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Abstract 

Purpose: Stem cells can exhibit restorative effects with the commitment to functional cells. 

Cell-imprinted topographies provide adaptable templates and certain dimensions for the 

differentiation and bioactivity of stem cells. Cell sheet technology using the thermo-responsive 

polymers detaches the “cell sheets” easier with less destructive effects on the extracellular 

matrix (ECM). Here, we aim to dictate keratinocyte-like differentiation of mesenchymal stem 

cells by using combined cell imprinting and sheet technology.  

Methods: We developed the poly dimethyl siloxane (PDMS) substrate having keratinocyte 

cell-imprinted topography grafted with the PNIPAAm polymer. Adipose tissue-derived 

mesenchymal stem cells (AT-MSCs) were cultured on PDMS substrate for 14 days and 

keratinocyte-like differentiation monitored via the expression of involucrin, P63, and 

cytokeratin 14.  

Results: Data showed the efficiency of the current protocol in the fabrication of PDMS molds. 

The culture of AT-MSCs induced typical keratinocyte morphology and up-regulated the 

expression of cytokeratin-14, Involucrin, and P63 compared to AT-MSCs cultured on the 

plastic surface (p<0.05). Besides, KLC sheets were generated once slight changes occur in the 

environment temperature.  

Conclusion: These data showed the hypothesis that keratinocyte cell imprinted substrate can 

orient AT-MSCs toward KLCs by providing a specific niche and topography.  

 

Keywords: Adipose tissue-derived mesenchymal stem cells, Cell-imprinting, Cell sheet 

engineering, differentiation, poly N-Isopropyl acrylamide (PNIPAAm), Topography 

 

Introduction 

Skin is known as the body`s largest organ which plays an important role as a barrier to the 

external environment. As a correlate, cutaneous tissue regeneration is vital once different 

pathologies occur.1-3 This organ can restore the injured site via provoking resident 

stem/progenitor cells.2 These cells are primarily unspecialized with prominent self-renewal and 

differentiation into multiple lineages.4 In normal cutaneous tissue, the basal layer of the adult 

epidermis harbor distinct stem cells namely basal cells with the ability to mature to functional 

keratinocytes.5 However, during different cutaneous injuries, in most areas of the skin is lost, 

and thus the healing procedure postpone. Therefore, any attempts have been focused to use 

alternative stem cell sources for the regeneration of injured skin. Among all cell/stem cell types, 

mesenchymal stem cells (MSCs), especially adipose-derived mesenchymal stem cells (AT-

MSCs), are the most widely used cells in the transplantation into the injured tissues.6 AT-MSCs 

are easily isolated from adult donors without invasive surgical approaches. Besides, the 

existence of inherent immunomodulatory properties makes these cells an efficient candidate in 

regenerative medicine.7 

Cell sheet engineering allows the transplantation of confluent cell layer to the injured surfaces 

using thermoresponsive smart biomaterials.8 In this method, which was first reported by Okano 

et al., cells are expanded on ready-to-use culture dishes (UpCell®) or culture plates coated with 

certain thermoresponsive polymers like PNIPAAm.9 Thus, environmental factors such as 

surrounding temperature are vital in the control of each cell's behavior.10  

Acc
ep

ted
 M

an
us

cri
pt

https://orcid.org/0000-0001-6852-9865
https://apb.tbzmed.ac.ir/Admin/Author_Search.aspx?value=A_Mohamamd_Nouri


Accepted Manuscript (unedited) 

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. 

 

 
3 | P a g e  

 

Like specific substrates and scaffolds, growth factors possess a significant role in stem cell 

differentiation.11 It has been shown that the combination of both scaffold and growth factors 

can facilitate the orientation of stem cells toward target lineages. Particular physicochemical 

properties of ECM dictate specific cell responses by engaging relevant signaling pathways.12-

18 In addition, the topographical feature of each scaffold should not be neglected in which in in 

vivo milieu cells function are tightly regulated by the ECM components and topographical 

indices. Cells might face several topographical patterns including macro, micro, and nanoscale 

features during maturation and dynamics growths. During the expansion of cells in in vitro 

conditions, most of these clues are lacking.19-22 In response to topographical patterns such as 

dots, pores, columns, meshwork, pits, gratings, and random surface shapes, cells change 

adhesion, morphology, proliferation, cytoskeletal formation, gene expression, migration, and 

even surface antigens.10,12,13,22-24 For example, Unadkat et al. created 2176 different surface 

topographies with different sizes, heights, and shapes.25 In another study conducted by Markert 

et al., they used 504 different topographies to promote differentiation of embryonic stem cells. 

They showed that these topographies can be used instead of feeder cells.26  

Despite the importance of surface topography in stem cell biology, the most used cell culture 

plates and flasks are still made of rigid and non-patterned materials. Knowing this, cell-

imprinting is reverse engineering of the cell surface patterns for cell culture approaches.27 

Along with all the techniques used to develop topographical surfaces, direct molding of the cell 

shapes (cell imprinting) is known to be a more efficient method to affect stem cells 

morphological alignment, elongation, polarization, migration, proliferation, and gene 

expression toward desired differentiation status.10,27 For example, in 2014, Lee et al. developed 

myoblast imprinted substrates for the culture of MSCs.28 They confirmed appropriate 

morphological adaptation and myogenic differentiation of MSCs on the myometrium-like 

biomimetic substrate.28 The number of studies related to stem cell culture on cell-imprinted 

patterns is increasing time by time.29-39 Here, we aimed to examine whether the culture of AT-

MSCs on keratinocyte cell imprinted substrate and cell sheet engineering technology can 

dictate differentiation toward KLC.  

 

Materials and Methods 

AT-MSCs culture and expansion  
Human AT-MSCs were provided by the Azerbaijan Stem Cell and Regenerative Medicine 

Institute (SCARM) at the Tabriz University of Medical Sciences. Cells were previously 

characterized by flow cytometry analysis. Cells were cultured in Dulbecco’s Modified Eagle’s 

Medium/Ham’s F12 (DMEM/F12) (Gibco, Scotland) supplemented with 10% (v/v) fetal 

bovine serum (FBS) (Seromed, Germany), 100 IU/ml penicillin, and 100 µg/ml streptomycin 

(Sigma, USA). Cells were maintained in a humidified atmosphere at 37°C with 5% CO2. The 

medium was changed every 3-4 days until 70-80% confluency. AT-MSCs were detached using 

TrypLETM (Gibco, UK). Cells at passages 3 to 4 were subjected to different analyses. 

Characterization of the AT-MSCs is summarized in Figure 1. 

 

Keratinocytes isolation from neonatal foreskin  

Sample preparation and epidermal isolation 

To this end, parents were asked to complete informed consent before sampling. Keratinocytes 

were isolated from foreskin samples of newborn infants during circumcision. Briefly, samples 

were collected in 50 mL falcons containing 5 ml Hank's Balanced Salt Solution (HBSS) (Gibco, 

UK) enriched with 7.5 mg/ml fungizone (Gibco, UK), 300 U/ml penicillin, and 300 mg/mL 

streptomycin (Gibco, UK). The samples were transferred to the cell culture laboratory. Before 
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isolation, samples were disinfected in 70% EtOH for 40 seconds and washed three times with 

phosphate-buffered saline (PBS) (Gibco, UK). Thereafter, subcutaneous fat and connective 

tissues were carefully removed and samples were cut into small pieces (0.5 cm × 0.5 cm). For 

enzymatic digestion, samples were incubated with 2.5 mg/mL dispase in HBSS (Gibco, UK) 

at 4°C overnight (16-18 hours). The next day, samples were transferred to a sterile petri dish 

and the epidermis was separated from the dermis using forceps.  

 

Trypsinization of epidermis layer 

Epidermal tissue in PBS was cut into very small pieces (2 mm × 2 mm) and transferred to a 15 

mL Falcone tube having the appropriate amount of TrypLETM (Gibco) enzyme for 15-20 

minutes and the tube was shaken every 3 minutes for better exposure and digestion. Finally, 

the solution was pipetted up and down (25-30 times) and passed through a 70 µm mesh filter 

to eliminate undigested tissue and transferred to another sterile tube. Cells were centrifuged at 

200×g for 5 min and the cell pellet was re-suspended in keratinocyte specific medium (Epilife 

medium) supplemented with human keratinocyte growth factor (HKG) supplemented with 100 

U/mL penicillin and 100 mg/mL streptomycin and cultured in a 25 cm culture flask. To achieve 

the optimum result, type I collagen as a Coating Matrix was used to coat the culture plates. 

Cells were incubated at 37 °C, 5% CO2, and 95% humidity. The medium was changed every 

other day until confluency. Cells were detached using the TrypLETM enzyme for follow-up 

experiments. 

 

Fabrication of cell-imprinted substrate  

For this purpose, PDMS (SYLGARD® 184, RTV, Dow Corning, USA) was used to fabricate 

the cell-imprinted substrates. Briefly, keratinocytes were cultured in EpiLife® basal medium 

supplemented with Keratinocyte Medium Supplement. Upon reaching 70-80% confluence, the 

supernatant culture medium was discarded. Then, the PDMS substrate was fixed in 4% 

glutaraldehyde and washed with PBS several times. To molding, we mixed silicone resin and 

curing agent at a ratio of 10: 1 according to the manufacturer’s instruction. The mixture was 

degassed by vacuum, and heated at 45°C for 30-35 minutes. After cooling, the cured silicone 

was poured onto the wells containing fixed cell samples and incubated at 37°C for 24-48 hours 

for obtaining the imprinted substrates. Thereafter, cured silicone was peeled off from cell 

culture plates and the imprinted surfaces were washed with boiling water and 1 M NaOH 

solution to remove the cell debris. The cell-imprinted substrate was observed by a scanning 

electron microscope (SEM) microscopy.  

 

Thermoresponsive substrate development  

Ultraviolet/Ozone (UV/O) treatment 

The ultraviolet/ozone (UV/O) treatment of the PDMS surface was done in a commercial UV/O 

chamber (Jelight Company, Inc., Model 42-220, Irvine, CA). This method is a kind of an 

oxidation process in which surface molecules are excited exposed to the short-wavelength UV 

radiation. The atomic oxygen and ozone are generated by λ1 = 184.9 nm and by λ2 = 253.7 

nm, respectively. The 253.7 nm radiation can be absorbed by most of the hydrocarbons. 

Therefore, in the presence of wavelengths, atomic oxygen and ozone are continuously 

generated. The Sylgard-184 PDMS substrate was placed into the UV/O cleaner tray at a 6 mm 

distance from the UV source and exposed to the radiation for 20 minutes. 

 

Contact angle analysis 

Acc
ep

ted
 M

an
us

cri
pt



Accepted Manuscript (unedited) 

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. 

 

 
5 | P a g e  

 

The hydrophobicity of PDMS can limit the successful culture of certain cell types.40 The UV/O 

treatment was performed to make the PDMS surface more hydrophilic for NIPAAm grafting. 

Following the surface modification, surface wettability will be improved, but the PDMS 

polymer chains will rearrange which is called “hydrophobic recovery”.40 Contact angle 

goniometry was performed using a home-built contact angle measurement device equipped 

with a TZM-2 microscope (BEL engineering company, Italy) coupled to a 3 megapixel CMOS 

digital camera. The reported contact angle values corresponded to the mean of three 

independent measurements. The advancing contact angles were read within 30 s after treatment 

and the receding contact angles were determined by removing 4 µL from the deionized water 

(DIW) droplet. As detailed later, these contact angle data were used to estimate the surface 

energy of the solid. 

 

PNIPAAm grafting on treated PDMS surface 

For this aim, two different methods including UV and Atom transfer radical 

polymerization (ATRP) were applied to polymerize PNIPAAm on the functionalized PDMS 

surface.  

UV polymerization method: UV/O treated PDMS substrates were immediately immersed in 

the N-isopropyl acrylamide (NIPAAm) monomer solution (20% w/v in 2-propanol) and placed 

in the UV chamber for both 15 and 60 minutes. The distance between the UV lamp and the 

substrate was adjusted to 10 mm. 

ATRP polymerization method: For this aim, the initiator was prepared by the reaction of (3-

aminopropyl) trimethoxysilane with BIBB in the presence of the triethylamine. In the next step, 

UV/O-treated PDMS substrate was immersed in an initiator solution (0.3 gr/cm2) in dry ethanol 

(35 ml) at room temperature for 24 hours under an argon atmosphere. Thereafter, the composite 

was washed with ethanol to remove residual initiators followed by drying under vacuum. 

Grafting of PNIPAAm on macroinitiator surface was carried out via ATRP with a reaction 

system containing NIPAAm/bipyridine/CuCl at a molar ratio of 500/20/10 in methanol. In a 

100 ml flask, the macroinitiator was immersed in a solvent (20 ml) and sonicated. The system 

was degassed by argon purging for 15 minutes. Then, CuCl and bipyridine, and NIPAAm were 

added respectively. The mixture was stirred under argon flow for 3 hours and placed at 50°C 

in an oil bath. After 24 hours, the polymerization was stopped and the product washed with 

methanol to remove the residue monomer and homopolymers from the surface. The polymer 

was dried under vacuum for 48 hours.  

PNIPAAm grafting evaluation: Fourier transform infrared spectroscopy in the attenuated total 

reflection mode (FTIR-ATR) was used for characterizing chemical changes on the surface of 

the PDMS substrate after UV and ATRP polymerization methods. The spectra were recorded 

using a Tensor 27 (Bruker, Germany) spectrometer equipped with an attenuated total 

reflectance (ATR) accessory at 600 scans with a 4 cm-1 resolution.  

 

Human AT-MSCs culture on a developed substrate  

The fabricated substrates were immersed in 70% ethanol for 1 hour (Merck, Germany), cut to 

the diameter of a well in the 12-well plates. Before cell culture, the imprinted surface inside 

the wells was exposed to the UV for 40 minutes. An initial number of 3×104 cells/cm2 AT-

MSCs in 200 µL DMEM/F12 culture medium were poured onto the cell-imprinted substrates. 

The next day, 800 µL fresh medium supplemented with 10% (v/v) FBS was added to each 

substrate. Keratinocyte cells and AT-MSCs were cultured on the plastic surface to compare the 

differences between groups. In all the groups, cells were cultured for 14 days and the medium 

was changed every 3-4 days.  
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Quantitative Real-time PCR 

On day 14, total RNA content was extracted from all groups using the RiboEx kit (GeneAll®, 

Seoul, Korea) according to the manufacture’s instruction. The concentration of RNA was 

quantified at the wavelength of 260 nm using a spectrophotometer instrument (Thermo 

Scientific™ NanoDrop™ One, USA). RNA samples were reverse-transcribed into cDNA 

using the HyperScript™ (GeneAll®, Seoul, Korea). Expression of keratinocyte-specific 

markers such as Cytokeratin 14 (K14), Involucrin (Inv), and P63 was monitored (Table 1). All 

reactions were carried out in triplicate. β-actin was used as an internal control gene. 2-∆∆CT was 

used to calculate the relative expression of target genes.  

 

Table 1. Primer sequence pairs used in qPCR. 

Spices  Name Forward sequence Reverse sequence 

Huma

n  

Cytokerati

n 14 

(K14) 

GGCCTGCTGAGATCAAAG

AC 

GGTTCAACTCTGTCTCATACT

TGG 

Huma

n 
Involucrin 

(Inv) 

CTCTGCCTCAGCCTTACT

G 
CAGTGGAGTTGGCTGTTTCA 

Huma

n P63 
TCAACGAGGGACAGATTG

CC 
CAACCTGGGGTGGCTCATAA 

Huma

n Β-actin 
CAAGATCATCACCAATGC

CT 
CCCATCACGCCACAGTTTCC 

 

 

Cell sheet detachment analysis 

To affirm the thermosensitive properties, AT-MSCs were cultured on cell-imprinted PDMS 

substrate and kept for 14 days. After reaching appropriate confluency, the normal culture 

medium was replaced with a pre-chilled (4°C) medium.  

 

Histological Evaluation 

The developed cell sheet with AT-MSCs was fixed in 10% formalin solution, embedded in 

paraffin blocks and 5 µm-thick sections prepared. Slides were stained with Hematoxylin and 

Eosin (H&E) solution.  

 

Statistical Analysis 

All data were expressed as means ± SD of three independent experiments and analyzed with 

one-way ANOVA and pair-wise multiple comparison procedures (Tukey Tests) using 

GraphPad PRISM software ver. (8.0.1). P-values< 0.05 were considered statistically 

significant. 

 

Results and Discussion 

Adipose tissue-derived mesenchymal stem cell isolation and expansion  

Flow cytometry analysis indicated that more than 99% were positive for CD105 (Figure 1a). 

According to our data, near 82% were positive for CD73. Also, they were more than 98% was 

double negative for hematopoietic cell markers CD45 and CD34. These data showed MSC-
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like phenotype in the cultured cells. Bright-field imaging showed a typical spindle fibroblast-

like shape (Figure 1b).  

 

 

Primary human keratinocyte isolation 
As shown in Figure 2, data revealed successful isolation of primary keratinocytes. The 

morphology of expanded cells is typical and similar to uniform epidermis keratinocytes (Figure 

2).  

 

Cell-imprinted thermoresponsive PDMS substrate analysis 

SEM image analysis 

According to SEM imaging, cell imprinted PDMS substrate was successfully developed. Data 

showed the successful formation of cell shape grooves on PDMS silicon which are comparable 

to the keratinocytes shape (Figure 3). 

 

UV/O treatment and contact angle analysis 

We noted that the PDMS surface is hydrophobic, with a contact angle of 106.0° and these 

values reached 84.0° following the addition of hydroxyl (-OH) or silanol (-SH) groups after 

treatment with UV/O (Figure 4). Commensurate with these comments, –OH or -SH groups 

were generated on the PDMS surface to attach to the NIPAAm monomer under UV irradiation 

and ATRP method.  

 

ATR-FTIR analysis 
ATR-FTIR analysis of the PNIPAAm-grafted and non-grafted cell-imprinted PDMS surfaces 

was done and compared to the pure NIPAAm monomer (Figure 5). The overlap of absorption 

bands in PNIPAAm-grafted and non-grafted PDMS is almost the same except in the region 

between 1500 and 1700 (Figure 5a). While amide II bands were not observed in non-grafted 

PDMS, indicating the successful integration of PNIPAAm to the PNIPAAm-grafted PDMS 

surface. These data indicate partial contributions of N–H bending and C–H stretching of the 

amide group in the grafted PNIPAAm polymer. 

 

Transdifferentiation of the AT-MSCs into KLCs 

The expression of multiple keratinocyte-specific genes like K14, Inv, and p63 was monitored 

in AT-MSCs cultured on substrates’ surface. Data showed a statistically significant difference 

in the expression of selected genes between groups (p<0.05; Figure 6). As expected, AT-MSCs 

did not express keratinocyte-associated markers K14, Inv, and p63. Of note, in the positive 

control, KLCs, transcription of all three genes were evident. Compared to the AT-MSCs group, 

we found a statistically significant difference in KLCs (Figure 6). These data showed that AT-

MSCs are devoid of KLC-associated factors. Based on our data, we found that 14-day culture 

of AT-MSCs on PDMS substrate increased the expression of K14, Inv, and p63 compared to 

the AT-MSCs (p<0.05). To the AT-MSCs at the mRNA level, the fold change results was 

(Cytokeratin-14, 0.178323632 vs. 0.00028413 (****p<0.0001); involucrin, 0.003294605 vs 

0.132567826 (****p<0.0001) and p63, 0.010602757 vs 0.145643358 (****p<0.0001); 

respectively) (****p<0.0001; n = 3 independent experiments). To conclude, KLCs 

demonstrated gene expression profiles of the keratinocyte-specific markers similar to those of 

the keratinocytes. These results indicated that PDMS induces KLC-differentiation of AT-

MSCs possible in vitro.  
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Histological analysis of the detached KLCs sheet 

The formation of multilayer KLCs was analyzed using H&E staining (Figure 7). The data 

exhibited the overlapping of KLCs in the thermo-sensitive scaffold, showing the applicability 

of PDMS substrate in the regeneration of skin diseases.  

Skin regeneration is an important field of regenerative medicine. Since stem cells can trans-

differentiate into functional cells, thereby they play a very important role in the regeneration 

of different organs.3,5,41,42 Among all the stem cell types, AT-MSCs can be easily harvested 

from fat tissue samples. Like bone marrow MSCs, AT-MSCs possess plasticity, high 

proliferation capacity, paracrine activity, and immunomodulatory properties. These features 

make AT-MSCs more advantageous to other adult stem cells.43 AT-MSCs, not only, can 

differentiate into mesenchyme germ layer but also commit into other different germ layers, a 

phenomenon known as “Trans-differentiation’’. However, for the successful orientation of 

these cells toward target cell lineages, the existence of special environmental topographies is 

vital like stimulatory factors and suitable scaffolds.43 It is known that stem cells are highly 

sensitive to their environmental chemistry, stiffness, and more importantly to the topography 

of their culture substrate.22 Different studies have been conducted using the various 

extracellular matrix (ECM) like topographies in micro and nano-sized triangle, round and 

multigonal formats. Based on data, all these features can affect cell attachment, spreading, 

cytoskeletal architecture, nuclear shape, and orientation into specialized cell types.10,13,22-24  

Cell-imprinted PDMS substrates is a promising material for various applications like 

microfluidic systems, molding, and developing desired substrates. Moreover, PDMS is a 

transparent and biocompatible material and has great advantages for biomedical applications.44  

PNIPAAm is a well-known and widely used smart polymer that shows a temperature-

responsive manner and hydrophobic/hydrophilic phase transition in an aqueous solution. 

PNIPAAm exhibits both upper-critical solution temperature (UCST) or lower-critical solution 

temperature (LCST, higher than body temperature) phase behaviors.45 Since the LCST of 

PNIPAAm is near the body temperature (at 32˚C), it is a good candidate for various biomedical 

applications like drug/gene delivery systems.46-48 First, Okano et al. used PNIPAAm in cell 

culture to control the cell attachment/detachment capacity by changes in environment 

temperature. This capacity will help scientists to create a monolayer of cells having the intact 

ECM (which is essential for the efficient cell adhesion, differentiation, and their tissue-like 

function) on their basal layer called “cell sheet”.49  

Here, we performed a cell-imprinted substrate to control the differentiation of AT-MSCs 

toward KLCs. For this purpose, keratinocyte cell shape topography was induced on the PDMS 

silicone and grafted to thermoresponsive polymer PNIPAAm. Ultrastructural analysis revealed 

20-µm grooves after the culture of keratinocytes on the PDMS substrate. These data showed 

the efficiency of the current protocol in the induction of cell-imprinted topography on the 

thermo-sensitive substrate. Further analysis by ATR-FTIR showed efficient integration of 

PDMS to PNIPAAm. To be specific, the overlap of absorption bands in PNIPAAm-grafted and 

non-grafted PDMS is almost the same except in the region between 1500 and 1700. The region 

around 1600 and 1500 are indicators of the success amid bonds which represents the C=O and 

C-N respectively. We also showed that the expression of genes such as K14, Inv, and p63 

increased after 14-day culture on the scaffold surface with certain topographical features. P63 

is a homolog of the p53 transcription factor which represents the epithelial development and 

proliferation. This marker is known for distinguishing the keratinocyte stem cells of the basal 

layer from the more specialized transient amplifying (TA) progenitors. This factor is also the 

indicator of the epidermal differentiation and basement membrane formation and thus can be a 

representative for the keratinocyte progenitor cells (KPCs).50 Besides p63, the basal layer 
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keratinocyte stem cells contain keratin bundles such as cytokeratin 14 (K14) and cytokeratin 5 

(K5).50 Other structural proteins such as involucrin are also synthesized during the very first 

steps of the keratinocyte differentiation.51  

Finally, after culturing the AT-MSCs on PNIPAAm grafted substrate, as shown in figure 6, 

qPCR analysis showed that, KLC started to all keratinocyte specific markes (K14, Involucrin 

and p63) comparing to our negative control (AT-MSCs cultured on non-imprinted substrate). 

The fold change results was (Cytokeratin-14, 0.178323632 vs. 0.00028413 (****p<0.0001); 

involucrin, 0.003294605 vs 0.132567826 (****p<0.0001) and p63, 0.010602757 vs 

0.145643358 (****p<0.0001); respectively) (****p<0.0001; n = 3 independent experiments). 

Finally, desired cell sheet was removed from the substrate 20-30 min after replacing the 

medium with chilled one and analyzed with H&E staining. As shown in Figure 7, the uniform 

cell sheet with blue cell nucleus and red cytoplasm is obvious.  

 

Conclusion 

In this study, the desired keratinocyte cell-imprinted substrate was successfully developed. The 

culture of AT-MSCs induced KLC like phenotype after 14 days. Along with morphological 

adaptation, the expression of K14, Inv, and p63 increased in AT-MSCs. In conclusion, the 

results of this study confirmed that keratinocyte cell-imprinted substrate could dictate KLC like 

phenotype in AT-MSCs cultured on the thermoresponsive cell-imprinted substrate.  
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(HBSS) 

Hematoxylin and eosin (H&E); Human keratinocyte growth factor (HKG); Involucrin (Inv) 

Keratinocyte like cells (KLCs); Keratinocyte progenitor cells (KPCs); Lower-critical solution 

temperature (LCST); Mesenchymal stem cells (MSCs); Phosphate buffered saline (PBS); Poly 

dimethyl siloxane (PDMS); Poly N-Isopropyl acrylamide (PNIPAAm); Quantitative real-time 

PCR (qPCR); Scanning electron microscope (SEM); Transfer radical polymerization (ATRP); 

Transit-amplifying (TA); Ultraviolet/ozone (UV/O); Upper-critical solution temperature 

(UCST); Water contact angle (WCA) 
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