Logo-apb
Adv Pharm Bull. 2016;6(1): 31-36. doi: 10.15171/apb.2016.06
PMID: 27123415        PMCID: PMC4845546

Original Research

The Effect of Particle Size on the Deposition of Solid Lipid Nanoparticles in Different Skin Layers: A Histological Study

Zahra Mardhiah Adib 1, Saeed Ghanbarzadeh 2, Maryam Kouhsoltani 3, Ahmad Yari Khosroshahi 4, Hamed Hamishehkar 5 *

Cited by CrossRef: 66


1- Pinto F, Fonseca L, Souza S, Oliva A, de Barros D. Topical distribution and efficiency of nanostructured lipid carriers on a 3D reconstructed human epidermis model. Journal of Drug Delivery Science and Technology. 2020;57:101616 [Crossref]
2- Jain S, Patel N, Shah M, Khatri P, Vora N. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. Journal of Pharmaceutical Sciences. 2017;106(2):423 [Crossref]
3- Lv Z, Bao H, Zhu M, Xie Y, Tang H, Miao D, Guo X, Zhai X, Wang S, Chen H, Cong D, Liu X, Pei J. A novel deformable liposomal hydrogel loaded with a SREBP-1-inhibiting polypeptide for reducing sebum synthesis in golden hamster model. European Journal of Pharmaceutical Sciences. 2023;187:106483 [Crossref]
4- Han H, Kim S, Kim J, Park W, Kim C, Kim H, Hahn S. Bimetallic Hyaluronate-Modified Au@Pt Nanoparticles for Noninvasive Photoacoustic Imaging and Photothermal Therapy of Skin Cancer. ACS Appl Mater Interfaces. 2023;15(9):11609 [Crossref]
5- Akombaetwa N, Ilangala A, Thom L, Memvanga P, Witika B, Buya A. Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics. 2023;15(2):656 [Crossref]
6- Mok Z. The effect of particle size on drug bioavailability in various parts of the body. Pharmaceutical Science Advances. 2024;2:100031 [Crossref]
7- Jyothi V, Katta C, Singothu S, Preeti K, Bhandari V, Singh S, Madan J. Analysis of the therapeutic efficacy of meloxicam-loaded solid lipid nanoparticles topical gel in Wistar rats knee osteoarthritis. Journal of Drug Delivery Science and Technology. 2022;77:103914 [Crossref]
8- Amasya G, Aksu B, Badilli U, Onay-Besikci A, Tarimci N. QbD guided early pharmaceutical development study: Production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. International Journal of Pharmaceutics. 2019;563:110 [Crossref]
9- Elsewedy H, Shehata T, Genedy S, Siddiq K, Asiri B, Alshammari R, Bukhari S, Kola-Mustapha A, Ramadan H, Soliman W. Enhancing the Topical Antibacterial Activity of Fusidic Acid via Embedding into Cinnamon Oil Nano-Lipid Carrier. Gels. 2024;10(4):268 [Crossref]
10- Munir M, Zaman M, Waqar M, Khan M, Alvi M. Solid lipid nanoparticles: a versatile approach for controlled release and targeted drug delivery. Journal of Liposome Research. 2023;:1 [Crossref]
11- Biswasroy P, Pradhan D, Pradhan D, Ghosh G, Rath G. Development of Betulin-Loaded Nanostructured Lipid Carriers for the Management of Imiquimod-Induced Psoriasis. AAPS PharmSciTech. 2024;25(3) [Crossref]
12- Mahdi W, Bukhari S, Imam S, Alshehri S, Zafar A, Yasir M. Formulation and Optimization of Butenafine-Loaded Topical Nano Lipid Carrier-Based Gel: Characterization, Irritation Study, and Anti-Fungal Activity. Pharmaceutics. 2021;13(7):1087 [Crossref]
13- Yao S, Chen N, Sun X, Wang Q, Li M, Chen Y. Size-dependence of the skin penetration of andrographolide nanosuspensions: In vitro release-ex vivo permeation correlation and visualization of the delivery pathway. International Journal of Pharmaceutics. 2023;641:123065 [Crossref]
14- Shalaby E, Aboutaleb S, Ismail S, Yassen N, Sedik A. Chitosan tamarind-based nanoparticles as a promising approach for topical application of curcumin intended for burn healing: in vitro and in vivo study . Journal of Drug Targeting. 2023;31(10):1081 [Crossref]
15- El-Telbany D, El-Telbany R, Zakaria S, Ahmed K, El-Feky Y. Formulation and assessment of hydroxyzine HCL solid lipid nanoparticles by dual emulsification technique for transdermal delivery. Biomedicine & Pharmacotherapy. 2021;143:112130 [Crossref]
16- Raszewska-Famielec M, Flieger J. Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions—An Overview of Dermo-Cosmetic and Dermatological Products. IJMS. 2022;23(24):15980 [Crossref]
17- Lao J, Wang S, Chen Y, Bao L, Lam P, Zeng E. Dermal exposure to particle-bound polycyclic aromatic hydrocarbons from barbecue fume as impacted by physicochemical conditions. Environmental Pollution. 2020;260:114080 [Crossref]
18- Aryani N, Siswodihardjo S, Soeratri W, Sari N. Development, characterization, molecular docking, and in vivo skin penetration of coenzyme Q10 nanostructured lipid carriers using tristearin and stearyl alcohol for dermal delivery. 2021;32(4):517 [Crossref]
19- Katari O, Jain S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics for the treatment of psoriasis. Expert Opinion on Drug Delivery. 2021;18(12):1857 [Crossref]
20- Malta R, Loureiro J, Costa P, Sousa E, Pinto M, Saraiva L, Amaral M. Development of lipid nanoparticles containing the xanthone LEM2 for topical treatment of melanoma. Journal of Drug Delivery Science and Technology. 2021;61:102226 [Crossref]
21- Ghasemiyeh P, Azadi A, Daneshamouz S, Heidari R, Azarpira N, Mohammadi-Samani S. Cyproterone acetate-loaded nanostructured lipid carriers: effect of particle size on skin penetration and follicular targeting. Pharmaceutical Development and Technology. 2019;24(7):812 [Crossref]
22- Zeng Q, Wang Z, Zhu Z, Hu Y, Wang Y, Xue Y, Wu Y, Guo Y, Liang P, Chen H, Zheng Z, Shen C, Jiang C, Zhu H, Shen Q, Yi Y, Li H, Yang Z, Liu L, Liu Q. Glycyrrhizin micellar nanocarriers for topical delivery of baicalin to the hair follicles: A targeted approach tailored for alopecia treatment. International Journal of Pharmaceutics. 2022;625:122109 [Crossref]
23- Sreedharan S, Zouganelis G, Drake S, Tripathi G, Kermanizadeh A. Nanomaterial-induced toxicity in pathophysiological models representative of individuals with pre-existing medical conditions. Journal of Toxicology and Environmental Health, Part B. 2023;26(1):1 [Crossref]
24- Bayón-Cordero L, Alkorta I, Arana L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. Nanomaterials. 2019;9(3):474 [Crossref]
25- Zeinali M, Abbaspour-Ravasjani S, Soltanfam T, Paiva-Santos A, Babaei H, Veiga F, Hamishehkar H. Prevention of UV-induced skin cancer in mice by gamma oryzanol-loaded nanoethosomes. Life Sciences. 2021;283:119759 [Crossref]
26- Ganna S, Gutturu R, Borelli D, Rao K, Mallikarjuna K, Nannepaga J. Formulation, optimization, and in vitro characterization of omega-3-rich binary lipid carriers for curcumin delivery: in vitro evaluation of sustained release and its potential antioxidant behavior. Polym Bull. 2022;79(1):307 [Crossref]
27- Shah P, Bhargava S, Chakrabarty S, Damodaran R, Saikia P, Shenoy M, Bangale N. Rising burden of superficial fungal infections in India and the role of Clotrimazole for optimal management. IJCED. 2023;9(1):1 [Crossref]
28- Attia H, Shaker D, ElMeshad A, El-Kayal M. Optimization and in-vitro assessment of the effectiveness of carvedilol-loaded proniosomal gels as a promising therapeutic approach for the topical treatment of skin cancer. Journal of Drug Delivery Science and Technology. 2023;86:104665 [Crossref]
29- Udabe J, Tiwari N, Picco A, Huck-Iriart C, Escudero C, Calderón M. Multi-hierarchical nanoparticles with tunable core by emulsion polymerization processes. European Polymer Journal. 2023;201:112566 [Crossref]
30- Badr-Eldin S, Aldawsari H, Fahmy U, Ahmed O, Alhakamy N, Elfaky M, Sirwi A, Hawsawi S, Alzahrani A, Yaseen A, Qassim M, Kotta S. Optimized D-α-tocopherol polyethylene glycol succinate/phospholipid self-assembled mixed micelles: A promising lipid-based nanoplatform for augmenting the antifungal activity of fluconazole. 2022;72(4):547 [Crossref]
31- Pereira M, Ushirobira C, Cunha-Filho M, Gelfuso G, Gratieri T. Nanotechnology advances for hair loss. Therapeutic Delivery. 2018;9(8):593 [Crossref]
32- Ganna S, Gutturu R, Megala R, Nadella R, Borelli D, Nannepaga J. Targeted delivery of curcumin using MgONPs and solid lipid nanoparticles: Attenuates aluminum.induced neurotoxicity in albino rats. Phcog Res. 2020;12(4):380 [Crossref]
33- Palmer B, DeLouise L. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting. Molecules. 2016;21(12):1719 [Crossref]
34- Amasya G, Inal O, Sengel-Turk C. SLN enriched hydrogels for dermal application: Full factorial design study to estimate the relationship between composition and mechanical properties. Chemistry and Physics of Lipids. 2020;228:104889 [Crossref]
35- Baradaran H, Salehi R, Ghanbarzadeh S, Hamishehkar H. Potential of star-shaped polymeric nanoparticles of poly(ε-carprolactone) and poly (lactic-co-glycolic acid) for drug delivery; A comparative study with linear analogs. Materials Today Communications. 2021;27:102455 [Crossref]
36- Sun X, Wang Q, Bao H, Liu Y, Yao S, Li M, Chen N, Chen Y. Porphyrinic Metal–Organic Framework PCN-224 Nanoparticles for Colocalization of Nanoparticle-Cargo in the Skin and Enhancement of Sonodynamic Efficacy. ACS Appl Nano Mater. 2024;7(3):2614 [Crossref]
37- Sohaib M, Shah S, Shah K, Shah K, Khan N, Irfan M, Niazi Z, Alqahtani A, Alasiri A, Walbi I, Mahmood S, Cherstvy A. Physicochemical Characterization of Chitosan-Decorated Finasteride Solid Lipid Nanoparticles for Skin Drug Delivery. BioMed Research International. 2022;2022:1 [Crossref]
38- Amer S, Nasr M, Abdel-Aziz R, Moftah N, El Shaer A, Polycarpou E, Mamdouh W, Sammour O. Cosm-nutraceutical nanovesicles for acne treatment: Physicochemical characterization and exploratory clinical experimentation. International Journal of Pharmaceutics. 2020;577:119092 [Crossref]
39- Kosakowska K, Casey B, Kurtz S, Lawson L, Grayson S. Evaluation of Amphiphilic Star/Linear–Dendritic Polymer Reverse Micelles for Transdermal Drug Delivery: Directing Carrier Properties by Tailoring Core versus Peripheral Branching. Biomacromolecules. 2018;19(8):3163 [Crossref]
40- Dolinina E, Parfenyuk E. Effect of hyaluronic acid encapsulation in a silica hydrogel matrix on drug penetration through the skin. Mendeleev Communications. 2023;33(4):556 [Crossref]
41- Rocha J, Pires F, Gratieri T, Gelfuso G, Sa-Barreto L, Cunha-Filho M. Thermal analysis applied to the development of nanostructured lipid carriers loading propranolol using quality-by-design strategies. Thermochimica Acta. 2022;708:179143 [Crossref]
42- Alam P, Imran M, Jahan S, Akhtar A, Hasan Z. Formulation and Characterization of Hesperidin-Loaded Transethosomal Gel for Dermal Delivery to Enhance Antibacterial Activity: Comprehension of In Vitro, Ex Vivo, and Dermatokinetic Analysis. Gels. 2023;9(10):791 [Crossref]
43- Mishra P, Handa M, Ujjwal R, Singh V, Kesharwani P, Shukla R. Potential of nanoparticulate based delivery systems for effective management of alopecia. Colloids and Surfaces B: Biointerfaces. 2021;208:112050 [Crossref]
44- Sainaga Jyothi V, Ghouse S, Khatri D, Nanduri S, Singh S, Madan J. Lipid nanoparticles in topical dermal drug delivery: Does chemistry of lipid persuade skin penetration?. Journal of Drug Delivery Science and Technology. 2022;69:103176 [Crossref]
45- Badalkhani O, Pires P, Mohammadi M, Babaie S, Paiva-Santos A, Hamishehkar H. Nanogel Containing Gamma-Oryzanol-Loaded Nanostructured Lipid Carriers and TiO2/MBBT: A Synergistic Nanotechnological Approach of Potent Natural Antioxidants and Nanosized UV Filters for Skin Protection. Pharmaceuticals. 2023;16(5):670 [Crossref]
46- Abdellatif A, Rugaie O, Alhumaydhi F, Tolba N, Mousa A. Eco-Friendly Synthesis of Silver Nanoparticles by Nitrosalsola vermiculata to Promote Skin Wound Healing. Applied Sciences. 2023;13(12):6912 [Crossref]
47- Kim E, Choi D. Quality by design approach to the development of transdermal patch systems and regulatory perspective. J Pharm Investig. 2021;51(6):669 [Crossref]
48- Dhanya C, Paul W, Rekha M, Joseph R. Solid lipid nanoparticles of lauric Acid: A prospective drug carrier for oral drug delivery. Journal of Molecular Liquids. 2023;380:121738 [Crossref]
49- Souza R, Dantas A, Melo C, Felício I, Oliveira E. Nanotechnology as a tool to improve the biological activity of carvacrol: A review. Journal of Drug Delivery Science and Technology. 2022;76:103834 [Crossref]
50- Ibrahim M, Elsayyad N, Salama A, Noshi S. Utilization of response surface design for development and optimization of rosuvastatin calcium-loaded nano-squarticles for hair growth stimulating VEGF and IGF production: in-vitro and in-vivo evaluation . Drug Development and Industrial Pharmacy. 2023;49(9):580 [Crossref]
51- Mu H, Holm R. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opinion on Drug Delivery. 2018;15(8):771 [Crossref]
52- Liu M, Wen J, Sharma M. Solid Lipid Nanoparticles for Topical Drug Delivery: Mechanisms, Dosage Form Perspectives, and Translational Status. CPD. 2020;26(27):3203 [Crossref]
53- Mishra V, Bansal K, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm J. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics. 2018;10(4):191 [Crossref]
54- Ning X, Chen S, Yang Y, Hwang J, Wiraja C, Zhang C, Liu W, Liu L, Xu C. Photodynamic Bubble-Generating Microneedles for Enhanced Transdermal Cancer Therapy. ACS Appl Polym Mater. 2021;3(12):6502 [Crossref]
55- Iqbal B, Ali J, Baboota S. Silymarin loaded nanostructured lipid carrier: From design and dermatokinetic study to mechanistic analysis of epidermal drug deposition enhancement. Journal of Molecular Liquids. 2018;255:513 [Crossref]
56- Radbeh Z, Asefi N, Hamishehkar H, Roufegarinejad L, Pezeshki A. Novel carriers ensuring enhanced anti-cancer activity of Cornus mas (cornelian cherry) bioactive compounds. Biomedicine & Pharmacotherapy. 2020;125:109906 [Crossref]
57- Pourmadadi M, Mahdi Eshaghi M, Ostovar S, Mohammadi Z, Sharma R, Paiva-Santos A, Rahmani E, Rahdar A, Pandey S. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug delivery applications. Journal of Drug Delivery Science and Technology. 2023;82:104357 [Crossref]
58- Farjami A, Salatin S, Jafari S, Mahmoudian M, Jelvehgari M. The Factors Determining the Skin Penetration and Cellular Uptake of Nanocarriers: New Hope for Clinical Development. CPD. 2021;27(42):4315 [Crossref]
59- Kathuria H, Handral H, Cha S, Nguyen D, Cai J, Cao T, Wu C, Kang L. Enhancement of Skin Delivery of Drugs Using Proposome Depends on Drug Lipophilicity. Pharmaceutics. 2021;13(9):1457 [Crossref]
60- Parvez S, Yadagiri G, Gedda M, Singh A, Singh O, Verma A, Sundar S, Mudavath S. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Sci Rep. 2020;10(1) [Crossref]
61- Hashempour S, Ghanbarzadeh S, Maibach H, Ghorbani M, Hamishehkar H. Skin toxicity of topically applied nanoparticles. Therapeutic Delivery. 2019;10(6):383 [Crossref]
62- Khormali M, Farahpour M. The navel nanoethosomal formulation of gamma-oryzanol attenuates testicular ischemia/reperfusion damages. Heliyon. 2024;10(7):e28687 [Crossref]
63- Patel V, Sharma O, Mehta T. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery. Expert Opinion on Drug Delivery. 2018;15(4):351 [Crossref]
64- El-Dahmy R, Elshafeey A, Abd El Gawad N, El-Gazayerly O, Elsayed I. Statistical optimization of nanostructured gels for enhancement of vinpocetine transnasal and transdermal permeation. Journal of Drug Delivery Science and Technology. 2021;66:102871 [Crossref]
65- Heydari S, Ghanbarzadeh S, Anoush B, Ranjkesh M, Javadzadeh Y, Kouhsoltani M, Hamishehkar H. Nanoethosomal formulation of gammaoryzanol for skin-aging protection and wrinkle improvement: a histopathological study. Drug Development and Industrial Pharmacy. 2017;43(7):1154 [Crossref]
66- Zhou X, Hao Y, Yuan L, Pradhan S, Shrestha K, Pradhan O, Liu H, Li W. Nano-formulations for transdermal drug delivery: A review. Chinese Chemical Letters. 2018;29(12):1713 [Crossref]
67- Torrisi C, Cardullo N, Russo S, La Mantia A, Acquaviva R, Muccilli V, Castelli F, Sarpietro M. Benzo[k,l]xanthene Lignan-Loaded Solid Lipid Nanoparticles for Topical Application: A Preliminary Study. Molecules. 2022;27(18):5887 [Crossref]
68- Bhatia E, Kumari D, Sharma S, Ahamad N, Banerjee R. Nanoparticle platforms for dermal antiaging technologies: Insights in cellular and molecular mechanisms. WIREs Nanomed Nanobiotechnol. 2022;14(2) [Crossref]
69- Chutoprapat R, Kopongpanich P, Chan L. A Mini-Review on Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Topical Delivery of Phytochemicals for the Treatment of Acne Vulgaris. Molecules. 2022;27(11):3460 [Crossref]
70- Sala M, Diab R, Elaissari A, Fessi H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. International Journal of Pharmaceutics. 2018;535(1-2):1 [Crossref]
71- Ghate V, Kodoth A, Shah A, Vishalakshi B, Lewis S. Colloidal nanostructured lipid carriers of pentoxifylline produced by microwave irradiation ameliorates imiquimod-induced psoriasis in mice. Colloids and Surfaces B: Biointerfaces. 2019;181:389 [Crossref]
72- Ain Q, Zeeshan M, Mazhar D, Zeb A, Afzal I, Ullah H, Ali H, Rahdar A, Díez‐Pascual A. QbD‐Based Fabrication of Biomimetic Hydroxyapatite Embedded Gelatin Nanoparticles for Localized Drug Delivery against Deteriorated Arthritic Joint Architecture. Macromolecular Bioscience. 2024;24(2) [Crossref]
73- Gu Y, Bian Q, Zhou Y, Huang Q, Gao J. Hair follicle-targeting drug delivery strategies for the management of hair follicle-associated disorders. Asian Journal of Pharmaceutical Sciences. 2022;17(3):333 [Crossref]