP-Bi2Se3 NPs showed better 
radiotherapy efficacy in cancer treatment. As selenium 
can improve immune function by reducing the harmful 
effects of radiation on normal cells.61 NPs toxicity can 
also be minimized by creating metal oxide NPs that are 
toxic to cancer cells but not to normal cells, e.g., ZnO NPs 
selectively target cancerous cells leaving normal cells.62

Interaction between phytochemicals and inorganic 
nanoparticles 
Secondary metabolites derived from harmless 
microbes and plants are called phytochemicals.63 These 
phytochemicals due to their therapeutic effects are used 
to prepare metal NPs by green synthesis approach. Green 
synthesis is a biological method for synthesizing NPs 
based upon oxidation-reduction reaction to reduce metal 
ions into stable NPs using an organism’s components or 
its extract.64 Previous studies showed that phytochemicals 
with antioxidant properties could possess the ability to 
protect cells from NPs’ exposure. However, the interaction 
between phytochemicals, NPs, and their associated 
toxicities are yet to be understood.

Conclusion 
NPs are being used in almost all fields of life today, but 
nanotoxicity has become a major issue. Oxidative stress is 
particularly associated with the toxicity of inorganic NPs 
and reducing this stress may increase the biocompatibility 
of NPs. Due to low toxicity and high bioactivity, 
phytochemicals can be coated on NPs to reduce their 
cytotoxicity efficiently. Research on the toxicity of iNPs 
is highly dispersed and no definitive conclusions can be 
drawn from the available literature. So, there is a need for 
further research to understand the toxicity mechanisms, 
the interaction between various phytochemicals and 
inorganic NPs and investigate strategies for synthesizing 
NPs with optimal properties while minimizing adverse 
effects on living cells.
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