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Abstract 

Purpose: blood-brain barrier (BBB) is made of specialized cells that are responsible for the 

selective passage of substances directed to the brain. The integrated BBB is essential for precise 

controlling of the different substances passage as well as protecting the brain from various 

damages. In this article, we attempted to explain the role of liver X receptor (LXR) in 

maintaining BBB integrity as a possible drug target.  

Methods: In this study, various databases, including Pub Med, Google Scholar, and Scopus 

were searched using the following keywords: blood-brain barrier, BBB, liver X receptor, and 

LXR until July, 2020. Additionally, contents close to the subject of our study were surveyed. 

Results: LXR is a receptor the roles of which in various diseases have been investigated. LXR 

can affect maintaining BBB by affecting various ways such as ATP-binding cassette 

transporter A1 (ABCA1), matrix metalloproteinase-9 (MMP9), insulin-like growth 

factor1(IGF1), nuclear factor-kappa B (NF-κB) signaling, mitogen-activated protein kinase 

(MAPK), tight junction molecules, both signal transducer and activator of transcription 1 

(STAT1), Wnt/β-catenin Signaling, transforming growth factor beta (TGF-β) signaling, and 

expressions of Smad 2/3 and Snail. 

Conclusion: LXR could possibly be used either as a target for drug delivery to brain tissue or 

as a target for maintaining the BBB integrity in different diseases; thereby the drug will be 

conducted to tissues, other than the brain. If it is verified that only LXRα is necessary for 

protecting BBB, some specific LXRα ligands must be found and then used in medication. 

Key words: blood-brain barrier, Liver X receptor, drug delivery, LXR, BBB  

Introduction 

The BBB is a pivotal cellular structure necessary for the preservation of neuronal homeostasis. 

Moreover, the blood-brain barrier is an extremely selective border that allows the transition of 

specific molecules via the passive diffusion and different nutrients such as amino acids, 

glucose, electrolytes, and vitamins, which are essential for neurons’ activity.1Dense contacts 

among endothelial cells (capillary wall, pericyte, and end feet of astrocyte that is a capillary 
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scabbard), and tight junctions consequently form the blood-brain barrier. Efflux transporters, 

especially ABC transporters, could supplement the BBB.2,3 In this regard, it was indicated that 

ABC transporters pump out lots of foreign compounds like pharmaceutical materials from the 

brain tissue.4 ABC transporters contribute into the manifestation of multidrug resistance 

(MDR). In MDR, patients are resistance against both drugs that are currently taking as well as 

the different types of drugs.5It was approximated that almost all large molecules and more than 

98% of small molecules’ medicine are unable to bypass BBB.6 

Given this fact, neurons are electrically stimulated cells requiring precise electrophysiological 

and chemical controls to have a proper function. Therefore, the brain needs a balanced, regular, 

and precise microenvironment.7 Therefore, the BBB forbids some potentially harmful causes 

such as immune cells, pathogens, and toxins to enter the brain tissue from the blood.8 

BBB dysfunction is involved in various neurological diseases (including brain tumors, stroke, 

multiple sclerosis, epilepsy, Alzheimer’s disease (AD), inflammation, and infection), which 

occurs at late and early stages of any disease’s progression. There are two specific types of 

BBB dysfunction as follows: 1- Increased permeability accompanied by edema. 2- Extensive 

cellular permeability throughout the BBB.9 

Based on some previously performed studies, liver X receptors (LXR) is necessary for 

stabilizing the integrated BBB in various ways. It was shown that LXR activity could lower 

BBB permeability and brain edema.10Moreover, Lxr is related to various signaling such as NF-

κB, MAPK, TGF-β, and Wnt/β-catenin signaling. 

In this study, we aimed to express the role of LXR in maintaining the integrated BBB as well 

as in its related mechanisms. It was indicated that LXR can be targeted either for drug delivery 

to the brain tissue or for maintaining the BBB in different diseases to transfer the drug to an 

organ other than the brain. Albeit, in the current study, we found a study showing that LXR 

agonists do not influence paracellular permeability properties.11  

 

LXR activity 

These are among the transcription factors activated by ligands and pertain to nuclear receptor 

superfamilies. LXR contributes in the processes of immune responses and cell’s metabolism, 

differentiation, and proliferation.12 

 The LXR acts in combination with a Retinoid X receptor (RXR). Accordingly, this 

heterodimer attach to LXR response elements (LXREs) in LXR target genes. Thereafter, LXRE 

comprises the sequences (AGGTCA) on repeat that can be distinguished by four nucleotides 

(DR4). Of note, RXR or LXR agonists could activate this heterodimer.13 Simultaneous 

utilization of both RXR and LXR agonists causes a more intense response compared to when 

using each agonist alone.14After ligand binding, the co-repressors (silencing mediator used for 

retinoic acid, thyroid hormone receptor, and nuclear receptor co-repressor) are released. 

Thereafter, co-activators are recruited to bind to the complex, which then leads to gene 

transcription.15LXR is activated by endogenous (cholesterol derivatives) or synthetics 

(GW3965 and T0901317) agonist. Correspondingly, synthetics agonists stimulate LXR 

stronger.10 in addition, RXR is activated by 9-cis-13, 14-dihydroretinoic acid derived from 

vitamin A.16 Another ligand of RXR is Docosahexaenoic acid (DHA) detected in the brain of 

mammalian.17 

 

LXR isoforms  

LXR has two isoforms called LXRβ and LXRα that have a great similarity with each other.18 
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LXRα is synthesized by some tissues such as the kidney, intestine, adrenal gland, adipose 

tissue, lung, macrophages, spleen, and BBB, which is mostly expressed by the liver while 

LXRβ is expressed by almost all tissues. Akanuma et al. announced that mRNAs of two LXR 

isoforms are synthesized by endothelial cell line of the immortalized brain 

capillary.19,20 notably, the human LXRα and LXRβ genes are placed on  11p11.2 and 19q13.33 

situations, respectively. (https://www.ncbi.nlm.nih.gov/gene)  

 A previous study found thatLXRα is present in lower levels in the mice endothelial cells and 

the hCMEC/D3 cell line, compared to LXRβ, and LXRα is necessary for protecting BBB 

not LXRβ.21 

In mouse models, LXR-623, LXRα-partial/ LXRβ-full agonists via LXRβ activation induced 

expression of the ABCA1 as well as the inducible degrader of the LDLR (IDOL), which 

respectively led to cholesterol efflux and prevented cholesterol up-taking through both LDLR 

ubiquitinating and degradation. IDOL modulates the levels of both the VLDL receptor and the 

Apo E receptor 2. Moreover, it is expressed in neurons and it was reported that it can inhibit 

neurite outgrowth. Presumably, LXR-623 kills glioblastoma cells by reducing cellular 

cholesterol. As well, LXR-623 was found to have the ability of infiltrating the BBB.22 

A previous study reported that in rat brains, LXRβ expression level has not significantly 

changed after exposure to ischemia, whereas the expression of LXRα was very low, which was 

in line with some reports showing that LXRβ is the predominantly expressed form in brain 

tissue.23-25 

Another study on variation between two isoforms is required to confirm or deny these data and 

paying more attention to this deference in medication. 

Most of the ligands used could activate both LXR isoforms. If the difference between the two 

isoforms is confirmed, specific ligands must be found. 

 

LXR and ABCA1 

One possible mechanism that may be involved in maintaining the integrated BBB is the 

enhanced ABCA1 expression. In this regard, ABCA1 is one of the LXR target genes. In this 

study, T0901317 (a LXR ligand) heightened the mRNA of ABCA1 l in TR-BBB13 cells; 

however, the expression of ABCG2 did not alter.19 ABCA1 is a transmembrane protein and a 

mediator of cholesterol efflux of intracellular. Moreover, it has neuroprotective and anti-

inflammatory effects on both brains and the peripheral circulation.26,27 In mice model of 

cerebral artery occlusion, ABCA1 failure leads to the reduced BBB integrity, the injured white 

matter/axon, and the developed function deficiency. Besides, IGF1 and aquaporin-4(AQP4) 

decreased, while MMP9 heightened after stroke in brain ABCA1 deficiency mice.28 

MMP9 is an important factor in BBB leakage and white matter harm after stroke, which can 

destroy the extracellular matrix and tight junction.29 

IGF1 is mostly produced in situ from astrocytes and microglia, because it cannot pass the 

BBB30. Of note, IGF1 overexpression keeps hippocampal neurons from harm.31 Moreover, 

IGF1 medication into the cerebral lateral ventricle could decrease the BBB leakage and 

cellular/tissue injuries.32 

Aquaporin-4 is highly expressed in end feet of astrocyte and then mediates water conduct 

through the cell membrane as well as protecting the brain against edema.33 

As stated earlier, ABCA1 facilitates the cholesterol efflux from the cell (macrophages or 

peripheral tissues) and then delivers cholesterol to apolipoprotein A1, pre-β HDL, and 
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apolipoprotein E (apoE). Finally, high-density lipoprotein (HDL) leads to a reverse cholesterol 

transmission from tissues to the liver, in order to eliminate cholesterol.34 

HDL is formed in both the bloodstream and brain. As well, HDL has many functions, including 

anti-inflammatory, anti-oxidant, anti-thrombotic, and modulating immune functions. Besides, 

the elevated plasma HDL could protect human body against neurodegenerative diseases 

associated with lipid.35 Furthermore, LXR agonists can be effective on preventing Alzheimer's 

disease. For example, it has been shown that performing a treatment with 24(S)-

hydroxycholesterol (24OH-C), 27OH-C, TO901317, and cholesterol in vitro model of the BBB 

consequently leads to the reduced amyloid- β (Aβ) possibly through increasing expression of 

LXR target genes.36,37 Cholesterol pumped out from cells could be promoted by the ApoA-

I/ABCA1 pathway that has been shown to be associated with amyloid- β (Aβ) peptide 

generation. The deletion of ABCA1 in AD mouse models significantly decreased, ApoE which 

was related to Aβ precipitations in the brain.38 A previous study also reported that, in their 

cultured neuroblastoma cells, 24S-OHC showed a protective effect on beta-amyloid 

production, whereas 27OHC appeared to have the opposite effect.39Aβ peptide accumulation 

in the brain parenchyma and the cerebrovasculature is considered as one of the important 

hallmarks of AD.40 

LXR and cholesterol dysregulation  

Because cholesterol cannot cross the BBB, the whole of brain's cholesterol is approximately 

made locally via de novo synthesis. Cholesterol is supplied by lipoproteins up-taking and/or by 

de novo biosynthesis in the peripheral nervous.41,42 it is noteworthy that the brain possesses 

nearly 20% of body cholesterol.43 CYP46A1 alters the excessive amount of cholesterol to 

24(S)-hydroxycholesterol (24OH-C). Thereafter, 24OH-C passes through BBB and then enters 

the liver to become bile acids and be eliminated from the body.44 The brain rarely generates 

27-hydroxycholesterol (27OH-C). So, this mainly enters the brain, and is then developed by 

CYP27A1.45Both of them (24OH-C and 27OH-C) are powerful stimulators of LXR.46 24S-

OHC was removed from rat brain via organic anion transporting polypeptide 2 (oatp2) across 

the BBB.47 

LXRs are the key regulators of cholesterol and HDL metabolism involved in the reverse 

cholesterol transport in a variety of ways. Of note, LXR has several target genes, including 

ABCG1, ABCA1(Involved in cholesterol efflux), ADP-ribosylation factor-like 7 (simplifies 

cholesterol transport to the cell membrane for pumping-out), CYP7A1(Involved in Cholesterol 

conversion to bile acid), ABCG5, ABCG8 (Involved in the apical efflux of cholesterol from 

enterocyte that promotes biliary excretion of sterols), APOE (enhances the HDL returning to 

the liver), and phospholipid transfer protein (PLTP) (exchanges phospholipids from 

triglyceride-rich lipoproteins with HDL and HDL size regulation).48 LXR activity 

consequently enhances pumping-out of cell cholesterol and HDL-like particles creation. In this 

research, LXR activation using 24(S)-hydroxycholesterol or TO901317 increased 2.5 fold 

expression of PLTP as well as its main function. PLTP contributes to HDL genesis and 

remodeling in BBB.49 

In BBB model, it was found that LXR agonists (27OHC, (24(S)-OHC, and TO901317) can 

express ABCG1 and also regulate apoM.50 5% of HDL particles comprise apoM51, which is 

mostly expressed by liver and kidneys , and then secreted into plasma or fused to lipoproteins.52 

Overexpression of apoM helps in evaluating plasma HDL cholesterol, preß-HDL formation, 

cholesterol efflux, and promotes the antioxidant activity of HDL.53,54 
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In a primary porcine BCEC, LXR ligands reduced the biosynthesis of cholesterol between 30 

and 80%, while increased pumping-out of cell cholesterol 2.5 fold via affecting 

hydroxymethylglutaryl-CoA reductase (HMG-CR), which is a key regulator of cholesterol 

biosynthesis and ABCA1.36 In the above-mentioned model, scavenger receptor class B type 1 

was expressed. Accordingly, this is a receptor that uptakes lipids related to HDL. 24-OHC 

increased expression of this receptor up to almost 1.5-fold. 27-OHC reduced cholesterol levels 

via decreasing the expression HMG-CR, sterol-regulated element-binding protein-1, and LDL-

receptor. As well, up-regulation of the peroxisome proliferator-activated receptors γ (PPAR-

γ), LXR-α, ABCA1, and ApoE genes, was observed in C6 glioma cells.55 as well, one of the 

PPAR-γ)’s (as a nuclear receptor) target gene is LXR-α.56 

In mouse brain endothelioma cell line, pharmacological concentrations of both 9-cis retinoic 

acid (9cRA) and all-trans retinoic acid (ATRA) (5μM) via LXR-RXR complex consequently 

up regulated ABCG1 and ApoE.57 

LXR and hsp70 

Heat shock proteins (HSPs) contributed into protein folding, homeostasis, and survival of the 

cell.58 

Additionally, recombinant HSP70 led to cholesterol removal from primary human 

macrophage. Thereafter, HSP70 bound to the macrophage LXR alpha promoter, which then 

increased LXR alpha and its target mRNAs, including both ABCA1 and ABCG1. Interestingly, 

in zebrafish, upon high cholesterol diet, the administration of rHSP70 to the swimming water 

was not consistent with the above-mentioned results. However, endogenous HSP70 increasing 

by 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG) promoted 

cholesterol removal. Moreover, 17-DMAG increased both endogenous HSP70 and ABCA1 

proteins’ levels in primary human foam cells.59 

 

LXR and EMT  
Another possible mechanism involved in maintaining the integrity of the BBB is epithelial to 

mesenchymal transition (EMT).21 When EMT occurs, modifying the expression of genes and 

adhesion of cell to each other and cytoskeleton might result in a more migratory and invasive 

abilities, which could lead epithelial cell to become mesenchymal cell.60 In various cancers cell 

lines, the LXRα overexpression or existence is directly involved in their invasive property.61,62 

In LXRα mutant mice, TGF-β signaling and intensive expression of Snail protein and Smad 

2/3 have been promoted in epithelial cells of ventral prostate. Additionally, in nodules, E-

cadherin expression has decreased or lost and epithelial cells underwent EMT. Snail is known 

as an intensive suppressor of E-cadherin transcription and it also is a marker for EMT.62 

In some patients with lung cancer, it was observed that the resistance to EGFR inhibitors (such 

as Gefitinib that is a cancer drug) can be related to the EMT phenomenon.63In non-small cell 

lung cancer (NSCLC) cells, the combined medication of Gefitinib and GW3965 mostly leads 

to tumor attributes changing, as well as re-sensitizing this cells to the Gefitinib. In addition, 

this combined medication has reduced IC50 for Gefitinib. Correspondingly, Gefitinib 

medication increases vimentin expression, while the combination medication was found to 

result in the reduced vimentin.64 Accordingly, it is notable that Vimentin is a medium filament. 

Vimentin, microtubules, and actin filaments are known as the components of the cytoskeleton. 

Moreover, Vimentin contributes into cell adhesion, signal transduction, apoptosis, and 

migration.65 
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In a study conducted on 93 men and 31 women, it was reported that LXRα expression in poorly 

and undifferentiated gastric cancer tissue is significantly lower than that of well and 

intermediate differentiated gastric cancer tissue. Tumor cell differentiation was also found to 

be related to EMT and drug resistance. LXRα presumably promotes the differentiation of 

human gastric cancer cells via the inhibition of Wnt/β-catenin signaling by reducing the β-

catenin expression as well as reducing downstream targets of this pathway, including CD44 

and cyclin D1. In this study, same results were achieved from an animal experiment.66 

 

LXR and neuroInflammation  

The proinflammatory cytokines and chemokines are pivotal components in the 

neuroinflammatory process. In the central nervous system, glial cell or leukocyte of these 

inflammatory agents generate in situation that they are recruited after BBB breakdown.67 

 LXR activation leads to anti-inflammatory actions via the Inhibition of Nuclear factor-κB 

signaling.23 in this regard, NF-κB is a transcription factor mediating the expression of its target 

genes. NF-κB plays a pivotal role in proinflammatory gene induction.68 Moreover, LXR 

activation in LPS-stimulated astrocytes of mice prohibits the generation of proinflammatory 

cytokines such as monocyte chemoattractant protein-1 (MCP1), IL-6, and IL-1β via the NF-

κB pathway.69 in addition, MCP1 recruits dendritic, monocyte, and memory T cells in the 

inflammation location.70 As well, it was indicated that LXR agonist could reduce microglia 

activity (microglia acts as macrophages in the brain) and macrophage inflammatory protein 2 

(MIP-2), called CXCL2.71 Macrophages and neutrophil exude MIP-2, which is a chemotaxi 

factor for hematopoietic and leukocyte cells.72.  

Decontrolling of NF-κB activity leads to aberrant T-cell activity related to the formation of 

both the autoimmune and inflammatory conditions. Moreover, NF-κB regulates the 

differentiation of T-cell as well as effector T cell’s developing and activity. Notably, Th17 and 

Th1 are inflammatory cells, which are related to autoimmune and inflammatory responses.73In 

the autoimmune encephalitis mice, the LXR activation via T0901317 (an agonist of LXRα&β, 

dominant LXRα stimulator) inhibited both T-cell’s proliferation and activation. Additionally, 

it was reported that IFN-γ mRNA and IFN-γ-dependent MHC class II expressions by 

microglias have reduced. In ligand treated mice, mRNAs of CXCL-1, MMP-9, TNF-a, and 

ICAM-1 have also decreased.74 After CXCL-1 binding to its receptor, it was observed to 

activate phosphatidylinositol-4,5-bisphosphate 3-kinase-γ (PI3Kγ)/Akt, MAP kinases such as 

ERK1/ERK2 or phospholipase-β (PLCβ) signaling pathways.75 Interestingly, in the cultured 

microglia, T0901317 decreased the activities of JNK, p38, MAPK, and NF-κB signaling71. 

Correspondingly, P38 MAPK and c-Jun N-terminal kinase (JNK) are well-known in MAPK 

signaling76, The MAPK signaling is started when a stimuli like pro-inflammatory cytokines, 

starts binding to their receptor on the cell, which then activates p38 and regulates transcriptional 

activity of NF-κB. Indeed, during neuro-inflammation process of phosphorylated p38, co-

activator p300 is activated. Thus, the activated p300 binds to NF-κB and acetylates the p65. As 

a result, NF-κB-p300 transcriptional complex gains the optimal transcriptional ability.77 

Eventually, the JNK activation enhances expressions of TNF-α, IL-1β, and IL-6 in 

microglias.78,79  Acc
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Figure 1. Effects of LXR on some inflammatory pathways. Created with BioRender.com  

 

In interferon gamma stimulated astrocytes, LXR agonists could prevent STAT1-mediated 

inflammatory responses. SUMOylated LXRs bind to STAT1; therefore, STAT1 could not 

attach to the promoter sequence of its target genes and expressions of Interferon Regulatory 

Factor 1, TNF-alpha, and IL-6 would be inhibited.80In macrophage, co-repressor is stabilized 

by SUMOylated LXR on NF-κB, which reduces the expression of its target genes.81 

In the Cheng’s study, using rat model, GW3965 (LXR agonist) was found to have a 

neuroprotection effect, which is related to a meaningful decrease in nuclear move of p65 

subunit of NF-kB (happened immediately (12 h) after ischemia). As well, GW3965 medication 

reduced cyclooxygenase 2 (COX-2) expressions in the hippocampus.82 Another study with 

TO901317 administration to experimental intracerebral hemorrhage mice model also achieved 

the same results.71 

The COX-2 could form prostanoids such as thromboxane and prostaglandins from arachidonic 

acid.83After the occurrence of global cerebral ischemia, prostaglandin E2 causes 

histopathological modifications in the hippocampus.84 
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Its promoter sequence includes functional tandem NF-κB sites. Notably, vascular cell adhesion 

molecule-1 (VCAM-1) is an inflammatory cytokine guiding the rolling and inducing the 

adhesion of leukocytes to vascular endothelium, which consequently leads to diapedesis of 

leukocytes.85 VCAM-1 is highly overexpressed in the inflamed brain. In hCMEC/D3, which is 

a human cell line, as well as in mice model of MS, specific knockout of LXRα promotes the 

expression of VCAM-1 that enhances monocytes diapedesis across BBB. Correspondingly, 

Leukocyte extravasation is considered to be very important in inflammation processes and 

BBB dysfunction.21 T0901317 incubation in peripheral endothelial cell, declined the I-CAM, 

V-CAM, and E-selection expressions, which are known as adhesion molecules.86 VCAM-

1 interacts with ezrin (that connects cell membrane to actin involved in adherence and EMT) 

and moesin. As well, it is an integrin α4β1 agonist.87-89 

It was indicated that 22(R)-hydroxycholesterol and 7-ketocholesterol via suppressing 

phosphorylated signal transducer and activator of transcription1/3, interferon regulatory factor-

1, and interferon-b, could suppress inducible nitric oxide synthase (iNOS) expression as well 

as suppressing nitric oxide release.90 INOS is recognized as a target gene for NF-κB.91In a rat 

model, it was shown that iNOS possibly is important in BBB breakdown, cerebral edema, and 

cell injury. In this regard, iNOS may be involved in the pathophysiology of many 

central nervous system diseases. 

In iNOS−/− mice, MHC-II expression significantly decreased on the dendritic cells, but not on 

macrophages. Dendritic cell and macrophage play an antigen-presenting cell (APC) role. 

Albeit, brain iNOS might be needed for having a proper repair after damage.92 

According to some previous studies, neuroinflammatory may be involved in CNS damage of 

Heat stroke.93 Microglia acts as a macrophage in the brain. Indeed, these must be able to 

recognize and swallow foreign bodies.94 Moreover, Heat stroke can be activated by NO, ROS, 

TNF-α, IL-1β, and IL-6 as well as high ambient temperature.95-98 In heat stroke animals, the 

activated microglias have been identified in the brain. MiRNAs are epigenetic gene expression 

regulators that are used post-transcriptionally. MiR-155 elevates p65 and IκBα 

phosphorylation, nuclear p65 and also promotes NF-κB activity in the microglias. Thereafter, 

the prohibition of miR-155 leads to the significant augmentation of mRNA and protein of 

LXRα as well as the reduced pro-inflammatory cytokines.99 

As mentioned earlier, ABCA1 is one of the target genes of LXR. In the brain of ABCA1–

deficient mice, IGF1 was observed to decrease. Accordingly, IGF-1 has a 

neuroprotective property, and it can reduce the BBB permeability and suppresse immune via 

programmed cell death protein 1 (PDCD1), which is a receptor suppressing immunity. As well, 

an after-stroke Intra-cerebroventricular injection of IGF-1 to female rats suppressed 2 to 5-

fold pro and anti-inflammatory cytokines such as the pleiotropic cytokine, IL-6, IL-13, and 

CCL2. In this regard, it may have a biphasic function.32 

 

LXR and Junctions  

Another possible way contributing to BBB integrity maintenance is the up-regulation of tight 

junction molecules. In the Wouters et al.’s study, LXRα knockout resulted in the reduced 

claudin-5.21 Additionally, LXR activation prevented the down-regulation of zona occludens-1 

and occludin in ischemic vessels of mice.10 in this regard, Occludin is an integral membrane 

protein, which is considered to be important in the stability of tight junction assembly and 

barrier function.100 Moreover, Occludin has C-terminus that is critical in receiving and 

transmitting cell survival signals, as well as in correcting the assembly of tight junction.101,102 
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In addition, the N-terminus of occludin is involved in tight junction sealing/barrier 

properties.102 

ZO-1 acts as a scaffold by binding the tight junction (TJ) strand to the actin cytoskeleton. 

Correspondingly, ZO-1 is placed on a cytoplasmic membrane surface of intercellular tight 

junctions. This may possibly contribute to signal transduction at cell-cell junctions.103 

Claudins and occludin are known as major tight junction proteins.104 Claudin-5 is dominant in 

BBB105. The BBB of Claudin-5 knockout mice is damaged and permeable; therefore, the whole 

deletion of claudin-5 is fatal.106 

Pharmacological concentrations of both ATRA (5μM) and 9cRA via LXR/RXR signaling 

stimulated expressions of ZO-1 and VE-cadherin in mouse brain endothelioma cell line. 

Notably, high ATRA concentrations possibly act through 9cRA.57 

The integrity of intercellular junctions is known as a major determinant of endothelial 

permeability, and VE-cadherin-based bonds are of particular importance. Of note, VE-cadherin 

is a calcium-dependent cell-cell adhesion glycoprotein.107 

IGF-1 may maintain BBB integrity via increasing electrical resistance via regulating both 

claudin-3 and occludin in submandibular gland cells108, claudin-1 in osteoblast cell through the 

MAP-kinase signaling109, and ZO-1 in A431 cell.110 

 

Calpastatin and LXR 

Another mechanism involved in the declined brain edema and the reduced BBB leakage is the 

up-regulation of calpastatin by LXR.10 In this regard, calpastatin is known as the important 

regulator of calpain and a natural calpain-specific inhibitor by having no inhibitory effect on 

other proteases. Accordingly, calpastatin molecule can be formed from four inhibitor units, 

each one of which could inhibit one calpain molecule with different efficiencies.111 In cerebral 

arteries obstruction mouse, calpastatin inhibits calpain-1/2, which consequently leads to 

sustaining of p120 catenin. Calpain-1/2 is a calcium-dependent cysteine protease, which 

decreases p120 catenin. Thereafter, P120 catenin inhibits RhoA and over-activates 

Cdc42. Moreover, P120 catenin could also inhibit RhoA–GDP dissociation and promote the 

Cdc42 approach to its guanine exchange factors.10 RhoA deactivation decreases stress fiber 

developing, thereby stabilizing tight junction network.112 As well, Cdc42 activity regulates 

polarity of cells and enhances BBB integration by assembling tightly junctions such as ZO-1 

and occluding.113  

 

LXR and medication 

LXR activity could elevate the frequency of the ABCB1 and ABCC1 on capillaries of ischemic 

brain. Recently, it has been shown that the ApoE could regulate the equilibrium between the 

abluminal ABCC1 and luminal ABCB1 through its receptor, called ApoER2.114 Both 

ABCB1 and ABCC1 are ATP-dependent efflux pumps excreting some xenobiotics 

and pharmaceutical drugs. So, this multidrug resistance should be paid more attention.3,4 

Considering the above-mentioned ABCB1 and ABCC1 functions, the possibility of the 

usefulness of LXRα specific ligand as well as the important role of LXR in BBB maintenance 

can be helpful in proper drug developing according to the remedial goal. 

For example, the lack of fully effective treatment options leads to a poor prognosis of 

glioblastoma. 
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Therefore, it is very important to obtain enough therapeutic agents to the site of the brain tumor. 

However, due to the presence of BBB, the way of delivering therapeutic agents to the tumor 

site is very questionable. 

It seems that the local administration of the drug and targeted drug delivery to the brain tissue 

might also be considered due to the side effects of the LXR agonist on other body tissue such 

as increasing plasma and liver lipids level 115. 

 

Conclusion 

The BBB is essential for maintaining brain homeostasis and neural correct activity. BBB 

dysfunction could significantly involve the pathogenesis of both neurodegenerative and 

neuroinflammatory diseases. According to recently performed studies, it seems that LXR plays 

a critical role in protecting BBB against injuries. LXR can also be effective on maintaining 

BBB by affecting different signaling pathways such as NF-κB, MAPK, TGF-β, and Wnt/β-

catenin, leading to the prevention of the proinflammatory cytokines and chemokine production, 

the inhibition of the epithelial to mesenchymal transition and migratory phenotype developing, 

and maintaining and stabilizing the tight junction molecular network  

During the process of neuroinflammation, proinflammatory cytokines and chemokines play 

very important roles via being produced locally by glial cells or by the recruited leukocytes. 

Given that many drug molecules cannot cross the BBB, LXR can be targeted either for drug 

delivery to the brain tissue or for maintaining the BBB integrity in different diseases, in order 

to transfer the drug to an organ, other than the brain. It seems that the local administration of 

the drug and targeted drug delivery to the brain tissue might also be considered due to the side 

effects of the LXR agonist on other tissue like increasing plasma and liver lipids level. If it is 

verified that only LXRα is necessary for protecting BBB, some specific LXRα ligands must 

be found and then used in medication. 
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