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Introduction
Vitamins are essential micronutrients considered as a 
class of organic compounds which are not synthesized 
in the human body (except vitamin D and B2), and are 
usually deprived of providing energy, however, they are 
extremely required for proper performance of body.1 
There are thirteen vitamins which are categorized based 
on their solubility. Lipophilic vitamins are composed of A, 
E, K, and D vitamins along with carotenoids showing the 
functional traits of vitamin A, and hydrophilic vitamins 
are comprised of vitamin C and the group of B vitamins, 
including thiamin (B1), riboflavin (B2), nicotinic acid 
(B3), pyridoxine (B6), pantothenic acid (B5), folate, and 
cyanocobalamin (B12).2 

The importance of vitamins has been discussed in a 
separate section in this paper. In addition to the function 
of vitamins in the body, these micronutrients are able to 
prevent many diseases. The most important example that 
can be mentioned is COVID-19. Although, there are not 
adequate data regarding the function of vitamins against 
COVID-19, a certain number of recent studies have 

reported that some vitamins, particularly vitamin D may 
have an important role in improving the immune system 
of the body to act against the coronavirus.3-6

In spite of many advantages of vitamins, they have 
poor bio-accessibility and bioavailability, and they are 
highly vulnerable to degradation. Different parameters 
during the process and storage may cause degradation of 
vitamins such as oxygen, temperature, light, water activity, 
moisture content, pH, metal trace elements especially iron 
and copper, and degradative enzymes (lipase, proteases, 
and nucleases).7 Encapsulation techniques can surround 
vitamins and protect them against sever conditions 
such as exposure to oxygen, heat, pro-oxidants, or UV 
light, throughout the storage and can also enhance 
their functional properties like solubility, stability and 
controlled release. Vitamin D and K have lipophilic nature 
with a week solubility in the aqueous media. To improve 
their stability, solubility, and targeting feature, some 
modifications are needed to be made.8 Thus, a wide range 
of delivery systems have been developed. 

Nanoliposome is considered as one of the lipid-based 

*Corresponding Authors: Marjan Ghorbani, Tel: +98 41 33378165, Fax: +98 41 33378165, Email: Ghorbanim@tbzmed.ac.ir, and Seyede 

Marzieh Hosseini, Tel: +98 21 22622322, Fax: +98 21 22622322, Email: sm_hosseini@sbmu.ac.ir 

#These authors contributed equally in this Article

© 2023 The Author (s). This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY), which permits 
unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required 
from the authors or the publishers.

Review Article

Abstract
Nowadays the importance of vitamins is clear for everyone. However, many patients are 
suffering from insufficient intake of vitamins. Incomplete intake of different vitamins from food 
sources due to their destruction during food processing or decrease in their bioavailability 
when mixing with other food materials, are factors resulting in vitamin deficiency in the body. 
Therefore, various lipid based nanocarriers such as nanoliposomes were developed to increase 
the bioavailability of bioactive compounds. Since the function of nanoliposomes containing 
vitamins on the body has a direct relationship with the quality of produced nanoliposomes, this 
review study was planned to investigate the several aspects of liposomal characteristics such as 
size, polydispersity index (PDI), zeta potential, and encapsulation efficiency on the quality of 
synthesized vitamin-loaded nanoliposomes.
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carriers, which is used for delivery of different bioactive 
compounds.9 Due to the presence of hydrophilic 
and hydrophobic components in the structure of 
nanoliposomes, they are considered as suitable 
encapsulants for loading and delivering different types of 
vitamins to target cells.10 Although, there are some studies 
related to the delivery of vitamins using lipid carriers 
such as the work of Hsu et al,7 the main purpose of this 
study is more detailed and comprehensive investigation of 
recent literature pertaining to the application and efficacy 
of nanoliposomes to encapsulate vitamins, especially 
in different foods and environmental conditions, is 
conducted. 

An overview of vitamins
Vitamins are considered as one of the essential organic and 
micronutrient compounds with bioactive characteristics 
which are necessary for preserving the normal performance 
of human body through adjusting enzymatic and chemical 
reactions and physiological effects on various biological 
responses, including host immunity.11,12 Moreover, they 
play primary roles in different basic metabolic pathways, 
supporting the fundamental function of human cells. In 
particular, their participation in DNA synthesis, neuronal 
functions, energy-yielding metabolism, and oxygen 
transport makes them essential for muscular and brain 
functions. All of these factors can directly or indirectly 
affect the psychological and cognitive processes, including 
physical and mental fatigue.1 They can be extracted from 
food and supplements, or in some cases, synthesized by 
our body or gut microbiome.13

Vitamins are classified into fat-soluble vitamins 
(vitamins A, D, E, and K) and water-soluble vitamins 
(vitamins B and C). Fat-soluble vitamins usually bind 
to cellular nuclear receptors and have an effect on the 
expression of particular genes.14 In addition, adequate 
amount of bile flow and micelle formation enhance the 
absorption of fat-soluble vitamins. In recent decades, 
insufficiencies of these vitamins have been the ground 
for expanded danger of tumor, type II diabetes mellitus 
and other various invulnerable framework issues.15 Water-
soluble vitamins are mostly considered as cofactors for 
enzymes, influencing the enzymatic activity which can 
also improve the energy metabolism. Water-soluble 
vitamins are not stored in the body and any excess amount 
of them will be excreted in the urine.16 However, fat-soluble 
vitamins, can be stored in greasy tissues.17 Moreover, 
there are several techniques, such as chromatography and 
capillary electrophoresis to isolate and purify vitamins.15 
Biological functions of vitamins are included in Table 1. 

Characterization and role of vitamins in the body
Vitamin B
The B family vitamins include B1 (thiamine), B2 
(riboflavin), B3 (niacin), B4 (Choline), B5 (pantothenic 
acid), B6 (pyridoxine), B8 (biotin), B9 (folate), and B12 
(cobalamin).31 Mammals cannot synthesize B vitamins on 
their own; thus, they need to take them up in sufficient 
amounts from dietary or microbial sources, such as the 
intestinal microbiota. Although the majority of them are 
produced by plants, yeasts, and bacteria, they can be found 
in animal‐derived foods such as eggs, meat, and dairy, 

Table 1. Biological functions of vitamins

Vitamin Source 
Recommended dietary 

allowance (per day)
Some of functions in the body Reference

A
Retinoic acid: Animal tissues
Carotenoids: Production by plants, fungi, algae, and 
bacteria

600-800
(μg retinol activity 

equivalents)

Anti‐aging,
Skin therapy,
cytokine modulation, antioxidant, melonocyte 
function modulation, sunscreen effect, role in vision, 
bone growth, reproduction, and function of the 
immune system 

7,18, 19

D
D2: Plant products such as mushrooms 
D3: liver, fatty fish, fish oils, egg yolks and human skin 
by exposure to UV radiation

14000 IU

Skeletal functions including, calcium absorption 
and bone health, inhibition of diabetes, cancer, 
and cardiovascular diseases, prevention of 
postmenopausal osteoporosis,
therapy of inflammatory, cell proliferation modulation

20-22

K

K1 (phylloquinone): Green, leafy vegetables like 
spinach, collards, and broccoli, and soybean oil and 
canola oil.
K2 (menaquinones): Animal/bacteria-derived products

90-120 mg
Activation of particular proteins in atherosclerosis 
prevention and bone metabolism, procoagulant 

23

E In leafy vegetables and fortified cereals 15 mg

Anti-inflammatory activity,
Treatment of cancers and cardiovascular disorders,
antioxidant, supporting eyes and neurological 
function, inhibition of platelet coagulation

24,25

B12

Meat and fish, dairy products, cheese, egg white, and 
boiled haddock

2.4 μg
Vital co-enzyme for growth of cells, DNA synthesis, 
nerve cell maintenance

7, 13, 26-28

C

Fruits and vegetables, such as papaya, mango, kiwi, 
spinach, tomato. lettuce, strawberry, peppers potatoes, 
broccoli, lemons, cabbage, peas, pears, brussels 
cauliflower, sprouts, meat organs (heart liver, and 
kidney), seafood, chicken, and pork

500 mg Anti-inflammatory and depigmenting effects 29, 30
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through plant consumption by mammals.11 Some main 
sources of B vitamins are broccoli, bananas, potatoes, 
dates, spinach, asparagus, nuts, figs, and dairy products.15 
Plants are not able to produce vitamin B12; however, 
the bacteria located in the ruminants foregut or humans 
colon can produce this vitamin.32 According to the WHO 
reports, vitamin B12 deficiency will probably be the most 
prevalent malnutrition problem in the future.33

The B vitamins aim in digestion, boosting immune 
system and metabolism, and repairing cells.15 Vitamins 
B have an important role as cofactor of enzymes in all 
tissues, through numerous biochemical pathways. They 
can enhance the function of the nervous and immune 
systems,34 regulate metabolisms, and improve the cell 
division and growth. Most of these B vitamins are 
essential bioactive compounds which are dependent on 
the diet supply, excluding niacin that can likewise be 
produced from tryptophan. Vitamin B deficiencies can 
be frequently seen in elderly, children, pregnant women, 
vegetarians, and patients with gastrointestinal disorders.35 
A higher risk of mood and behavioral disorders, increased 
serum homocysteine levels, and heart diseases were 
recently connected to vitamin B deficiencies.36 B vitamins, 
specifically B9, B12, and B6 are involved in removing 
homocysteine from the body, pertaining to the dementia 
via direct vascular or neurotoxic mechanisms.37 For proper 
neuronal performances, having an adequate quantity of 
folic acid, vitamin B12, and vitamin B6 is essential. These 
vitamins possess critical roles in donation of methyl group 
for synthesizing lipids, proteins, nucleic acids, hormones, 
and neurotransmitters. However, their deficiencies have 
been reported to be related to an increased risk of dementia, 
neurodevelopmental, and psychiatric diseases. Moreover, 
improper absorption, function, and metabolism of such 
vitamins are attributed to gene polymorphisms related to 
the increased occurrence of cognitive disorders.38 

Vitamin C
Vitamin C, also known as ascorbate, is an essential 
vitamin broadly distributed in many tissues. This nutrient 
is plentiful in fruits, vegetables, and animal livers. Vitamin 
C is comprised of two molecular forms: the oxidized form 
(dehydroascorbic acid) and the reduced form (ascorbic 
acid). This vitamin is principal for the physiological 
performance of the nervous system and antioxidative 
functions of body through reducing lipid peroxidation, 
scavenging free radicals, and inhibiting oxidative stress. 
Furthermore, it participates in several non-oxidative stress 
processes, such as production of cholesterol, collagen, 
carnitine, amino acids, catecholamines, and some 
hormones.12 Vitamin C is necessary for the function of 
two dioxygenase enzymes responsible for the biosynthesis 
of carnitine, an important cofactor that transports long-
chain fatty acids into the mitochondria. Therefore, it has 
an effect on generating energy via beta-oxidation.39,40 
Vitamin C is involved in biochemical reactions catalyzed 

by monooxygenases, dioxygenases and mixed function 
oxygenases. A lack of vitamin C hampers the activity of 
a range of enzymes and may lead to scurvy in humans.41 

Vitamin D
Vitamin D is classified in to two main groups: ergocalciferol 
(vitamin D2) and cholecalciferol (vitamin D3), which are 
different in terms of physicochemical traits, molecular 
structures, and biological effects.42 Vitamin D3 can be 
mainly found in animal foods. Vitamin D2 is mostly 
found in some wild mushrooms, in which it is converted 
from a provitamin called ergosterol. Plants utilized as food 
may have ergosterol, but it is not transformed to vitamin 
D2 in nature.43 Vitamin D has significant impact on brain 
function and development, mood regulation, dopamine 
ontogeny, axonal connectivity, neuronal differentiation, 
immunological modulation, and transcriptional control 
of a huge number of genes. Vitamin D has been proved to 
protect neurons from inflammation damage via clearance 
of gathered amyloid β.37 Its deficiency has been attributed 
to the pathogenesis of some psychiatric disorders, such as 
depression and autism spectrum disorder.44 

Vitamin A
Vitamin A is a collection of organic compounds, including 
retinoic acid, retinol, retinal, and provitamin A called 
carotenoids.13 Vitamin A is a constituent of the pigment 
rhodopsin situated in the retina, contributing in visual 
processes and prevention of blindness. It is also involved 
in the function of gut microbiota, plasma retinol, CD38 
(cluster of differentiation 38), and RORA (Retinoic 
acid receptor-related orphan receptor alpha4) mRNA.1 
Insufficient levels of vitamin A can cause decreased CARS 
(Childhood Autism Rating Scale) score, increased level 
of serum 5-hydroxytryptamine (5-HT), and reduced 
development of the central nervous system.45 Vitamin 
A is necessary to maintain epithelial integrity and 
cellular differentiation, production of red blood cell, 
as well as increase in body resistance against infections. 
Severe deficiencies of vitamin A lead to vision issues 
(xerophthalmia). It has been reported that even moderate 
deficiency of vitamin A may damage vaccine elicited 
immunity for some types of vaccines.13

Vitamin E
Vitamin E (tocopherols and tocotrienols) exists in all 
membranes of cells and plasma lipoproteins, particularly 
in human red blood cells. Vitamin E can protect DNA, 
fatty acids, and low-density lipoproteins from oxidation. It, 
also, has a role in biosynthesis of hemoglobin, stabilization 
of the membranes structure, and modulation of immune 
responses.41 Fine sources of vitamin E are vegetable oils, 
oil seeds, nuts, cheese, egg yolk, margarine, soya beans, 
oatmeal, wheat germ, avocados, and green leafy vegetables, 
etc. Deficiency of vitamin E is rare in humans, though it 
can be seen in premature infants as well as in people with 
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chronic fat malabsorption, mild anemia, and ataxia.24

Vitamin K
Vitamin K exists in two natural forms. Vitamin K1 
(phylloquinone) is ample in leafy green vegetables, such 
as lettuce, cabbage, and spinach.46 The other natural 
form, vitamin K2 (menaquinone) is predominantly 
from microbial origin.47 Vitamin K2 is mostly present in 
fermented foodstuff such as natto and cheese; however, 
gut microbiota (Escherichia coli, Mycobacterium phlei, and 
Bacillus subtilis) is able to produce vitamin K2, as well.48 
There is also a synthetic form of vitamin K, which is 
known as vitamin K3 (Menadione).49

Vitamin K has an important promoting role in 
controlling the bone formation and blood clotting. 
Vitamin K deficiency may cause hemorrhagic diseases in 
babies, in addition to muscle hematomas, postoperative 
bleeding, and intracranial hemorrhages in grown person.41 
Some food sources containing vitamin K are liver, meat, 
egg yolk, whole grain, brussels sprouts, vegetables, parsley, 
celery, iceberg lettuce, cabbage, peas, asparagus, broccoli, 
cucumbers, and soya bean.15

Nanoencapsulation
Generally, encapsulation is defined as a process to 
incorporate bioactive compounds into another compound 
named cover material, shielding them from environmental 
and gastrointestinal conditions.50 The coated substances 
(active agents) are also called as fill, core, or internal 
phase, whereas the coating substances (carrier agents) are 
known as shell, membrane, wall material, matrix, capsule, 
or external phase.51

Encapsulation method is widely used to improve the 
shelf life and bioavailability of bioactive compounds. 
Encapsulation of food ingredients within nano-capsules, 
can elevate the stability and bioavailability of bioactive 
compounds, thus improving food products quality.52 
Several food-grade materials such as polysaccharides, 
lipids, and proteins are used to encapsulate bioactive 
compounds. However, carbohydrates and proteins are not 
appropriate for industrial aims because of the utilization 
of complex chemical materials or heat processing that 
cannot be completely controlled. On the other hand, lipid-
based nanocarriers have advantages such as more loading 
efficiency, biocompatibility, targeted effect, low toxicity, 
modified release, and ease of constant production.53 In 
the following sections, a summary of different lipid-based 
nanocarrier properties is given.

Lipid-based nanocarriers for vitamin delivery
Lipid-based nanocarriers bear excellent functionality 
in film formation, emulsification, and encapsulation 
of a variety of substances. These systems are generally 
categorized into two groups. First group is liquid lipid 
nanoparticles including nanoemulsions, colloidosomes, 
nanoliposomes, and multiple nanoemulsions. The second 

group is solid lipid-based nanocarriers including solid 
lipid nanoparticles (SLNs), and nanostructured lipid 
carriers (NLCs).54 Some important numbers of such 
delivery systems are briefly discussed in the following 
sections.

Nanoemulsion
Nanoemulsions are defined as liquid dispersions with 
droplet sizes of 50 to 500 nm.55 This kind of nanocarriers 
are formulated by water, oil, and surfactants/biopolymers 
in several types of single water-in-oil (W/O) or oil-
in-water (O/W) nanoemulsions, double water-in-oil-
in-water (W/O/W) or oil-in-water-in-oil (O/W/O) 
nanoemulsions, Pickering nanoemulsions formed by 
biopolymer nanoparticles, and structural nanoemulsions 
covered by one or two layers of biopolymer materials.54 A 
detailed information pertained to different nanoemulsion 
structures can be found in different studies.56-59 Oil-in-
water nanoemulsions are particularly appropriate for 
nanoencapsulation and carrying lipophilic vitamins due 
to their reliable physicochemical stability along with 
acceptable oral bioavailability.60 For example, vitamin 
D3 was encapsulated in O/W nanoemulsions. In this 
work both in vitro and in vivo studies demonstrated that 
the nanoemulsion-based delivery system improves the 
bioavailability of vitamin D3 absorption.61 The capability 
of W/O/W emulsions to provide an effective delivery 
system for vitamin B12 into skim milk was evaluated 
and 88.85% encapsulation efficiency was obtained by 
this W/O/W emulsion.26 Nanoemulsions are promising 
carriers owing to their easy preparation, rapid release 
traits, and high stability. They can be fabricated to meet 
the particular requirements needed for certain bioactive 
compounds.62

Nanoemulsions are appropriate for encapsulating, 
shielding, and carrying both hydrophilic and lipophilic 
bioactive compounds. Bioavailability and bioaccessibility 
of bioactive components encapsulated with nanoemulsions 
are affected by several parameters, such as the type and 
the physical state of lipid, the size of nanoemulsions, and 
the nature of surfactants.63 Normally, nanoemulsions 
are created from GRAS (generally recognized as safe) 
compounds. To increase the stability and decrease the 
toxicity, surfactants or co-surfactants such as peptides, 
proteins, polysaccharides, phospholipids, or nonionic 
surfactants (Tween and Span) are being used in the 
structure of nanoemulsions.62,64

Solid lipid nanoparticles 
SLNs are often mentioned in texts as the first lipid-
based nanocarrier group which were designed at early 
1990s as a replacement to emulsions, liposomes, and 
polymeric nanoparticles.65 SLNs are a particular kind of 
nanoemulsions (with diameter range of 50 to 1000 nm), 
which are fabricated by substituting the oil phase in an 
O/W nanoemulsion with a solid lipid or a mixture of 
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solid lipids (such as paraffin, waxes, and triacylglycerol). 
Contrary to nanoemulsions, lipid droplets in SLN 
systems have high crystallinity, increasing the stability of 
encapsulated bioactive and prolonging the release process 
due to much lower diffusion rate.18,52,66 

It has been demonstrated that, poly (vinyl alcohol) 
films containing SLNs with entrapped α-tocopherol, had 
a higher control on the release of α-tocopherol compared 
to the neat films, confirming the more controlled release 
of bioactive components in this system and the possibility 
of its usage in active packages for foodstuff conservation.67

Owing to the solid based of SLNs, a sustained release of 
bioactive compounds can be provided. Nevertheless, the 
most important issue related to SLNs is their low bioactive 
compound loading capacity as well as the possibility of 
expulsion throughout the storage.68 For example in a study 
by Couto et al,69 only 12% encapsulation efficiency was 
observed for vitamin B2 loaded within SLNs. However, 
reaching to a higher loading efficiency have also been 
reported. In this regard, vitamin A-loaded SLNs were 
successfully prepared using the hot homogenization 
method with the help of cetyl alcohol and Gelucire 
44/14® as carrier materials, which showed more than 90% 
entrapment efficiency.70

Nanostructured lipid carriers 
To overcome some of the problems related to SLNs such 
as low encapsulation efficiency, NLCs were suggested as 
the second generation of SLNs.71 Nanostructured lipid 
carriers are spherical shape particles with mean diameters 
of 50 nm to 500 nm, constituted of a blend of liquid 
and solid lipids, dispersed within the aqueous media 
and stabilized using an external layer of surfactants. 
The NLCs containing vitamin E have been prepared by 
medium-chain triglycerides, avocado oil or coconut oil as 
liquid lipids, stearic acid or beeswax as solid lipids, and 
some nonionic surfactants.72,73 The incorporation of oil 
within a solid matrix results in the creation of amorphous 
nanostructures with numerous imperfections inside its 
matrix, granting NLCs to have a higher bioactive capacity 
and a lower degree of expulsion through the storage, 
compared to SLNs.74 High encapsulation efficiency related 
to vitamin E (EE:86.6%)75 and Vitamin D3 (EE:90.4%)76 
has been observed in literatures. Important attributes 
of NLCs such as size, particle distribution, and stability, 
depend on the components of NLC and the type of the 
process that is being used to synthesize the particles.72

Lipid–polymer hybrid nanoparticle 
Lipomers, lipid– polymer hybrid nanoparticles, have 
been developed as promising nanocarriers and have 
gained considerable interest owing to the corresponding 
beneficial properties of both polymeric nanoparticles and 
phospholipid shell. This core-shell kind of nanocarriers, 
in which a lipid monolayer or a liposomal bilayer envelops 
the polymeric core, has great structural stability provided 

by the polymer core rigidity, sustained-release ability, 
biocompatibility, and surface functionality.77 However, due 
to the complexity of their structure, designing of lipomers 
needs more works and accuracy. Thus, lipomers have not 
been developed in the industrial scale. Contrary to other 
lipid-based nanocarriers, lipomers offer some exclusive 
features such as the variety in structural components, 
controlled bioactive release, higher encapsulation, 
improved stability profile, enhanced cellular uptake.78 
Unlike SLNs and NLCs which are mostly utilized to 
encapsulate hydrophobic bioactive compounds, Lipid–
polymer hybrid nanoparticles are capable of loading several 
hydrophilic and hydrophobic bioactive compounds due to 
the coexistence of polymer and lipid providing different 
material properties, such as hydrophobicity and water-
solubility.79 In a research study, a protein-lipid composite 
lipomers with three layers, including barley protein 
layer, phospholipid layer, and α-tocopherol layer and an 
inner aqueous partition was fabricated and successfully 
entrapped vitamin B12 with encapsulation efficiency 
of 69% and prolonged release behavior in a simulated 
gastrointestinal medium.80 Application of different lipid-
based nanocarriers for encapsulation of vitamins is 
summarized in Table 2.

Nanoliposomes
Characteristics of nanoliposomes
Nanoliposome as a vesicular lipid bilayer nanocarrier, 
is a developing structure capable of encapsulating 
the biologically active ingredients, ensuring their safe 
delivery. In general, there are similar chemical, physical 
and thermodynamic properties between liposomes and 
nanoliposomes. However, smaller particle size, which 
means larger surface-to-volume ratio is the advantage 
of nanoliposomes over liposomes. This feature provides 
other benefits such as improved bioavailability, increased 
solubility, exact targeting, and better controlled release of 
the encapsulated material.86 A clinical comparison study 
on non-liposomal and liposomal vitamin C, demonstrated 
that the liposomal encapsulated vitamin C has uniform 
particle size, and well-organized morphological pattern, 
providing highly efficient encapsulation resulting in an 
improved bioavailability.87 Nanoliposomes are artificial 
vesicles of spherical shape with small size that are made 
of natural non-toxic phospholipids and cholesterol. In 
these systems, water-soluble drugs are encapsulated in the 
aqueous core which consists of hydrophilic parts of the 
phospholipids, and the insoluble agents are entrapped in 
the hydrophobic domain which contains lipid part of the 
phospholipids bilayer.88,89

Nanoliposomes have different structural sizes and 
shapes based on environmental circumstances, their 
constituents, and their production techniques.90 Liposomes 
can be categorized into five types based on their diameter: 
(1) multilamellar vesicles - 0.5–5 nm with 5 to 20 lipid 
bilayers, (2) small unilamellar one lipid bilayer vesicles - 



Encapsulation of vitamins using nanoliposome

Advanced Pharmaceutical Bulletin, 2023, Volume 13, Issue 1 53

20–200 nm, (3) large unilamellar vesicles with one lipid 
bilayer - 200 nm, (4) giant unilamellar vesicles with one 
lipid bilayer - 1 nm, and (5) multi vesicular vesicles with 
multi lipid bilayer - 1 nm.91

Nanoliposomes with a unilamellar state show a balloon-
like structure with a simple monolayer, whereas liposomes 
that are multilamellar have onion like structures consisting 
of several single-layer cases. Unilamellar liposomes 
can be categorized as small unilamellar vesicles or large 
unilamellar vesicles, with diameters below 100 nm and 
over 100 nm, respectively. Several smaller vesicles are 
entrapped in a bigger one in multivesicular vesicles.92 

Another classification of nanoliposomes is: (1) pH-
sensitive liposomes: External changes in pH may destroy 
the lipid composition of liposomes, (2) conventional 
liposomes: the lipid layer of liposomes is composed of 
positively and negatively charged phospholipids and 
cholesterol, which are attached to the aqueous core, (3) 
immunoliposomes: with antibody molecules on the 
surface of liposomes, (4) cationic liposomes: with one 
positive charged lipid or phospholipid in the structure 
of liposomes, which can interact with nucleic acids and 
compounds with negative charge, through a simple mixing 
process, (5) long circulating liposomes: synthetic polymers, 
glycoproteins, oligosaccharides, and polysaccharides 
can make a hydrophilic layer on the surface of liposome, 
which result in the prolonged circulation of the liposomal 
components in drug delivery systems.93 A chart of main 
types of liposomes and their characteristics is given as 
Figure 1. 

Characterization of phospholipids used in the structure 
of nanoliposomes
In pharmaceutical and food industries, these systems 
are formed from surfactants such as phospholipids with 
relative ratios of hydrophilic-lipophilic balance (HLB) and 
ideal curvatures about zero. Phospholipids are derived 
from natural sources such as milk, soy, and egg, so it is 

safe to use them in food-grade products. In recent years, 
liposomes were generally produced by phospholipids 
from eggs and soy94; however, milk phospholipids have 
a higher quantity of glycolipids and sphingolipids in 
comparison to other phospholipids. Moreover, they 
have low membrane permeability, thick walls, higher 
heat transfer, and good stability while storing at 4–35°C 
temperatures, compared to phospholipids prepared from 
soybean.95 Commercial lecithin is comprised of a blend 
of several phospholipids and other components such as 
triglycerides, free fatty acids, and sterols.92,96 Phosphatidyl 
inositol and phosphatidyl ethanolamine can be considered 
as examples of the most significant phospholipids forming 
lecithin. Natural lecithins are usually used beside other 
surfactants in nanoliposome systems due to their HLB 
of 8, which makes them unsuitable to be used alone for 
this purpose. Lecithin as zwitterionic surfactant, can have 
negative, neutral, or positive charges depending on its pH 
value and electrolyte content. However, these compounds 
are not stable against oxidation which is probably due to 
their large amounts of unsaturated fatty acids.97,98 Marine 
phospholipids are other kind of phospholipids which 
are being used in the structure of nanoliposomes. These 
phospholipids which contain eicosapentaenoic acid or 
docosahexaenoic acid, have better resistance to oxidation, 
high bioavailability, and high nutraceutical properties.99,100 

Characterization of hydrophobic and hydrophilic parts 
of nanoliposomes 
Nanoliposomes are able to increase the solubility, 
bioavailability, and controlled release of the encapsulated 
material to a larger extent. Hydrophobic bioactive 
compounds are entrapped in the lipid bilayer of these 
systems, during their formation process. The compounds 
inside them can be released when they diffuse through 
the membranes, or when their membrane is disrupted 
due to the alterations in temperature or pH, and etc.101 
These systems can entrap different molecules such as 

Table 2. Application of different lipid-based nanocarriers for encapsulation of vitamins

Nanocarrier Synthesizing method Formulation ingredients Vitamin
Encapsulation 
efficiency (%)

Reference

Nano-emulsions 

Phase-inversion based hot
water dilution 

Monegyl caprylic-/capric
triglyceride,
polyethylene glycol hydroxyl stearate, water

D3 Up to 90 81

Sonication Pea protein isolate, canola oil, ethanol, water D3 93 21

Solid lipid 
nanoparticles (SLNs)

High-speed homogenization/
solvent diffusion

Phosphatidylcholine, stearic acid, ethanol, water E 90 82

microemulsion method using 
stirring

Glyceryl monostearate, tween 80, butanol, water E 84 83

Nanostructured lipid 
carriers (NLCs)

Melt-emulsification
Stearic and oleic acids, glyceryl monostearate, beeswax, 
chitosan, tween 80, water

A 98 84

Homogenization and sonication
Phosphatidylcholine, ascorbic acid, glycerol monostearate, 
Phosphatidyl serine sodium, chloroform-toluene

D3 63 22

Lipid-polymer hybrid 
nanoparticles (LPHNs)

Solvent evaporation 
emulsification

Poly(lactic-co-glycolic acid), ethyl acetate,
poly(vinyl alcohol), cholesterol, phosphatidylcholine, 
chloroform

D > 60 85
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amphiphilics, hydrophilics, and lipophilics which are 
entrapped into the lipid/water bilayer, into the interior, 
and within the hydrophobic bilayer, respectively. 
These heterogenous particles are obtained by placing 
phospholipids (such as lecithin) in the water or organic 
solutions and applying enough energy which results in the 
formation of unilamellar (one bilayer) or multilamellar 
(series of bilayers) structures.

While phospholipids can spontaneously turn into 
unilamellars by applying them in the aqueous mediums, 
their structure do not show desirable properties and 
good stability. Suitable production processes should be 
applied for production of liposomes to obtain appropriate 
properties such as smaller particle size, high loading 
capacity, and a proper encapsulation entrapment.102-104 
Several factors such as temperature, ionic strength, 
and pH, determine the physicochemical properties of 
nanoliposomes. Lipid and phospholipid vesicles display 
low permeability to the entrapped or encapsulated 
material. Nevertheless, at increased temperatures, a 
phase transition occurs in them which can have impact 
on their permeability characteristics. Phospholipids of 
nanoliposomes have a substantial thermal characteristic in 
which phase transition (Tc) occurs at temperatures lower 
than their final melting point (Tm). At Tc, known as gel 
to liquid crystalline transition temperature, much of the 
ordered packing arrangement of phospholipid bilayers are 
being lost, whereas there is an upsurge in its fluidity.105 By 
placing the amphiphilic molecules such as phospholipids 
in an aqueous phase, they can form aggregated complexes 
to protect their hydrophobic parts from water molecules; 
however, they keep their contact with the aqueous phase 
via the hydrophilic head groups. By presence of enough 
level of energy, the aggregated phospholipids can organize 
themselves in the form of closed bilayer vesicles such 

as liposomes or nanoliposomes. In this way, liposomes 
can entrap hydrophilic, lipophilic molecules, or lipid 
soluble compounds such as nutrients, drugs, and certain 
vitamins.106,107 Moreover, there can be other compounds 
in the structure of nanoliposomes, such as sterols. 
Sterol incorporation into bilayers of nanoliposome can 
cause major changes in the properties of these carriers. 
Cholesterol is the most commonly used sterol in the 
production of the lipid vesicles. However, it forms bilayer 
structures by itself. High concentrations of this compound 
can be incorporated into phospholipid membranes, to 
modulate the fluidity of the lipid bilayer which results 
in an increase in the stability of vesicles, and reduced 
permeability of the lipid membrane to solutes.108

Other sterols have been scarcely used in the structure of 
nanoliposomes containing vitamins; however, in a study 
by Amiri et al10 the effect of cholesterol and phytosterol 
(Campesterol) powder was investigated to synthesize 
a new formulation of nanoliposome for entrapment of 
vitamin C. The findings showed that the highest stability 
of vitamin C in a period of 20 days was obtained in 
phospholipids to campesterol ratio of 75:25. A positive 
impact of cholesterol substitution with campesterol on 
control release, encapsulation efficiency, and stability of 
vitamin C in nanoliposomes was reported. Regardless of 
current studies, further researches are needed to be done 
in this field. 

Methods of nanoliposome preparation
Several factors such as concentration of the encapsulated 
material, nature of the medium, physicochemical 
characteristics of the ingredients, polydispersity, size, 
and shelf life of the liposome are significant factors to be 
considered for preparation of liposome or nanoliposome. 
Preparation method of these systems can vary depending 

Figure 1. A chart of main types of liposomes and their characteristics.



Encapsulation of vitamins using nanoliposome

Advanced Pharmaceutical Bulletin, 2023, Volume 13, Issue 1 55

on their lipid composition.
The preparation methods of liposomes and 

nanoliposomes usually include the utilization of toxic or 
non-food grade solvents such as ether solution, ethanol, 
hexane, chloroform, methanol and detergents, such as alkyl 
glycoside, cholate, alkyl benzene sulfonates substances and 
triton X-100 for the solubilization of hydrophobic and/or 
hydrophilic ingredients.109,110 However, there are several 
techniques to reduce or completely eliminate the use of 
organic solvents for the formation of liposomes, requiring 
skilled technical knowledge and high investment for being 
industrialized such as heating metho. 110

Several techniques such as emulsion method, freeze 
drying double emulsion method, membrane contactor 
technology, supercritical fluid technology, solvent-
nonsolvent method, high-pressure homogenization, dual 
asymmetric centrifugation, cross-flow filtration with 
detergent depletion method, thin film hydration, reverse-
phase evaporation, solvent/surfactant displacement, 
heating method, microfluidization, sonication, and 
extrusion method, are being used for liposome and 
nanoliposome production.

In spite of several techniques being used for production 
of liposomes and nanoliposomes, due to the complexity of 
most of these methods, their application in the industrial 
scale is difficult and very challenging. For instance, thin 
film hydration method followed by sonication was used 
for the production nanoliposomes to encapsulate different 
kinds of compounds such as vitamins, previously.111 In 
spite of the production of nano-size liposomes with this 
method, it is impossible to scale up the process. Some 
other modifications are needed to overcome the scale 
up problems of these methods. For instance, to scale up 
the sonication assisted homogenization process, different 
parameters should be considered. The cycle of sonication 
time should be kept constant and a 6 mm tip and 100% 
amplitude is needed to be used. The power which is 
delivered to the sample as a result of the number of 
sonication cycles is also an important parameter, because 
the sound wave should be amplified on the whole batch 
volume at the same dimensional properties.112 Some of the 
most important methods of nanoliposome production are 
summarized below. 

Emulsion and freeze-drying double emulsion method
In the emulsification method, appropriate surfactants 
are being used to produce oil-in-water and water-in-oil 
emulsions. This method is a traditional method; however, 
freeze-drying double emulsion method is a novel trend, 
in which cryoprotectants are added to the liposome 
formulation and W/O/W emulsion will be formed 
followed by a sterilization step. 

Membrane contactor technology
In this method, organic phase is placed in the pressurized 
vessel. A pump directs the aqueous phase to a module 

and the nitrogen gas is used to push the oil phase into 
the system. The aqueous phase is subsequently pumped 
through the membrane contactor module, and liposomes 
will be formed spontaneously at the time that the lipid 
and aqueous phases meet. Liposomes prepared using this 
technology are homogeneous with small particle size and 
high encapsulation efficiency for lipophilic compounds. 
Moreover, this method is simple to scale up.113,114

Supercritical fluid technology
In supercritical anti-solvent method, lipids are readily 
dissolved in supercritical carbon dioxide and then are 
precipitated, so that ultrafine particles will be formed. 
In the supercritical reverse phase evaporation method, 
which is another supercritical fluid technology, aqueous 
phase and solid lipid materials are put into a sealed 
viewing cell and the pressure and temperature are 
adjusted and then the CO2 gas is introduced. CO2 is then 
removed, and liposomes are formed. These methods of 
liposome preparation do not contain any organic solvents 
showing their higher advantage compared to conventional 
methods.115,116

Solvent-nonsolvent method
In the conventional solvent-nonsolvent method, 
particles are produced due to the lack of solvent. In this 
method, firstly solution of the material that is going to be 
encapsulated is prepared and then the solvent is removed 
through diafiltration or an evaporation procedure after 
dispersion in its nonsolvent, and liposomes will be 
produced due to the lack of solvent.117

Homogenization
In homogenization method of liposome production, the 
suspension of drug or any compound to be encapsulated, 
suddenly passes through a homogenization gap causing 
high streaming velocity, and in this way liposomes are 
being produced.118 The main drawback of this method is 
its extremely high operating pressure.119

Dual asymmetric centrifugation 
This method of liposome production includes an additional 
sample rotation around its own vertical axis which pushes 
sample toward the center of the centrifuge, while in the 
conventional centrifugation sample is constantly being 
pushed outwards. Therefore, two overlaying movements 
of the materials occur in the centrifugation vial, which 
provides shear forces and an efficient homogenization 
for even a concentrated and viscous blend of lipids.120 
This method is easy to operate and no organic solvent is 
being used for production of liposomes with small particle 
size.114,120 

Cross-flow filtration detergent depletion method
One of the production methods of liposomes is based 
on detergent addition to solubilize lipids which is being 
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removed through next steps. In this technique membrane 
can still contain a huge amount of detergent which is 
difficult to remove. Therefore, a technique, which can 
solve this problem and reduce the preparation time 
and heterogeneous liposome lamellarity is preferred. 
Combination of cross-flow technique and conventional 
detergent depletion method is an economical technique 
which is used to overcome the problems related to the 
detergent removal.121 This method is consisted of a 
filtration device, a pump, a starting reservoir, tubing, 
an integrated rotary slide valve and a manometer for 
monitoring the pressure of retentate.114

Thin film hydration method
Thin-film hydration method is one of the simplest methods 
to form liposomes which is followed by extrusion. In this 
method by removing the organic solvent in a round-
bottom flask a thin lipid film is being made. At first step, 
heterogenous liposomes are made, then homogeneous 
small liposomes are obtained after extrusion through 
polycarbonate membranes.122

Schematic thin film hydration method to produce 
nanoliposomes is illustrated as Figure 2. 

Reverse-phase evaporation method
In reverse-phase evaporation method, several pure or 
mixed phospholipids can be used. The solvent is removed 
by rotary evaporator. At next step by purging nitrogen into 
system, lipid is dissolved in the organic phase again and the 
reverse phase vesicles will be made in this step. After this 
step, the aqueous phase is added which contains materials 
that are going to be encapsulated, followed by sonication 
and evaporation of solvent until a gel is formed.123 

Solvent/surfactant displacement method
In solvent/surfactant displacement method, firstly 
phospholipids are dissolved in an amphiphilic organic 
solvent, then the mixture is inserted into the aqueous 
solution (containing surfactant), and the nanoliposomes 
are created. Sonication and homogenization are also used 
to decrease the liposomes formed by different methods.124

Heating method 
In this method, high pressures or toxic solvents are not 
used. All of the compounds including lipids are added to 
a heating flask and are heated at high temperatures for 
about 30 min to let lipids are dissolved. Depending on the 
liposomal compounds, nanovesicles are formed.105

Microfluidization
Microfluidization is a common type of homogenization 
method which is widely used in food industry. This 
technique generates high pressures, directing the flow 
stream to the impingement area through microchannels. 
This technique provides acceptable costs for large scale 
productions and does not include toxic solvents, which 
favors food regulatory requirements. However, there are 
three drawbacks for it such as contamination, material 
loss, and hard scale-up.125,126

Sonication method
Sonication is a simple way for production of nanoliposomes 
from liposomes. In this method, hydrated vesicles are 
treated by a titanium-tipped probe sonicator for a few 
minutes with determined seconds of on- and off- intervals 
in a temperature-controlled environment. At this stage, 
nanoliposomes in the form of small unilamellar vesicles 

Figure 2. A schematic of thin film hydration method to produce nanoliposomes.
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are formed.105

Extrusion method
In the extrusion method of liposome or nanoliposome 
preparation, micrometric liposomes are modified to large 
unilamellar vesicles or nanoliposomes which depends 
on the pore-size of filters.127 Vesicles are extruded by 
passing through polycarbonate filters with defined pore 
sizes for several times. At the end, a homogenous sample 
(nanoliposome) is produced.105

Advantages and disadvantages of nanoliposomes
Generally, liposomes and nanoliposomes are systems 
contributing to the recent food trend. These systems can 
improve the efficiency of food additives and reduce the 
amounts of required bioactive compounds. They favor the 
green chemistry, and they can increase the use of natural 
compounds instead of synthetic constituents. 

Comparing the lipid based nanocarriers with other 
encapsulation materials such as carriers based on polymeric 
compounds, shows that lipid based nanocarriers have 
distinctive advantages, such as their ability to provide a 
protective cover for biological compounds which protects 
them from degradation, their capability of entrapping the 
compounds with broad range of solubility, and their high 
potential for industrial production due to the natural food 
components being used in their formulations, as well as 
their minimum production costs. In addition, they have 
good biocompatibility and biodegradability.128 According 
to USFDA (United States Food and Drug Administration) 
guidance, liposomes are different than drug-lipid 
complexes, emulsions, and microemulsions. Thus, 
developing a liposomal product needs suitable certification 
for its chemistry, production, and constituents, beside 
bioavailability in human pharmacokinetics and labeling 
(FDA 2018). Nanoliposomes have several advantageous 
and useful features in the formulation, application and 
delivery; however, they have limited drawbacks such as 
poor encapsulation efficiency, lack of enough parameters 
for continuous industrial production and stability, 
excessive cost of food components, and the use of high 
force pressure, homogenization, and sonication.129 

In contrary to micron-sized particles, nanoliposomes 
have remarkable properties such as being metastable and 
dilatable with water, without any changes in their size 
distribution. Moreover, nanoliposomes can encapsulate 
and liberate two materials with different solubilities such as 
vitamin C and vitamin E, simultaneously. Nanoliposomes 
are able to include and deliver both vitamin C and vitamin 
E to an oxidation site, resulting in a synergistic effect. 
Lipid based vesicles incorporating two bioactive agents are 
called bifunctional vesicles.130-132 In other study, Chaves et 
al133 showed that it is feasible to produce “co-encapsulated 
liposome” vesicle containing two curcumin and vitamin 
D3, which is stable over the storage time of more than 40 
days. 

One of the most useful characteristics of liposomes and 
nanoliposomes is their targetability. Directing bioactive 
molecules to a specific part in which they can apply their 
optimum efficacy, is very important. An appropriate 
and directed release enhances the efficacy of bioactive 
material, certifies optimal dosage, expands the range of 
their application, and thus increases the cost-effectiveness 
of the product.102,134 Moreover, nanoliposomes provide a 
delivery option for multiple drug molecules at the same 
time.135,136 

Structural appearance and stability of the nanoliposomes 
are highly associated with the technology adopted for their 
synthesis. Several problems related to physicochemical 
properties and stability of conventional nanoliposomes 
have been reported. Studies showed that liposomes might 
not be able to provide good physical and chemical stability 
resulting in low encapsulation efficiency, lipid oxidation, 
aggregation of vesicles or fast release of bioactive 
compounds.137,138 Moreover, rapid clearance of most of 
the liposomes from circulation by the reticuloendothelial 
system, and fast leakage of water-soluble drugs under 
improper storage conditions, are some other problems 
related to these formulations.139,140 

 Thus, modification of nanoliposomes using methods 
such as addition of charged substances on their surface, 
coating their surfaces with polymers, or using some 
drying techniques after their formation, have emerged 
as efficient approaches to boost their physicochemical 
properties and stability.141-143 In addition to the formation 
of biopolymer-associated liposomes, another promising 
method to improve the bioactivity, stability, and 
bioavailability of liposomes is to accomplish additional 
processes, referred to as “post-processing techniques”, to 
the aqueous liposome. Some common methods of post-
processing include spray drying, freeze drying, and spray 
freeze drying.144

Important properties of vitamin-loaded nanoliposomes 
Particle size, PDI and zeta potential of nanoliposomes
Generally, the average particle size, and polydispersity 
index (PDI) are parameters that are of high importance in 
liposomes and nanoliposomes. PDI, shows the quality of 
the formulated system with regard to the size distribution. 
The suitable application of nanocarriers including 
nanoliposomes for a specific route of drug administration 
is highly dependent on their average particle size, PDI 
and size stability. Size variations of nano sized systems 
are of high importance in the formulation of nanocarriers 
and to achieve ideal results, constant and narrow size 
distribution should be considered. It should be considered 
that for nanocarriers, size stability is more important, in 
comparison to micro size systems, and this is due to their 
larger specific surface area.145 In a study on the liposomal 
formulation of glucosamine and vitamin D, it was shown 
that the encapsulated liposomes have average particle size 
of 840 nm with great stability.146
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PDI is known as a parameter indicating uniformity of 
nanocarriers. When this parameter is more than 1, it means 
that different sizes of particles exist per volume unite in 
the solution. Particle aggregation increases the PDI, so 
factors causing aggregation can affect PDI. Studies on 
lipid-based nanoparticles have shown that several factors 
such as surfactant type and its concentration, instrumental 
conditions, and lipids used in their formulations can have 
impact on PDI and particle size.147 

A study on encapsulation of vitamin E in nanoliposome 
revealed that the formulation of liposomes by hydrophobic 
stabilizers such as gamma oryzanol and lauric acid leads 
to an increase in the particle size. Though, hydrophilic 
stabilizer such as PEG 400 did not have significant 
effect on mean size. In addition, it was shown that by 
using hydrophobic stabilizers, particle size distribution 
(PDI) decreases in colloidal system which indicates their 
stabilizing effect during storage time while PEG had only 
a slight effect on PDI.148

Results of a study showed that particle sizes of vitamin 
C-folic acid liposomes and chitosan coated vitamin 
C- folic acid liposomes are 138.58 nm and 249.13 nm, 
respectively. Also the reported PDIs were 0.18 and 
0.31, respectively, indicating the similarity in the size 
of nanoliposomes.149 El Adawy et al150 could produce 
nanoliposomes encapsulating ascorbic acid with particle 
size of 421.6 nm and PDI of 0.539, showing narrow and 
homogenous particle size distributions. 

Zeta potential is known as the electrokinetic potential 
between particles which are dispersed in a solution. 
This parameter shows the surface electrical charges of 
particles as well as their stability. Zeta potential and the 
size distribution are both measured by dynamic light 
scattering (DLS) technique. A large positive or negative 
zeta potential of particles present in the suspension 
results in less tendency of them to aggregate, so they will 
have higher stability.151 To broaden the zeta potential 
of nanoliposomes, providing stronger repulsion, some 
researchers use charged substances such as biopolymers as 
an extra layer covering the surface of nanoliposomes. The 
results of a study on chitosan-coated nanoliposomes of 
vitamin D3 showed that coating the nanoliposomes with 
0.01% (w/v) chitosan can improve favorable properties of 
nanoliposomes. The PDI of this covered nanoliposome 
was close to the monodisperse distribution. Moreover, the 
increase in size and zeta potential verified the interaction 
of chitosan and liposome, showing a successful coverage.152 
The increase in zeta potential is due to the more adsorbed 
cationic polymers on the surface of nanoliposomes. Since 
chitosan possess a high positive charge, the adsorption of 
chitosan seems to increase the density of positive charge, 
resulting in a more positive zeta potential.

Encapsulation efficiency
Encapsulation of vitamins into nanoliposomes provides 
many advantages, which has been highlighted in 

this review. One of the most significant benefits of 
encapsulation of vitamins within liposomes is improving 
their bioavailability in the human body. The encapsulation 
efficiency (EE) can be considered as the most important 
factor to determine the capability of nanoliposomes 
to encapsulate bioactive compounds. Encapsulation 
efficiency can also be stated as trapping efficiency, 
incorporation efficiency, or encapsulation percentage.153 
The EE depends on the composition of nanoliposomes and 
the characteristics and concentration of the encapsulated 
bioactive compound.154 Dalmoro,Bochicchio 152 reported 
that the EE of D3 and K2-loaded in cholesterol and 
phosphatidylcholine nanoliposomes was 88.4% and 
94.7%, respectively. The chitosan coverage for each 
nanoliposomal formulation of both vitamins, led to up 
to 98% increase in the entrapment efficiency. Lee, Park155 
have reported that multilamellar vesicle nanoliposomes 
of retinol, composed of L-α-phosphatidylcholine (PC) 
and 10% sterol (w/w), could increase the EE of retinol 
up to 99%.

Since higher EE is correlated with longer shelf-life and 
better stability of the nanocarrier, it is always favorable to 
elevate the EE by selecting the best possible mixture of 
core-wall ratio, processing steps such as drying methods, 
homogenization process, and other processing variables.156 
The EE of an entrapped bioactive in a nanoliposome 
depends on its partition coefficient and polarity. If loaded 
ingredients are hydrophobic in nature, they reside in 
the hydrocarbon chain of nanoliposome. However, if 
loaded bioactive compounds are polar, they are likely to 
be positioned in the aqueous core or next to the water–
lipid interface, adjacent to the nanoliposome polar head 
groups.157 Overall, the EE of lipophilic materials is usually 
higher than hydrophilic ones in nanoliposomes, since they 
can be tightly positioned in the membrane.158 For instance, 
in a recent study, two vitamins were simultaneously co-
encapsulated within synthesized nanoliposomes: vitamin 
C as a hydrophilic and vitamin E as a lipophilic bioactive. 
Vitamin E, and vitamin C displayed an average EE of 95.1% 
and 77.8 %, respectively. Thus, vitamin E demonstrated 
the highest EE, which can be attributed to its high lipid 
affinity.159 A summarized application of nanoliposome for 
encapsulation of vitamins is given in Table 3. 

Biocompatibility
Biocompatibility shows the ability of nanoliposomes to 
apply their proposed function without having any negative 
effect on the targeted tissues. There are several studies 
mentioning the biocompatibility and biodegradability 
of nanoliposomes loaded with bioactive compounds. 
Liposomes are comprised of natural lipids which are 
biodegradable, biocompatible, and less immunogenic. 
Preliminary skin toxicity study of oleic acid liposomes 
showed that no epidermal cell apoptosis occurs in the 
skin that is treated with these liposomes, indicating good 
biocompatibility of them with mouse skin.176 In a study by 
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Al-Ogaidi, chitosan and alginate which are biocompatible 
compounds were used to manufacture biodegradable and 
biocompatible nanoliposomes of vitamin C.140

There are several compounds which can be used 
in the formulation of nanoliposomes to provide 
biocompatible liposomes. For instance, chitosan has 
been used in combination with sodium tripolyphosphate 
to provide core-shell of nanoliposomes for vitamin 
E encapsulation.177,178 Chitosan provides an outer 
hydrophilic barrier by formation of a coating layer onto 
membrane, which can prevent the interaction between 
liposomes, increase their drug delivery efficiency, improve 
their structural properties, and biocompatibility.179 

In other study, L-α-phosphatidylcholine which packages 
with 1α,25(OH)2D3, and 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N-[amino-(polyethylene 
glycol)2000], were used to produce non-toxic and 
biocompatible vitamin D nanoliposomes.180

Moreover, in spite of biocompatibility properties of 
liposomes, these formulations could decrease the toxicity 
of antimicrobial agent which are potentially toxic.176

Controlled release
The nanoencapsulation systems compared to the direct 
application of bioactive compounds provide better 
functional properties such as controlled-release, and 
higher bioavailability due to their high surface area, in 
comparison to large particles.181,182 Encapsulation provides 
a surrounding for bioactive compounds or drugs, which 
protects them against environmental stresses and controls 
their release over time.183,184 Several studies have shown 
the controlled release of different bioactive compounds 
using nanoliposomes.185,186 Hydrophilic and hydrophobic 
compounds can simultaneously and efficiently be trapped 
in the phospholipids bilayer membrane structure of 
nanoliposome through various physical and chemical 
interactios.187 Therefore, nanoliposome is able to extend 
the residence time of compounds or drugs in the ambient, 
causing the controlled in vivo release of these compounds, 
which enables the activity of compounds for a longer 
time.188

The control release of loaded compounds in 
nanoliposomes can be improved by doing some 
modifications on the surface of conventional 
nanoliposomes.189 Researchers have reported that the 
surface decoration of nanoliposomes of neohesperidin by 
chitosan and pectin loaded, improve the controlled release 
of this compound.190 Chitosan nanoparticles were shown 
to improve the controlled release vitamin C in several 
studies.191,192 In a study by Liu et al,193 the release behavior 
of vitamin C was observed for the chitosan and alginate 
coated nanoliposomes. It was indicated that addition of 
these polymers onto the surface of anionic nanoliposomes 
improves the control release of vitamin C during 90 days 
of storage at 4°C, by a steric barrier on the surface. 

Bioavailability of nanoliposomes containing vitamins
Bioavailability is a key parameter of pharmacokinetic, 
which states the proportion of a bioactive compound or 
a drug, administered through any non-vascular route 
which reaches to the systemic circulation.194 A number 
of studies have indicated the increased bioavailability of 
vitamins by loading them in nanoliposomes. A review 
of recent literature shows a growing trend to increase 
the bioavailability of vitamins by loading them in 
nanoliposomes. Łukawski et al195 conducted a study with 
the aim of comparing the profiles of serum concentration 
of vitamin C in 20 healthy volunteers, after the oral 
administration either as an aqueous solution or as a 
liposomal suspension. Their results showed that in the 
nanoliposomal vitamin C treatment group, Cmax of vitamin 
gets to higher values compared to the vitamin C solution 
treatment group (303 µµ compared to 180 µµ). Moreover, 
for nanoliposomal formulation, the maximum vitamin C 
blood concentration delay time (Tmax) is longer by about 
1 h in comparison to the solution (Tmax=180 min vs. 96 
min). The incremented half-life (t1/2>6 h vs. t1/2=4 h) 
and increased AUC (81 570 µµ* min vs. 45 330 µµ* min) 
shows that loading vitamin C in nanoliposomes improve 
the bioavailability of this vitamin. The same result was 
reported by Davis et al196 who compared the bioavailability 
of vitamin C in free and liposomal forms. 

Moreover, in another study conducted on the 
bioavailability of encapsulated and free vitamin C, Gopi 
and Balakrishnan197 indicated that nanoliposomal vitamin 
C is 1.77 times more bioavailable compared to the free 
vitamin C. The nanoliposomal vitamin C showed higher 
values of Cmax (5.23 vs 2.17 mg/dL), AUC0-t (55.86 vs 
31.53 mg.h/dL), and AUC0-∞ (78.90 vs 57.12 mg.h/dL), 
compared to the aqueous solution of vitamin C.

Conclusion
In this review, the application of nanoliposomes to 
encapsulate vitamins was investigated. Regarding to 
vitamin encapsulation, nanoliposomes are known as the 
most used lipid based nanocarriers. One of the most 
principal reasons for the high use of nanoliposomes to 
deliver vitamins is related to their ability to encapsulate 
both hydrophilic and hydrophobic vitamins as well as the 
ease of their production in industrial scale. However, the 
quality of produced nanoliposomes is very important. The 
fabrication of a high quality nanoliposome containing 
vitamins mainly depends on the production method, 
utilized materials, and characteristics of liposomes such 
as particle size, PDI, zeta potential, controlled release, 
and encapsulation efficiency. Lack of attention to these 
parameters, while producing nanoliposomes, can easily 
lead to the fabrication of systems with several drawbacks 
such as fast release, deposition, low stability, and imperfect 
protection of vitamins. Recent trends demonstrate that 
researchers are interested to synthesize nanoliposomes 
with the highest encapsulation efficiency of vitamins, 
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thus many of the recently published studies have reported 
reaching to the higher than 70% encapsulation efficiency 
for different vitamins. 

In addition to inherent properties of nanoliposomes, 
the bioavailability of loaded vitamins into nanoliposomes 
is another significant factor. Increased bioavailability 
can be considered as the final goal for the application 
of nanoliposomes to cover different vitamins. As 
mentioned in this review, there are clear recent evidences 
showing that nanoliposomes are able to improve the 
bioavailability of vitamin C. Moreover, based on our 
knowledge, some variables still need more investigations. 
For instance, the replacement of cholesterol with other 
sterols and their effects on different factors of vitamin-
loaded nanoliposomes require more studies. Moreover, 
interaction of vitamins with other compounds that are 
incorporated into nanoliposomes, and their effects on 
several parameters of nanoliposomes such as stability, 
zeta potential, and encapsulation efficiency should be 
investigated. 
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