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Abstract 

Objective: This review aims to critically examine and summarize the innovations and 

mechanisms involved in oral delivery of peptide and protein drugs.  Significance: Proteins and 

peptides have secured a place as excellent therapeutic moieties on account of their high 

selectivity and efficacy. However due to oral absorption limitations, current formulations are 

mostly delivered parenterally. Oral delivery of peptides and proteins can be considered the 

need of the hour due to the immense benefits of this route. Methods: Comprehensive literature 

search was undertaken, spanning the early development to the current state of the art, using 

online search tools (PubMed, Google Scholar, ScienceDirect and Scopus). Results: Research 

in oral delivery of proteins and peptides has a long and rich history and the development of 

biologics has encouraged additional research effort in recent decades. Enzyme hydrolysis and 

inadequate permeation into intestinal mucosa are the major causes that result in limited oral 

absorption of biologics. Pharmaceutical and technological strategies including use of 

absorption enhancers, enzyme inhibition, chemical modification (PEGylation, pro-drug 

approach, peptidomimetics, glycosylation), particulate delivery (polymeric nanoparticles, 
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liposomes, micelles, microspheres), site-specific delivery in the gastrointestinal tract, 

membrane transporters, novel approaches (self-nanoemulsifying drug delivery systems, Eligen 

technology, peptelligence, self-assembling bubble carrier approach, luminal unfolding 

microneedle injector, microneedles) and lymphatic targeting, are discussed. Limitations of 

these strategies and possible innovations for improving oral bioavailability of protein and 

peptide drugs are also discussed. Conclusion: This review underlines the application of oral 

route for peptide and protein delivery, which can direct the formulation scientist for better 

exploitation of this route. 

Keywords: Biologics, Peptides, Proteins, Oral delivery, Absorption, Permeation enhancement, 

Nanoparticles 

 

Introduction 

Biologics include an array of complex molecules comprising carbohydrates, nucleic acids, 

proteins, peptides, cells, tissues and other products derived from living cells or biological 

processes [1]. These have revolutionized the treatment of a wide range of diseases such as 

diabetes, hypertension, inflammatory disorders (rheumatoid arthritis, asthma, endometriosis 

and inflammatory bowel disease [IBD]) and cancer [2]. They are potential therapeutic agents 

for combating these conditions due to their varied activities and interaction in many diseases. 

Peptides and proteins (PPs) constitute crucial classes of biological products. They are 

prospective therapeutic agents for combating a variety of pathologic conditions due to their 

high selectivity and efficacy and lesser adverse effects compared to small molecules. Peptides 

are polypeptide chains with 50 or fewer amino acids and a relative molecular mass not 

exceeding 5000 Da, with a high degree of secondary structure [3]. In contrast, proteins are 

macromolecules that are made up of amino acids. They include fifty or more amino acids, with 

hundreds to thousands of these amino acids joined together as long chains of polymer to design 

a protein [4]. The market for peptide and protein therapeutics is now projected to cross more 

than 40 billion USD per year, contributing to approximately 10% of the pharmaceutical 

franchise. This sector is developing at a considerably rapid pace, and is set to capture the major 

portion of the market in the near future [5]. Approximately 75% of therapeutic 

macromolecules including PPs are delivered by parenteral methods, resulting in high costs and 

poor patient compliance. A survey on the market size of the therapeutic peptide distribution in 

the United States predicted a significant growth in peptide distribution by 2025 as shown in 

Figure 1 [6]. 

For commercially available protein formulations, non-invasive delivery routes such as 

pulmonary, ophthalmic, nasal, rectal, buccal, vaginal and other routes have been investigated 

[7–10]. However, oral administration is the most convenient and preferred mode of therapeutic 

delivery, with the highest patient compliance, therapeutic simplicity, and low cost of 

production [11–14]. Due to significant barriers in the gastrointestinal tract (GIT) such as acid-

catalyzed hydrolysis, proteolytic degradation by enzymes, inability to cross the membrane, 

first-pass metabolism during transfer across the absorption barrier, high molecular weight 

(>700 Da), and hydrophilicity, the oral delivery of PPs is difficult to achieve [15–20]. Despite 

these significant constraints and roadblocks, substantial research has been done to develop 

advanced delivery methods that enable the oral delivery of therapeutic PPs. Many alternative 

techniques have been examined, and some of them have proven to be quite successful by 

making it to the market, while others are still in various phases of development [21–25].  In 

this article, we highlight the various pharmaceutical approaches to improve oral bioavailability 

of PPs, including the use of absorption enhancers, enzyme inhibition, chemical modification, 

particulate delivery, site-specific delivery in the GIT, use of membrane transporter, lymphatic 
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targeting and other novel approaches. We overview this from the standpoint of the physiology 

of the GIT, possible intestinal transport mechanisms of macromolecules and the major 

physiological barriers of macromolecular delivery. 

 

The gastrointestinal tract 

The human gastrointestinal system is made up of exclusive organs and is segmented into two 

parts. The mouth, oesophagus, stomach, duodenum, jejunum, and ileum are all part of the upper 

GIT, while the colon, rectum, and anus are all part of the lower GIT [26]. Figure 2 depicts the 

physiology of the GIT. The pH of the upper part of the GIT varies, for instance, the stomach is 

acidic (pH 1.5-3.5), while it rises considerably in the duodenum (pH 5-6), distal jejenum, and 

ileum (pH 7-8), and then progressively declines upon reaching the colon (pH 6). These pH 

levels have been found to demonstrate inter-individual variations [27,28].  

Peristalsis starts by allowing the ingested food from pharynx, through the esophagus and 

eventually into the stomach. The bolus is broken down in the stomach by gastric acid and 

digestive enzymes, transporting the digested material (chyme), to the duodenum via the pyloric 

sphincter. This complex process facilitates the disintegration of macromolecules like 

carbohydrate, lipid, protein, fiber into smaller digestible components in the small intestine to 

allow for nutritional absorption. The organs of digestion includes salivary glands, pancreas, 

liver, and gallbladder. The luminal contents now reach the large intestine and are prepared for 

evacuation via the rectum and anal canal [26]. 

The digestive tract contains an architecture created from a variety of layers, together with the 

inner membrane layer of the GIT, that consists of absorptive cells and secretory epithelial cells, 

to coordinate the digestion processes. Other layers of GIT include the submucosal layer, 

smooth muscle layer, and serosal layer [26]. Enterocytes, goblet cells, and M cells are among 

the cell types found in the intestinal epithelial cell layer [29]. Goblet cells release the main 

component of mucus, and epithelial enterocytes have a role in ion, water, sugar, amino acid, or 

vitamin B12 absorption. M cells, found in Peyer's patch follicle-associated epithelium, 

transport soluble macromolecules, particulates, and antigens from the lumen to immune system 

cells [30]. The microvilli present in the mucosal cells of small intestine helps in promoting the 

drug absorption by providing a large surface area. Numerous enzymes present in the GIT, viz., 

trypsin, carboxypeptidase, pepsin, lipase, and amylase contribute towards the poor availability 

of biological macromolecules leading to their poor oral absorption. For instance, in the 

stomach, pepsin breaks peptide bonds resulting in a mixture of intermediate proteins and 

peptides, and amino acids. These are delivered into the duodenum where the action of 

pancreatic proenzymes break down these products into di- and tripeptides and amino acids 

[31]. 

The composition of GI fluids impacts the dissolving behavior and key factors for permeability 

in the GI tract by determining the therapeutic concentration. The solubility and dissolution rate 

of hydrophobic medicines in the stomach can be affected by the composition of bile salts and 

pancreatic enzymes. The general composition of intestinal fluids fluctuates throughout 

intestinal transit because of digestion and absorption activities [32]. 

 

Transportation Mechanisms 

For peptides to get absorbed, first they should pass through the intestinal epithelial membrane. 

The epithelial barrier of the small intestine provides an even larger hurdle to oral protein 

therapeutic administration than peptide breakdown. A single layer of columnar epithelial cells 

supports the barrier, which is maintained by the lamina propria and muscularis mucosa [33]. 

Drug absorption in the intestine can proceed by passive diffusion (either paracellular or 
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transcellular) or by active diffusion with the help of transporters. The physicochemical and 

biological properties of the membrane in different parts of GIT decide the transport mechanism 

of the drug. 

Molecules traverse the membrane in four different ways: paracellular, transcellular, carrier-

mediated, and receptor-mediated transport (Figure 3).  

1.1. Paracellular Transport 

The transfer of drugs across the junctions between GI epithelial cells is known as paracellular 

transport. In terms of drug absorption, this route plays a minor role. Drugs that are polar and 

hydrophilic in nature are expected to get transported by this route. Peptides are thought to pass 

through aqueous routes, including the paracellular and aqueous pore pathways [34]. Rigid 

junctions act as the rate limiting factor for the transportation. Therefore, it can be said that these 

rigid junctions are one of the considerable factors while determining permeability by the 

paracellular transport. 

There are two essential requirements to overcome the rate limiting hurdle.  Firstly, paracellular 

transport is unchangeable, meaning it is totally dependent on local concentration gradients 

(passive route). Secondly, mucosal permeability can be influenced by methods apart from tight 

junction control [35]. There are three parts to the junctional complex: 1) the outer surface of 

macula adherens, popularly known as spot desmosome; 2) zonula adherens (belt desmosomes) 

in the center spot, forming a bridge between the outer and inner part; and 3) zonula occludens, 

the segment of the junctional complex closest to the lumen, also called ‘occluding’ or tight 

junctions (TJ) [36]. TJs are made up of a complicated sequence of aquaporin proteins that are 

divided into transmembrane proteins and cytosolic proteins. Plaque proteins, particularly 

Zonula Occludens-1 (ZO-1) and Zonula Occludens- (ZO-2), work along with regulatory 

proteins to create an integrity, and regulate the permeation across the tight junction [37]. 

1.2. Transcellular Transport 

The passage of drugs across the GI epithelium via passive diffusion, active diffusion or 

endocytosis is referred to as transcellular transportation. It is the predominant route for drug 

transport.  

The three stages involved in medication transcellular transport are: 1) drug absorption is 

hindered by the permeation of the GI epithelial cell membrane, which acts as a lipoidal barrier; 

2) movement inside and between cells (cytosol); 3) lateral or basolateral membrane permeation 

[38]. The permeability of a peptide by this route will depend upon numerous physicochemical 

features of macromolecules such as molecular structure, molecular mass, partition coefficient, 

surface charge, hydrogen bond interaction, and orientation [39]. Endocytosis mechanisms, such 

as phagocytosis, pinocytosis, and receptor-mediated endocytosis, are commonly used to 

transport macromolecules in the small intestine [40]. The transportation of macromolecules 

through transcellular route does not depend on transmembrane channels [35]. Interestingly, 

investigations reveal that transcellular absorption declines considerably throughout the colon 

(small intestine > ascending colon > transverse colon), but the paracellular pathway has no 

such gradient [41]. This pathway is only suitable for the transfer of lipophilic substances with 

a low molecular weight [39]. 

The major intestinal cells for transport are enterocytes and M cells. The former represent the 

major portion of GIT whereas the latter are predominantly found in a smaller percentage of 

intestinal epithelium (mainly within the epithelium of Peyer's patches) [42]. The high ability 

of endocytosis of M cells makes them a potential portal to deliver PPs orally [43,44]. M cells 

use a variety of mechanisms to adopt macromolecules and particles including fluid phase 

endocytosis, absorptive endocytosis, and phagocytosis [45]. Various ligands, such as 

salmonella extract, Ulex europaeus agglutinin 1 ligand, invasin, and immunoglobulin A, can 
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be attached to the surfaces of the particles to improve their absorption by the intestinal M cells 

[46]. On the other side, energy dependent mechanisms like macropinocytosis, clathrin- or 

caveolae-mediated endocytosis and clathrin and caveolae-independent endocytosis, help in the 

transportation of nanoparticles (NPs) [47]. 

1.3. Carrier mediated transport 

Drug molecules are transported with the help of carrier systems across the cell membrane and 

then delivered into systemic circulation [34]. The process requires adenosine triphosphate in 

the form of energy to promote the uptake of macromolecules with the help of the carrier. 

Binding of the carrier to the target molecule depends upon various factors. Drug-carrier 

complex crosses the intestinal membrane, even against the concentration gradient. For instance, 

small di/tripeptides (such as lactam antibiotics and angiotensin converting enzyme [ACE] 

inhibitors), monosaccharides, and amino acids are transported by this mechanism [48]. 

1.4. Receptor mediated transport 

In receptor-mediated transport, protein and peptides act as receptor for the ligand present on 

the cell surface or itself act as the receptors on the cell surface. Clathrin-mediated endocytosis 

and caveolae-mediated endocytosis are some effective pathways for biological macromolecule 

uptake [49]. Clathrin-mediated endocytosis results in the formation of vesicles covered with 

clathrin protein (120 nm), which then fuse with early endosomes [49]. This technique works 

well with particles under 200 nm. With increasing particle size, caveolae-mediated 

internalization is the primary route of entrance, especially for particles larger than 500 nm. 

Caveolae-mediated internalization is a non-specific absorption mechanism that results in the 

production of caveolae-coated vesicles (50-80 nm) that later undergo direct exocytosis due to 

their ability to avoid early endosomes [49]. The most notable distinction between clathrin-

mediated and caveolae-mediated endocytosis is that the former involves the invagination of 

clathrin-coated pits, whereas the latter involves the formation of a large number of buds on the 

membrane [50]. 

2. Gridlocks to oral delivery of therapeutic peptides and proteins 

Despite the fact that oral delivery of PPs has piqued the interest of drug manufacturers and 

funding bodies, there are a number of factors hindering the oral absorption of PPs, including 

GIT instability, enzymatic degradation, acid hydrolysis, impermeability of 

macromolecules across intestinal epithelial membrane, and difficulty in formulation. The cell 

lining, comprising outer membrane of cell and tight intersections between adjoining cells is 

largely responsible for the physiological barrier, albeit the mucus membrane and many of 

efflux transporters may likewise assume a part in controlling medication absorption [51].  

These barriers, however, are also the first line of protection against toxins, antigen, and 

pathogens. To overcome hurdles to oral distribution of PPs, it is important to thoroughly 

comprehend the physiological and physicochemical aspects of the formulation. The absorption 

cycle are described below to recognize the hindrances that therapeutic macromolecules should 

defeat during their uptake into the blood stream following oral ingestion.  

2.1. Physiological barriers  

Following oral administration, the drug may encounter a number of physiological barriers that 

affect PPs absorption, including pH gradient, gastric emptying rate, intestinal transit duration, 

surface area, permeation across the epithelial membrane, and the expression of intestinal 

enzymes and transporters [32]. 

2.1.1. pH gradient 

Every part of the GIT has a particular pH, which is controlled by an assortment of elements 

like the presence of food, various ailments, prolonged stress, life span, and sex. In healthy 

humans the pH is around 1.5-3.5 (acidic) in stomach, which increases to pH 5-6 (basic) in the 
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duodenum because of carbonate and bile juice neutralization, and rises to pH 7-8 in the distal 

jejunum and ileum [27,52]. The impact of food is the most powerful physiological stimulant to 

the production of acid by stomach and most likely, pepsinogens [53]. Lower and higher pH 

levels are associated with greater caloric meals before and after meals, respectively. The 

extremes of pH changes were reduced by frequent feeding [54]. High protein diets, on the other 

hand, result in greater hydrogen ion concentrations before meals and lower values after meals 

[55]. Furthermore, individual differences in colonic pH may be due to personal dietary 

preferences. Age has limited influence on GI pH, indicating that the GI pH state can remain 

relatively constant throughout life [56]. In any case, pH of the stomach is significant following 

child birth and soon settles towards the normal pH of 1 to 3 [57]. Healthy old adults aged above 

70 have considerably lower stomach pH but much higher duodenal pH than healthy younger 

people aged around 50 [58]. Diseases including inflammatory bowel disease (IBD), ulcerative 

colitis, and gastrointestinal malignancies can dramatically alter the pH of the GIT. In the colon 

of patients with active ulcerative colitis, the intraluminal pH level was observed to be low [59]. 

While IBD does not affect the pH of the stomach or small intestine, it tends to lower the pH of 

the colon [60]. The pH of the colon in patients of Crohn's disease is lower than in healthy 

people [61]. 

The complex pH conditions in the GIT may cause structural changes or protein breakdown 

leading to therapeutic deprivation. Proteins are frequently persistent at pH levels near their 

isoelectric point (pI). As a result of pH-induced unfolding, certain proteins may be rendered 

inactive in stomach juices [62]. For instance, pepsin has the greatest potential to degrade at pH 

2-3 but is entirely inert at pH 5 [32]. 

2.1.2. Enzymes 

Proteolytic compounds (fundamentally trypsinogen and chymotrypsinogen, and their dynamic 

forms, trypsin and chymotrypsin), amylolytic proteins (pancreatic amylase), and lipolytic 

enzyme (lipase) are the three kinds of pancreatic catalysts [63].  These enzymes break 

down  proteins into peptides, which  eventually get broken down into amino acids [64]. Protein 

entry might cause the cells lining of stomach to secrete pepsins, by gastric mucosa. By 

hydrolyzing the peptide bond, pepsin may break down proteins into smaller peptide fragments 

[65]. Peptidases found in the microvilli of intestinal epithelial cells, such as aminopeptidase 

and dipeptidyl peptidases 3 and 4, digest peptides of up to 10 amino acids, whereas intracellular 

peptidases digest dipeptides [66,67]. The pancreas secretes a variety of degradable biocatalyst 

in the small intestine, including trypsin, chymotrypsin, carboxypeptidase, and elastase [68]. 

The amino acids generated by enzymatic breakdown and other nutrients released by food 

digestion are absorbed into the systematic circulation from the small intestine, which is aided 

by the mucosal folds, villi, and the large surface area of the microvilli. The large intestine is 

home to 700 different bacterial species that help with digestion and absorption of the leftover 

food from the small intestine. Also, absorption of macromolecules in large intestine 

is negligible [69]. As a result, protecting the stability of PPs in the GIT is one of the most 

essential conditions for the effective absorption of oral PPs. 

2.1.3. Mucus 

Even if the drug can get beyond the pH barrier and the enzyme barrier, the mucosal barrier in 

the small intestine keeps the drug away from encountering epithelial cells. The surface area of 

human GI mucosa is at least 200 times that of the skin [70]. This mucus barrier activity restricts 

drug penetration in two ways, firstly, by restricting positively charged peptides attachment to 

adversely charged mucin fibres, and secondly, by creating a barrier to the lattice shape of 

membrane during absorption [71,72].  
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In different parts of the GIT, the mucus layer thickness varies substantially. Mucus is made up 

of several different components. Complex carbohydrates, polypeptides, salts, antibodies, 

microbes, and cell detritus round out the list of active components, with mucin glycoprotein 

being the most significant [73]. The mucus gel layer is made up exclusively of glycoproteins 

(mucins), and may operate as an obstacle to drug absorption by keeping the aqueous layer 

undisturbed or through associations among the diffusing compounds and mucus layer 

constituents [74,75]. Multiple obstacles to medication transport into the submucosal tissue are 

created by mucus [76]. The high viscosity reduces PP diffusivity via mucus, which has a direct 

impact on PP residence duration in the small intestine. The typical mucus turnover period in 

the gut is about 50-270 minutes, leading to clearance of trapped particles in the mucus layer 

and therefore reducing particle adhesion and holding duration [77]. 

2.1.4. Epithelial Barrier 

The main cells including epithelial and M cells helps in the transportation across the 

transmembrane [78]. Therapeutic proteins taken orally must pass through phospholipid film 

prior to entering the fundamental course, once crossing the gastro-intestinal mucosa [79]. 

Enterocytes, mucus production, Paneth cells, and M cells for absorption, production, enzyme 

secretion, and particle transport, respectively are among the different kinds of cells found in 

the intestinal epithelia [80]. The existence of a transporter on the epithelial surface regulates 

the permeability of macromolecule in the small intestine via a paracellular or transcellular route 

[32]. In terms of genetic differentiation pathways and unique functions, the intestinal 

epithelium is divided into two kinds of cells: absorptive and secretory cells. Enterocytes, which 

make up 90% of the small intestinal epithelium, serve as absorptive cells in the small intestine. 

Cup cells and M cells, after all, have long been recognized as epithelial cells that are neither 

absorptive nor secretory. Due to existence of rigid junctions between two neighboring layers 

of epithelial cells, the impervious intestinal layer serves as a guardian to biologics as well as 

an adsorbing and productive surface.  

2.1.5. Efflux Pumps 

Efflux pumps belong to domain of ATP binding cassette and show their presence on the 

anterior end of cells and are mainly responsible for multidrug resistance (MDR) [81]. P-

glycoprotein I (PGP-I) is one example of an efflux pump. PGP-I can pump drugs and peptides 

back into the GI lumen after they have been absorbed. PGP-I is known to be a substrate for 

linear lipophilic and cyclic peptides macromolecules [82]. 

2.2. Physicochemical Factors 

2.2.1. Molecular weight & size of molecules 

The molecular weight and size of the macromolecule have a big role in drug diffusion over the 

epithelial layer. Small molecules might readily move over the concentration gradient passively, 

while the entry of extremely large biomolecules is restricted. The main reason behind this 

obstacle is the lack of energy that is caused by the difference in the concentration gradient 

leading to limited entry/insertion of molecules across the membrane [83]. With increasing 

molecule size, drug diffusion reduces dramatically. Molecular weight (MW) has been shown 

to affect the mucosal absorption of a variety of hydrophilic substances in many studies [84,85]. 

However, cyclic peptides with a large molecular weight have a greater rule of violation, and 

some peptides violate the Lipinski rule of five (RO5) criteria by being available orally. Early 

studies suggest that this chameleon characteristic of many macromolecules (high molecular 

weight) is closely related to RO5 blueprints as found in orally accessible peptide medicines. A 

chameleon molecule may change its shape and polarity with respect to the outer environment 

i.e., hydrophilic or lipophilic, due to its intermolecular hydrogen bonding arrangement [86]. 

The permeability coefficient is inversely proportional to molecular weight. As seen in an 
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example, the permeability coefficient of fluorescein isothiocynate dextran decreases as MW 

increases [87]. With MW greater than 300 Da, absorption often reduces exponentially. The 

MW of therapeutically utilized biologics varies greatly, starting from hundreds to hundreds of 

thousands (<500-1,00,000 Daltons) making juxtaposition difficult [88,89]. Human in vivo 

permeation experiments revealed that peptides like protirelin (MW: 362 Da) and oxytocin 

(MW: 1007 Da) could pass the buccal mucosa barrier, while buserelin (MW: 1239 Da) and 

calcitonin (MW: 3500 Da) could not [90]. Merkel et al. demonstrated that using an absorption 

enhancer increases the bioavailability of high molecular weight peptides. Simultaneous feeding 

of compounds has also been found to improve the performance of other epithelia. Buccal 

peptide delivery allows clinically appropriate dosages to permeate, for example, insulin, 

oxytocin, vasopressin analogues, protirelin, and octreotide [91]. 

2.2.2. Molecular Charge 

The influence of charge on passive diffusion of drugs is well understood. Passive diffusion of 

charged molecules is less effective than passive diffusion of uncharged ones [88]. At the pI of 

biomolecules, they appear as zwitter ions and thus have a detrimental influence on membrane 

permeability [92,93]. In the prediction of oral absorption, the charge over the surface of peptide 

molecules is a key factor. Additionally, altering the pH of the medium, results in change in the 

degree of ionization, charge density, and permeability of the peptide [89]. The positively charge 

peptide molecules get attracted towards the negatively charge epithelium membrane at 

biological pH or above the pI  and vice versa [90]. The membrane is non discriminating to 

either ion at the isoelectric point [91]. In physiological conditions, however, changing the pH 

of biological systems can reduce the stability, and increases the catalytic degradation/ 

breakdown [92]. 

2.2.3. Lipophilicity 

As drug molecules must permeate the lipid bilayer of cellular membranes, including those of 

enterocytes, lipophilicity of a drug molecule is a key problem in the design of dosage forms. 

As a result, drug molecules should be lipophilic in order to facilitate absorption. Based on water 

solubility and intestinal membrane permeability, the FDA proposed the Biopharmaceutics 

Classification System (BCS) and associated guidelines which divide bioactive constituents into 

four categories [93]. As a result, peptide drugs are frequently categorized in BCS class III and 

BCS class IV having low-permeability, high-solubility and low permeability, low solubility 

properties, respectively. Thus, macromolecules face severe constraint during permeation. 

Some changes have been used to improve lipophilicity and absorption through the passive 

diffusion pathway, such as blocking the C-terminal by cyclization, amide production, or 

esterification of proteins [94]. Although the octanol–water partition coefficient is a simple 

metric that can predict mucosal permeability, it does not necessarily correlate with peptide 

absorption since peptide bioavailability changes parabolically with lipophilicity [95].  

2.2.4. H bond donor & H bond acceptor 

The use of H-bond donors or acceptors to strengthen protein-ligand interactions frequently 

results in no net increase in binding affinity [96]. By studying physicochemical computational 

modelling, it was shown that MW and hydrogen bond acceptors (HBAs) have grown 

significantly, whereas lipophilicity and hydrogen bond donors (HBDs) have experienced 

relatively minor increases. A large variety of HBDs have been dubbed the "enemy of medicinal 

chemists" because of their potential to induce poor permeability, absorption, and bioavailability 

[97]. 

2.2.5. Aggregation 

Peptide aggregation is a frequent and troublesome phenomenon that occurs at nearly every 

stage of biological drug development [98]. Aggregation can take various forms and refers to a 
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variety of mechanisms in which peptide molecules join to create bigger species with numerous 

polypeptide chains. They can develop because of non-covalent polypeptide chain association 

or covalent chain linkage. Aggregation is reversible in certain circumstances but practically 

irreversible in others. In either instance, it decreases the physical stability of the peptide, 

resulting in a loss of activity as well as other serious issues including toxicity and 

immunogenicity [99]. 

3. Strategies for improving oral delivery of proteins and peptides 

3.1. Absorption Enhancers 

Absorption enhancers are chemicals that are given in conjunction with a therapeutic protein or 

peptide to help it absorb effectively. They reversibly break or eliminate the epithelial roadblock 

with minimal harm to normal tissues, making a peptide permeate across the intestinal 

membrane and reaching the systemic circulation [100]. In certain cases, increased intestinal 

permeability has been linked to acute epithelial injury. The research, on the other hand, shows 

that some absorption enhancers can improve peptide penetration in a reversible manner without 

any tissue injury or showing hazardous consequences [101]. There are different approaches by 

which absorption enhancers create a temporary breach in the epithelial cell barrier in the gut, 

allowing proteins or peptides to be absorbed. These processes include structural changes in 

epithelial cell membranes that lead to increased passive diffusivity of macromolecule either by 

penetrating across the cells (i.e., paracellular pathway) or by transporting between epithelial 

cells [102]. Absorption enhancers are classified according to their chemical structure and 

method of action. Medium-chain fatty acids (caprylate, caprate, and laurate, respectively), can 

improve the permeability of hydrophilic compounds through paracellular route, with caprate > 

laurate > caprylate is the sequence of increasing absorption in vivo [103,104]. 

Another sort of absorption enhancer is lectins. They are proteins that detect sugar complexes 

linked to proteins and lipids and bind to them. They act by binding to the luminal surface of 

small intestine which lead to increase the permeation of peptides by vesicular transport and 

reaching the systemic circulation [105]. 

Surfactants (detergents) disrupt proteins and lipids at membranes, allowing chemicals like 

therapeutic PPs to move more freely between cells. Anionic and non-ionic detergents are 

examples of this. Anionic surfactants are more effective in increasing transepithelial 

permeability than non-ionic surfactants [106]. Tetradecyl maltoside (TDM), a soluble 

surfactant, improves the bioavailability of the anticoagulant medication enoxaparin (given 

orally) by transiently lowering transepithelial electrical resistance in C2BBel cell extracts 

[107]. 

Permeation enhancers come in a variety of forms (chelating agents, surfactants or detergents, 

bile salts, salicylates, toxins, venom extract, fatty acids, various polymers), each with its unique 

mode of action and some examples are shown in Table 1. 

Table 1: Common absorption/ penetration enhancers and their mechanisms of action 

Class Example Mechanism of action 
Study 

involved 
Reference 

Chelating 

agent 

EGTA 

(Egtazic acid) 

TJ opening & increase 

penetration via paracellular 

route (Calcium and 

magnesium complexity) 

 

Caco-2 cell 

culture model 
[108] 
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Fatty acid 

Medium chain 

glycerides 

(CapMul MCM) 

Increase in marker molecular 

permeability 

Chamber 

technique (In 

vitro) 

[109] 

Toxins 

Zonula 

occludens toxin 

(ZOT) 

Actin polymerization 

(opening of tight junction) is 

induced by interaction with 

the zonulin surface receptor 

Caco-2 cell 

monolayer 
[110] 

Bile 

Acids 

Sodium 

deoxycholate 

Endogenous surfactant; act 

by terminating the lipid 

portion beyond CMC 

Rat [111] 

Surfactant 

Anionic (sodium 

dodecyl sulfate 

and sodium 

dioctyl 

sulfosuccinate) 

Cause membrane 

disturbance by depleting 

membrane proteins or lipids, 

as well as phospholipid acyl 

chain disruption. 

In vitro 

dioctyl 

sulfosuccinate 

perturbation 

(Caco-2 cells) 

[112] 

Polymers 

Anionic polymer 

(carbomer) 

Synergistically cause 

enzyme inhibition and 

calcium reduction outside 

the cell leading to opening 

of tight junction. Polymers 

can also help to decrease 

transepithelial electrical 

resistance. 

In vitro (Caco-

2) 
[113] 

Cationic 

polymer 

(chitosan) 

Interacts reversibly with 

elements of rigid junctions, 

causing the paracellular 

pathways to expand. 

In vitro (Caco-

2) 
[114] 

 

 

Due to permanent epithelium damage, several types of absorption enhancers have fallen off the 

radar in recent years [115]. Surfactants like sodium dodecyl sulphate (SDS) have been found 

to enhance the permeability of the GIT to hydrophilic substances while also altering cell shape 

and causing cell membrane damage [116]. With even brief exposure to SDS, microvilli were 

shortened, and actin disbandment, structural separation of TJs, and damage to the apical cell 

membrane occurred [106]. Several in vivo rat investigations back up the increased absorption 

and show that the harm is reversible [112].  Bile salts like sodium cholate and deoxycholate 
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have been regarded to be helpful in enhancing medication absorption; nevertheless, long-term 

use of these particles have demonstrated mixed results [117]. Studies on the safety and 

toxicological studies of common intestinal absorption enhancers have been given (Table 2). 

Table 2. Safety and toxicological studies of intestinal absorption enhancers: 

Absorption enhancer Model Dosing Observations 
Refer

ence 

Medium chain 

fatty acid 

technology: 

Gastro-

Intestinal 

Permeating 

Enhancement 

Technology 

(GIPETTM; 

Merrion 

Pharmaceutica

ls, Dublin): 

Solid-dose/ 

microemulsio

n-based 

 

GIPET I 

(C10 and 

C12, ratio 

1:2) 

Canine 

0.1, 0.3, 

0.9g /kg 

/day, up to 

14 days 

Emesis in some animals 1 h 

after administration of 

highest dose; 

No micro- or macroscopic 

changes in intestinal tissue 

with any dose 

[118] 

 

GIPET II 

Mono/ 

diglycerid

es of C8 

and C10 

Canine 
0.4, 2.0, 4.0 

g for 7 days 

No clinical pathology, 

histopathology or changes 

in body weight 

Medium chain fatty acid 

technology using sodium 

caprylate C8: Transient 
Permeability Enhancer 
(TPE®), Chiasma Ltd., 

Israel) 

Cynomol

gus 

monkey 

Daily 

administrati

on of 

capsule by 

intragastric 

intubation, 

for 9 

months 

No signs of toxicity; No 

changes in ECG, 

bodyweight, clinical, 

ophthalmological or 

hematological pathology 

 [119] 

Surfactants: 

URB1480-URB1482 

(sucrose-based); 

URB1419-URB1421 

(lactose-based) 

Calu-3 

cells 

(airway 

epitheliu

m) 

0.03 to 4.5 

mM 

No remarkable cytotoxicity; 

reduction in cell viability to 

70% with 4.5 mM of 

URB1481 alone 

[120] 

Bile salt: sodium 

deoxycholate (also a 

surfactant) 

Mice 
200 mg/kg, 

for 30 days 

No significant different in 

tumor necrosis factor 

(TNF)-α levels (indicator of 

inflammation) compared to 

control; No weight loss; 

Temporary change in fecal 

quality; No permanent 

impairment of intestinal 

barrier function 

 [121] 

1-phenylpiperazine Mice 
60 mg/kg 

for 30 days 

Weight gain significantly 

lesser than control group; 

No change in fecal quality; 

[121] 
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No permanent impairment 

of intestinal barrier function 

Acyl carnitine: palmitoyl 

carnitine chloride 

Caco-2 

cells 

0.01 to 1 

mM 

No remarkable decrease in 

cell viability 
[108] 

EGTA 
Caco-2 

cells 

0.01 to 10 

mM 

No remarkable decrease in 

cell viability; concentrations 

≥1 mM increased cell 

viability 

[108] 

Permeation enhancers were used in another investigation to examine localisation and controlled 

release of permeation enhancers to minimise the unpredictability associated with peptide 

absorption. Tyagi et al., 2021 [122] utilised layering techniques to produce a multi-unit 

particulate system (MUPS) in which the active peptide (MEDI7219), permeation enhancers, 

and polymers are coated for peptide release. According to the findings, layering of peptide and 

permeation enhancers over sugar spheres was shown to increase interaction and simultaneous 

solubilization and exposure to the GIT. The distal small intestine and the proximal large 

intestine were determined to be the sites of absorption of MEDI7219 during the early studies.  

3.2. Enzyme Inhibition 

Orally administered proteins can have low bioavailability due to enzymatic breakdown in the 

GIT. Co-administration with protease inhibitors such as pancreatic inhibitor, soybean trypsin 

inhibitor, camostat mesylate, and aprotinin, which improve the bioavailability of orally given 

PPs by decreasing their enzymatic breakdown by trypsin or α-trypsin, is an alternative to 

structural modification [123]. These enzyme inhibitors operate by interacting to the target 

biocatalyst in the intestine in a reversible/irreversible manner. 

Following represents a categorization of suppressive drugs depends on their structural makeup 

[124]: 

1. Inhibitors which are independent of amino acids (e.g., phenylmethylsulfonyl fluoride) 

2. Amino acids and altered amino acids (e.g., chymostatin, amastatin) 

3. Peptides and modified peptides (e.g., N-acetyl cysteine) 

4. Protease inhibitors (e.g., Aprotinin) 

Other protease inhibitors, like chymostatin, Bowman–Birk blocker, aprotinin, improve insulin 

microsphere bioavailability by inhibiting digestion by digestive enzymes such as pepsin, 

trypsin, and –chymotrypsin [125]. Polypeptide protease inhibitors like aprotinin have a large 

molecular weight, which enables for efficient formulation in long-acting oral dose forms such 

insulin-loaded polyvinyl alcohol-gel spheres. 

In numerous tests, puromycin, an aminopeptidase inhibitor, was found to improve the uptake 

of metkephamid (MKA), a robust derivative of met-enkephalin, through the rat gut. Because 

aminopeptidase participates in MKA metabolism during absorption, endopeptidase inhibitor 

(thiorphan) proved unsuccessful in preventing MKA metabolism. At high pH, amastatin was 

shown to inhibit the breakdown of the pentapeptide leucine (Leu)-enkephalin (YGGFL) [126]. 

Altering the pH at the active site of the enzyme is an alternate technique of inhibiting enzymes. 

[127]. Most stomach enzymes including pepsin are active at a low pH (< 2) [128]. As a result, 

if the gut pH rises, the biocatalyst loses its ability to break down the protein counterpart. 

Biocatalysts present in the small intestine work best at high pH, and thus lowering it can limit 

their activity [129,130]. 

These enzyme inhibitors do have some lane blockers. For a start, they can interfere with dietary 

peptide absorption and cause toxic shock if used for an extended period of time [130]. Although 

systemic toxicity as well as damage to the mucosa surface are ruled out, pancreatic protease 

enzyme inhibitors still have hazardous potential due to the suppression of these digesting 

Acc
ep

ted
 M

an
us

cri
pt



Accepted Manuscript (unedited) 

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. 

 

 
13 | P a g e  
 

enzymes. Aside from disruption of nutritive protein digestion, a feedback regulatory inhibitor-

induced increase of protease production is to be predicted [131]. In rats and mice, suppressors 

like Bowman–Birk blocker, soybean trypsin blocker, and camostat have been used to explore 

this feedback regulation. They show that this feedback control causes pancreatic hypertrophy 

and hyperplasia in a short period of time. Furthermore, long-term use of the Bowman Birk 

blocker and soybean trypsin blocker results in the development of many proliferative hotspots, 

which frequently progress to aggressive malignancy [132,133]. 

3.3. Chemical Modification 

Changing the chemical structures of macromolecules is one way to improve their 

pharmacokinetic profile and make them more therapeutically useful pharmaceutical agents. 

[134]. The goal of performing chemical changes to biologics architecture seems to reduce 

undesired characteristics such as excessive sensitivity to enzyme degradation, inappropriate 

miscibility, or inadequate penetrability. Chemical modifications can potentially be utilised 

by reducing immunogenicity of administered therapeutic biologics. Protein modification can 

also take the form of direct alteration of the proteins' exposed side-chain amino acid groups 

[135] or modification of glycoproteins and glycoenzymes [136] The latter method has the 

advantages of being suitable even when the protein sample is not particularly pure and of not 

interfering with the natural structure of the protein. Prodrug synthesis, backbone alteration of 

protein, linking of peptide molecule to biodegradable and non-biodegradable polymers, 

structural alteration to be recognized by transporters, as well as cyclization are all examples of 

chemical modifications. 

3.3.1. PEGlyation 

The technique of covalently attaching polyethylene glycol (PEG) molecules to the framework 

of a biologic to improve its pharmacokinetic characteristics and therefore turn it into a more 

effective therapeutic agent is known as PEGylation. Biologics are delivered orally using 

polymers such as PHPMA (poly (N-2-hyfroxypropyl methacrylamide)), POEGMA (polyoligo 

(ethylene glycol) methyl ether methacrylate), PNIPAm (poly(N-isopropylacrylamide)), PLGA 

(poly (lactic-co-glycolic acid)), PDEAM (poly(N,N-diethylacrylamide)), PLGA (poly(lactic-

co-glycolic acid)) and PDEAM (poly(N,N-diethylacrylamide)). Biocompatibility, reduced 

toxicity, enhanced biological and circulatory half-life, and cheaper cost are some advantages 

of PEGylation. [137] PEG molecules (associated to biomolecules) have an excellent capability 

to act as a barrier, preventing proteolytic enzymes from reaching and hydrolyzing the protein 

or peptide, as illustrated in Figure 4. PEGylation of targeted medication delivery has been 

proven in studies to reduce clearance and improve distribution of PPs [138]. 

The in vitro anticancer effectiveness was investigated by  PEGylating siRNA lipoplexes by 

shutting B-lymphocyte triggered maturation protein (BLIMP-1) lymphoma cells. Post-

insertion of PEG on premade lipoplexes was shown to have a lot of potential for concealing 

siRNAs and reducing the interaction with serum protein in this investigation. PEGylation 

resulted in stable 300 nm siRNA lipoplexes with a complexation efficiency of 80% [139].  

The controlled release pattern of bovine serum albumin used as a model protein from a 

hydrogel-based matrix was investigated using chemically bridged chitosan-PEG derivatives. 

In simulated gastric fluid, the hydrogel was treated with or without enzyme. Because of 

reductive amination, PEG dialdehyde may inflate at basic pH and remain deflate in lower 

pH.  The total release kinetics were found comparably sluggish in the first 2 hours but enhanced 

considerably at pH 7.4 with lysozyme over 12 hours. The findings demonstrated the behaviour 

of cross-linked CSPEG-H-CS hydrogel derivatives, indicating that they are appropriate for oral 

protein administration [139]. 
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Surface modification of nanoliposomes using PEG and peptide medicines was investigated by 

Yazdi and coworkers [140]. In their study, folic acid was conjugated to (methoxy polyethylene 

glycol-di-stearyl phosphatidyl ethanolamine) DSPE-PEG3400NH2, and liposomes were 

stabilised with mPEG-DSPE to improve stability under severe GIT conditions and serve as an 

efficient carrier for folate targeting. According to the findings, PEGylated phospholipids might 

increase the efficacy of insulin medication delivery when taken orally. 

When looking at the negative aspects of the PEGylation method, it becomes clear that it most 

obviously decreases the therapeutic effect of PEGylated macromolecules. The main cause of 

this is due to configurational alterations caused by PEG polymer coupling, which might result 

in intermolecular interactions among macromolecules and its target ligand disruption. There 

are increasing numbers of reports of delayed and rapid hypersensitivity reactions to PEG-

containing compounds, as well as immunological reactions to PEG. Increased vacuolation has 

been seen in tissues of animals given PEGylated proteins. Another unanticipated result of 

PEGylation was that the addition of PEG resulted in increased viscosity. Kerwin's group  [141] 

found that a combination of PEG and tumor necrosis factor (TNF) receptor1 had a viscosity 

five times greater than PEG or TNF receptor1 alone. PEG can be branched or single-chained 

[142]. 

3.3.2. Pro-Drug Approach 

Prodrug is an active pharmacological moiety that has been chemically modified into an inactive 

form and upon administration is transformed into the dynamic form to express pharmacological 

activity. Intake of a prodrug requires activation, either chemically or by enzyme-mediated 

conversion to the parent drug. This stage separates the creation of prodrugs from that of 

ordinary drugs. This extra step is believed to have contributed to the pharmaceutical industry's 

historical reluctance to use a prodrug strategy early in the development process; nevertheless, 

it is now widely acknowledged that this extra step also has a lot of promise.  

The use of a prodrug method might aid in the absorption of biomolecules including RNA, 

DNA, oligonucleotides, and proteins. This technique might be used to improve drug 

pharmacokinetics, achieve prolonged drug release, and reduce toxicity [143]. The molecular 

revolution in biology and medicine has enabled a contemporary approach to prodrug design 

that incorporates molecular/cellular characteristics and is targeted at target molecules in the 

body. If the parent drug has constraints like poor miscibility, stability issues, inadequate 

permeation, and low half-life, this is an overriding strategy [144]. Tanaka et al. used the 

chemically modified TRH derivative lauryl-Thyrotropin Releasing Factor (TRF) as an 

example. Conjugation of TRH with lauric acid dramatically enhanced TRH penetration into 

the upper small intestine.  TRF was gradually converted to natural TRH in the brush-border 

membrane (BBM) fraction, to describe the prodrug technique [145]. 

Bundgaard [146] discussed various approaches to derivatization of peptides to produce 

prodrugs, including N-alkylation of peptide bonds to yield N-a-hydroxyalkyl derivatives, 

esterification to yield N-a-acyloxyalkyl derivatives, and making a-hyroxylglycine derivatives, 

as well as TRH delivery as a N-alkoxycarbonyl prodrug derivative are instances of the prodrug 

strategy for resolving delivery issues. Phenyl propionic acid was used to chemically modify 

(Lue5)-enkephaline into a prodrug, which was not only shown to enhance their permeability 

across Caco-2 but also stability. 

 Peptide–drug conjugates (PDCs) are a specific category of prodrug in which a particular 

peptide sequence is covalently attached to a drug via a cleavable linker. Because the amino 

acid sequence may be selected to regulate both the physicochemical characteristics of the 

conjugate and the active targeting of a specific receptor on the tumour cell surface, peptides 

enable for a high degree of functionality to be included into PDCs. PDCs are biodegradable 
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and do not provoke unwanted immunogenic responses since they are composed of amino acids 

and have short peptide lengths [147]. 

Self-assembling PDCs, in which individual conjugates have the potential to assemble 

nanostructures, are an emerging subgroup of PDCs that aims to combine the benefits of 

peptide-based prodrugs with those of a vehicular delivery strategy. PDCs effectively constitute 

their own drug delivery vehicle in this unique design, which can break down over time or in 

response to a specific stimulus and releasing the active medication [148]. 

Although prodrug techniques have been successful for modest chemically synthesized 

medications and few short-chain peptides, the structural complexity of peptides and the 

absence of innovative approach may restrict their use to peptides in general. The majority of 

peptide prodrug methods have been limited to modify a single functional group. 

3.3.3. Peptidomimetics 

Peptidomimetics are meant to overcome some of the drawbacks of natural peptides, such as 

stability against proteolysis (activity duration) and low bioavailability. Peptidomimetics are 

substances whose essential components (pharmacophore) in 3D space imitate a natural peptide 

or protein while maintaining the capacity to interact with the biological target and generate the 

same biological effect [149]. Their non-peptide moiety can be altered by adding cyclic peptides 

or non-natural amino acids or changing the backbone structure to improve bioavailability and 

half-life. As a result, properties that are often absent in natural peptides, such as greater receptor 

selectivity and decreased metabolic liabilities are improved, resulting in higher potency [150]  

Peptide modifications can occur whether in the amino acid sequence or the amino acid 

branched groups, or both. Common procedures include N-alkylation which has been proven to 

improve peptide bioavailability and isosteric exchange of the amide link also helps in 

enhancing the activity [151]. 

N-alkylation boosts the total lipophilicity of the peptide while also inducing steric hindrance. 

Furthermore, during N-alkylation, the added alkyl group substitutes the hydrogen which 

was originally attached to the nitrogen atom of amide bond. The conformation of the peptide 

may be affected by the reduced hydrogen bonding capabilities. Cyclosporine is an example of 

this, it may be ingested orally and shows 29% bioavailability. In this, methyl group has 

alkylated the nitrogen atoms (amide bonds). Isosteric substitution of the amide bond is another 

peptidomimetics design method that has received a lot of attention. 

3.3.4. Glycosylation 

Glycosylation is a widely protected mechanism in eukaryotic and bacterial posttranslational 

protein modifications [152,153]. Glycosylation may be induced in the laboratory by chemically 

conjugating a carbohydrate molecule to another macromolecules like protein, fat, or 

nanoparticulate carrier. In this approach, a wide range of glycan structures may be produced. 

Carbohydrate moieties are added to protein to modify the structure and function by steric 

influences involving the intermolecular and intramolecular interactions, results in enhancing 

physicochemical properties, organelle localization, and target binding [14953,154]. 

N-linked and O-linked glycosylation are two prevalent post-translational modifications. Sugar 

protein linkages to serine and threonine ("O-linked") or arginine and asparagine residues ("N-

linked") are the most important in glycoprotein. Hyperglycosylation refers to the condition 

characterized by excessive glycosylation. Many of the same advantages of PEGylation apply 

to hyperglycosylation, including extended half-life, better solubility, and decreased 

immunogenicity. By shielding non polar domains on the protein surface implicated in weaker 

bonding coupling that induce accumulation, activity loss, and/or enhanced sensitivity, 

hyperglycosylated peptides enhanced its stability [155]. However, steric hindrance may limit 

the action of hyperglycosylated therapeutic proteins. 
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3.4.  Particulate Delivery 

3.4.1. Nanoparticles 

 Nanotechnology has been proven to bridge the gap between physical and biological sciences 

by employing nanostructures and nanophases in a variety of disciplines of research, particularly 

in nanomedicine and nano-based medication delivery systems. NPs may be utilized as 

therapeutic molecule delivery systems, which can be accomplished in a variety of ways, 

including either by dissolving the protein and peptides in the carrier system, or by encapsulation 

mechanism i.e. encapsulating the peptide molecules in the nanoscale particle, and lastly by 

absorbing the bioactive agents onto the NP surface. [156] Protection from acid and proteolytic 

enzymes in the GIT; delayed, controlled, target release of active molecule; mucus layer 

penetrability due to their nano size; large surface for the reactivity to the mucosal and various 

other layers/membranes; and ability to deliver cargo via the oral route for improved absorption. 

As seen in Figure 5, these characteristics enable NPs to improve biologic absorption. NPs with 

numerous functional characteristics aid in transport of variety of macromolecules like 

antibodies and active polypeptides to the immune system [157,158]. 

Insulin is one therapeutic peptide which has been extensively investigated for oral 

administration especially using NPs. Insulin when encapsulated inside NPs has been 

demonstrated to be less sensitive to enzymatic degradation and better absorbed due to the 

association with polymers. Moreover, the submicron size of the NP favours absorption through 

the intestinal membranes [159,160]. In another study that investigated particle size, insulin NPs 

of diameter 345 nm showed better hypoglycemic effect than 123 nm particles in diabetic rats 

[161]. This study also reported that the polymeric material chitosan could adhere to the 

intestinal membranes and transiently open the tight junctions. Chitosan and its derivatives are 

relatively non-toxic and biocompatible. Therefore, they have been widely studied as polymeric 

matrix for NP-mediated oral delivery of insulin. Chen et al. [162] developed multifunctional 

insulin NPs with dicyandiamide-modified chitosan, octaarginine, and hydrophilic hyaluronic 

acid (HA). The modified chitosan demonstrated improved water solubility, thereby forming 

NPs in neutral conditions.  HA was employed for mucus penetrability and facilitating carrier 

interactions with the intestinal wall.  

NP absorption is mostly mediated through Peyer's patches, particularly in the ileum following 

oral administration. They may be transported in between the cells and reach the jejunum. NPs 

can travel through the cellular spaces produced at the villi tip by the shedding of absorptive 

cells [163]. For the first time, a recent study shed light on the impact of numerous variables on 

the release behaviour of protein from nanospheres [164]. Protein-loaded (freeze-dried) 

nanospheres resulted in large burst release of protein, whereas non-freeze dried nanospheres 

showed minor release of model drug. Non-lyophilized nanospheres, on the other hand, revealed 

a rather quick release of protein till the succeeding month. However, because the NPs 

concentrate in the liver, one drawback of this type of delivery method is liver damage. 

Furthermore, particle size is restricted to 5–20 nm in diameter, making macromolecular loading 

a difficult procedure. 

3.4.2. Liposomes 

Nanostructured lipid-based carrier systems, such as liposomes, nanoemulsions, solid lipid 

nanocarriers (SLNs), and others, have significant advantages over conventional drug forms 

since they are made of bio-based, non-toxic, non-irritant lipids and have ability to influence 

drug absorption in the intestine. The most widely utilized lipid-based carriers are liposomes. In 

the GIT, however, they are unstable and have poor penetration through the mucosal membrane. 

Nevertheless, these issues can be significantly minimized by modifying the liposome surface 

with a mucoadhesive polymer and protease inhibitors. When a chitosan (mucoadhesive 
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polymer)-aprotinin (protease inhibitor) conjugate was given orally, a 15-fold higher AUC (area 

under curve) was observed than calcitonin alone [165]. Degim et al. [166] observed that insulin 

permeability through Caco-2 cell monolayers and rabbit nasal mucosa connected to a diffusion 

cell was increased (on treatment with insulin-loaded liposomes and presence of permeation 

enhancers). Oral formulations were administered, blood glucose levels were measured, and 

compared to the results of the Caco-2 cell experiment. Finally, when the liposome sodium 

taurocholate (NaTC) formulation was employed, insulin permeability was enhanced across the 

Caco-2 cell monolayer. Liposome stability problems and protein breakdown during protein 

synthesis due to the use of organic solvents are the main disadvantages of liposomal peptide 

and protein delivery [167]. Additionally, presence of  bile  may solvate the liposomes, causing 

them to burst and release the enclosed therapeutic macromolecules into the gut and their in vivo 

stability is viewed as a concern with their usage as non-invasive  delivery methods.  

3.4.3. Micelles 

Micelles are comprised of amphiphilic molecules that self-assemble. Micelles are generally 

spherical with varying diameter (2 to 20 nm) based upon their configuration. The structures 

have a hydrophilic/polar (head) and a hydrophobic/nonpolar (tail) portion. Micelles are made 

in aqueous phase, with the hydrophilic group facing outward and lipophilic group constituting 

inner core of micelles [168]. Micelles can deliver hydrophilic as well as lipophilic molecules. 

These molecules can transport macromolecules because they can provide prolonged and 

regulated release, physicochemical stability of the incorporated macromolecules, improved 

pharmacology of active substance, and favourable distribution of molecules in tissues, and 

leading to enhance the absorption and bioavailability of therapeutics [169]. Liposomes may 

have difficulties reaching the target location of action due to their large size than the vascular 

cut-off size in some cancers. Micelles may be a better option if this is the case. Hydrophilic–

hydrophobic block copolymers can also be seen in polymeric micelles. Li et al. [170] 
investigated on functionalized polymeric micelles composed of folate conjugated bovine serum 

albumin (FA-BSA) and packed with super paramagnetic iron oxide nanoparticles (SPIONS). 

These polymeric micelles are used to target tumours and perform magnetic resonance imaging. 

In vitro investigations on folate receptor positive hepatoma cells revealed a higher cellular 

uptake. In vivo results revealed the potential of FA-BSA modified magnetic micelles as a 

tumor-targeting MRI probe. Researchers have found encouraging findings in oral 

administration of compound, which penetrate the gut membrane. Polymeric micelles can 

therefore be used to deliver macromolecules orally [171]. However, micelles have intrinsic 

issues that might prohibit them from being utilised in therapeutic protein delivery, such as 

limited drug loading capacity, low water stability, poor half-life, significant toxicity and others 

[172]. 

3.4.4. Microspheres 

Microspheres are spherical particles that range in size from 1 to 1000 mm. Natural or synthetic 

materials can be used to make microparticles. Lactoglobulin PLGA microspheres were given 

orally to neonates who were allergic to milk proteins. This formulation included Tween 20, 

which improved protein encapsulation efficiency and regulated release [173]. 

Insulin-loaded microparticles were made utilising a water-in-oil-in-oil emulsion method with 

a dispersed phase of PLG/PEG or PLA/PEG dissolved in dichloromethane and a continuous 

phase of 10% PVP-methanol. In vitro release characteristics of encapsulated insulin revealed a 

sustained-release property for a month. The usage of blended microparticles contributed in 

elevated insulin administration efficiency and consistent release over four weeks, as well as 

enhanced insulin stability [174]. 
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Chemically modified soybean hydrolysate containing aromatic acyl chlorides can also be used 

to make stable pH-sensitive microspheres. These low-cost microspheres were soluble at pH 

values greater than 5.0 and stable at acid pH (<3.5) [175]. From a microsphere-hydrogel drug 

delivery system, Osswald and Kang-Mieler [176] studied controlled and prolonged release 

of model agents. Bioactive anti-vascular endothelial growth factor (VEGF) drugs (ranibizumab 

or aflibercept) were employed as the model agents in the study. The drug delivery system can 

release either of anti-VEGF for up to 200 days. In human umbilical vascular endothelial cells, 

release samples revealed to inhibited proliferation of cells and no harm at any time.  

Increased medicament loading and prolonged delivery have been seen in several of these 

preparations. Microparticles can contain biologics with therapeutic activity to treat a variety of 

illnesses, including ophthalmology, cancer, heart problems, and inflammation. 

3.5. Site-specific delivery: GIT 

Several factors involved in delivering macromolecules vary across the various areas of gut. 

Difference in absorption may be because of different pH values at GIT sites, as well as different 

level of proteolytic enzymes present in gut wall. Solubility and stability of PPs are affected by 

pH ranges and the degradation rate of the same is influenced by proteolytic enzymes [177]. 

Depending upon the absorption location, the rate of absorption of peptides varies. As a result, 

numerous efforts to find the optimum absorption location in the gut have been made. Peptides 

have been released at a specific region of the GIT where entry into the lymphatic vessels is 

highest or biocatalyst actions are lowest to improve drug absorption after oral administration. 

Drug transport to the colon offers numerous advantages, including a longer residence period, 

lower enzymatic activity, and greater tissue response to absorption enhancers [178]. For site-

specific drug delivery, many techniques have been used, including magnetic systems, and 

mucoadhesive systems. Prodrug approach, azo-polymeric pro drug technique, pH-modulated, 

microbially triggered delivery systems, time-modulated system and pressure dependant release 

systems have all been tried for colon-specific administration, but with limited results. [179]. 

Developing pH-sensitive delivery systems that release loaded components according to pH of 

the surrounding medium. They can be influenced by the presence of food as well as a serious 

illness in the GIT that causes pH alterations. 

As a result, methods that rely on enzyme-controlled therapeutic peptide molecule release are 

more promising in this respect [180]. Several in vitro studies revealed that approaches like 

penetration enhancers, or along with mucoadhesive devices were used as promising agents for 

delivery of insulin via oral route. For buccal administration of pressurized spray dosage form 

containing, a combination of penetration enhancers and micelles has been designed and tested 

using metered-dose inhaler.  Bioavailability of the system was limited, and more research is 

needed to show its effectiveness.  Multi-layered epithelial mucosa and constant flow of saliva 

are limitations for oral-buccal peptide drug administration [181]. 

3.6.  Membrane transporters 

In epithelial cells, several kinds of membrane transporter proteins are expressed which helps 

in transit the macromolecules like polypeptides to aid absorption. However, such carriers might 

be extremely beneficial in designing and developing the oral delivery of biologics. The drug 

should have morphological resemblance to carry by these membrane transporters. Because of 

these similarities in the structure, the membrane transporters present in vivo will couple the 

biomolecule which aids in transiting across the biological layer to reach the blood stream. 

Peptide transporters 1 and 2 (PepT1 and PepT2) are two distinct proton-coupled oligopeptide 

transporters that play a role in the transfer of amino acids in peptide form. The most significant 

differences among these two carriers are substrate binding and selectivity, as well as 

transportation capacity [182]. For di- and tri-peptides, PepT1 works as a low-affinity/high-
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capacity transporter present mostly in the gut, has not been found in BBB and parenchyma, 

whereas PepT2 acts as a high-affinity/low-capacity transporter with a larger tissue distribution 

than Pept1, with the highest expression in the kidney. These peptide transporters are energy-

dependent proton-coupled transporters. They may transport hydrophilic peptidomimetic 

medicines in contrast to their natural substrates (dipeptides and tripeptides) [182]. 

The drug molecule is linked to a di/tri peptide already recognized as PepT1 transporter, and 

then, the entire molecule is transported through the epithelium (Figure 6). The critical 

parameter for peptide to couple with these transporters is its enzymatic stability, or else the 

peptide will enzymatically hydrolyse before it reaches the transporter which may prevent the 

transporter from recognising the peptide, resulting in no transportation. Membrane transporter 

proteins can often only transport molecules that are quite compact. As aforementioned, 

molecules of a greater size are generally transported by receptor-mediated endocytosis. They 

are crucial for the oral absorption of therapeutics like β-lactam antibiotics, angiotensin-

converting enzyme inhibitors, nucleoside/nucleotide reverse transcriptase inhibitors, and renin 

inhibitors [183]. 

3.7.  Novel approaches 

3.7.1. Self-nanoemulsifying drug delivery systems (SNEDDS) 

SNEDDS are formulations which are a characteristic mixture of lipid phase (oils), surface 

active agents (surfactants), and co-surfactants molecules in a definite stable proportion. These 

systems may generate transparent nanoemulsions with a diameter of 20 to 200 nm [184]. In 

comparison to other nanocarriers such as polymeric NPs, liposomes, SLN, niosomes, micelles, 

carbon nanotubes, SNEDDS have garnered a lot of interest in the last decade due to their ease 

of scale-up and cost-effective approach [185]. Advancement in  SNEDDS formulation have 

improved activity characteristics like increased GI transit time, acidic environment resistance, 

enhance mucus diffusion, boosts penetration and upgraded cellular absorption, resulting in 

greater oral bioavailability of encapsulated therapeutics [186,187]. 

The high surface area of the ultrafine droplets allows for quick intestinal permeability. Proteins 

are protected from aqueous hydrolysis by the anhydrous nature of SNEDDS. Other bioactive 

effects of SNEDDS, such as tight junction opening and increased lymphatic absorption, also 

contribute to loaded protein therapies' increased oral bioavailability. SNEDDS have been used 

to deliver biologics in several investigations [187]. To enhance insulin oral bioavailability, 

Bravo-Alfaro et al. [188] generated SNEDDS using insulin complex and phosphatidylcholine 

(modified or unmodified). SNEDDSs were given in in vitro GI environment, and upon reaching 

last step of simulated small intestine they demonstrated 35.7% bioavailability. In diabetic rats, 

36.1% reduction in blood sugar level was found after 4 h of receiving the modified 

phospholipid SNEDDS. The subcutaneous insulin injection generated 161.5±24.8 IU/mL, the 

greatest quantity in blood, according to bioavailability tests. SNEDDS formulation was 

investigated by Karamanidou et al. [189] employing insulin/dimyristoyl phosphatidylglycerol, 

which was shown to be an effective mucus penetration enhancer with a 70.89% entrapment 

efficiency. Intestinal enzymes (trypsin, -chymotrypsin) were shown to effectively shield the 

therapeutic protein from enzymatic breakdown. Increased mucus permeability was seen in the 

SNEDDS formulation, which did not appear to be influenced by ionic strength. The addition 

of insulin-dimyristoyl phosphatidylglycerol to SNEDDS prevented an early surge of insulin 

release. However, because of fully lipidic nature of SNEDDS, incorporating any hydrophilic 

molecule in the formulation is challenging. 

3.7.2. Eligen Technology 

The Eligen® technology, which is used for oral administration, is based on the creation of 

unique delivery agents known as Emisphere delivery agents. It is a platform for delivering 
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macromolecules that uses a macromolecule as an absorption enhancer. The macromolecule 

forms a weak, noncovalent bond with the drug molecules, allowing the medication to stay 

chemically unchanged. Eligen® (Emisphere) is a drug delivery system that use sodium N-(8-

(2-hydroxybenzoyl) amino caprylate) (SNAC) as a carrier molecule for weak non-covalently 

attaching medicines [190]. Figure 7 describes the process. As per Emisphere, SNAC improves 

transcellular absorption without disrupting rigid connections. Prior to absorption, the process 

for proteins might entail a reversible change in protein structure and protection from destruction 

[191]. SNAC increases insulin absorption transcellularly by a factor of ten without causing 

tight junction damage. It also protects the linked Protein /SNAC protein from proteolytic 

enzymes, which helps to keep it stable in the GI system [192]. 

3.7.3. Peptelligence 

 Peptelligence is a revolutionary oral medication technique for peptides and small compounds 

developed by Enteris Biopharma, USA. Peptides and other biopharmaceutical molecules 

classified as class II, III, or IV in the BCS may now be delivered orally as enteric-coated tablets 

using this cutting-edge technique. [192] This technique was developed by solving two major 

challenges: solubility and permeability. The initial component of Peptelligence technology is 

a absorption enhancer, helps in penetrating the molecule by disturbing the rigid barrier in 

enterocytes and leading to transportation of macromolecules between the cells [193]. A 

surfactant, which improves permeability, also works as a powerful solubilizer. Citric acid, the 

other primary excipient, is a calcium chelator and membrane penetration enhancer, as well as 

a pH-lowering agent that enhances absorptive flux and a membrane wetting/charge dispersion 

agent. Peptelligence has developed salmon calcitonin, Leuprolide, and Ovarest, which were in 

Phase II studies. Sodium caprylate plays a critical role in permeability enhancement, allowing 

molecules to pass across paracellular tight junctions in a temporary and reversible manner. In 

a Phase III clinical trial, the oral delivery of octreotide was given to the patients with 

acromegaly. The formulation was examined for its single therapy potential and proven to be 

effective and safe in human subjects. To conclude, octreotide along with permeation enhancer 

showed same drug concentration profile as that produced by octreotide injection [194].  

3.7.4. Self-assembling Bubble Carrier Approach 

By packing insulin as a protein drug in an enteric coated gelatin capsule, Lin and coworkers 

[195] proposed developing a bubble carrier method. The insulin molecule is additionally 

shielded from protease inhibitors, and permeability is improved due to the addition of an 

absorption enhancer. The goal was to administer the insulin via oral route, which had the 

potential to be used for the oral administration of other pharmaceutical macromolecules as well. 

This self-assembling bubble carrier was encased in gelatin network and designed to release in 

intestine. When the designed dosage form outreaches lower intestinal secretions, it degrades 

and releases acid and alkali ions, which swiftly release carbon dioxide, that serves as 

transporter for protein insulin. In diabetic rats, the SDS-containing bubble carrier technology 

enhanced oral absorption of insulin, which had a significant blood glucose-lowering impact. 

However, employing SDS at the dosages used in this investigation had no effect on epithelial 

cell structural integrity, and there was no evidence of LPS absorption into the systemic 

circulation. The bubble carrier system with SDS provides a powerful and safe delivery method 

for oral insulin administration, according to these findings. As a result, the self-assemble 

bubble carrier system acts as the effective carrier and improves absorption [196]. 

3.7.5. Without delivery technology  

The development of oral formulations for biologic medicines in adults has received a lot of 

attention. This is pertinent in the case of infants and neonates who may receive vaccines, 

nutrients, and for whom oral delivery is an attractive option. Whitehead and team 
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determined the viability of delivering peptide and protein medicines orally without the use of 

permeation enhancers or other aids. They tested their theory using the non-everted gut sac 

technique and discovered that macromolecular (FITC-Dextran) permeability was affected by 

molecule size, animal age, and tissue type. According to the findings, paracellular route in 

infant mice is more permeable than in adult mouse intestinal tissue. Even with a macromolecule 

as large as 70 kDa Dextran, infant small intestine tissue was substantially more permeable than 

adult tissue. This prompted them to investigate the oral absorption of both a moderately sized 

peptide (insulin) and a large protein (lactoferrin) with surprising results in infant and adult mice 

[197]. 

4. Lymphatic Targeting/ Lymphatic Absorption 

The lymphatic system is a vascular network that drains protein-rich lymph from tissues. The 

lymphatic system, unlike the blood vascular system, is a one-way transit channel from the 

extracellular space to the venous system. The lymph system demands special attention when it 

comes to deliver biologics and other structural analogues because of some special benefits. To 

begin, this aforementioned system and lymph nodes are attractive targets for cancer treatment, 

and in some metastatic tumours, lymph nodes are a viable option. Second, lymph nodes are 

home to thymus-dependent small and large lymphocytes, as well as macrophages, which 

generate circulation antibodies that trigger immunological responses [198]. When 

macromolecules >20 kDa in size or 10–100 nm (diameter) are administered via oral route and 

eventually reach into a lumen, they must first transit the epithelial membrane, before entering 

the lymphatic and capillary system. The transcellular lipid route and the paracellular pathway, 

which operates by adding absorption enhancers, are two methods via which the 

macromolecules migrate to lymphatic system. Transcytosis via Peyer's patches is the second 

pathway, which appears to be most suited for very powerful chemicals like lymphokines and 

vaccinations. Small molecules can be stimulated to enter the lymphatic system in one of two 

ways: by administering them in conjunction with synthetic macromolecular constructions, or 

by hitchhiking on endogenous cells or macromolecular carriers that are carried from tissues to 

the lymphatics [199]. Deak and Csaky [200] performed a series of studies in normal and 

cirrhotic rats to investigate the variables that govern the absorption of compounds 

(supplements, drug) from intestinal space into the lymphatic system. Intestinal lymph, portal 

venous plasma, and intestinal perfusate were all evaluated simultaneously after test chemicals 

were administered through in situ jejunal luminal perfusion or systemic intravenous infusion. 

Some of the variables impacting macromolecule absorption, such as the permeability of the 

compound into the intestinal lymphatic system and lipophilicity, came into play. They 

concluded that molecule size has a major impact on relative distribution. Because if particles 

are too big to pass through the fenestrated blood capillaries of the mucosa, they must be carried 

via lymph. Chylomicron is a good example. The use of formulations containing a long chain 

and unsaturated fatty acid, as well as a surfactant, promotes the transfer of biologics into lymph 

[201]. The physicochemical properties of smaller molecules (peptides) are one of the most 

important variables in lymphatic absorption. Highly lipophilic substances facilitate lymphatic 

flow. 

The design of formulation which precisely gunshots the lymphatic system is a second option. 

Bleomycin, an anticancer drug, was used in one such delivery method. Bleomycin was 

discovered in significant quantities in the lymph after treatment with absorption enhancer as 

unsaturated fatty acids [202]. The M-cell pathway looks to be extremely promising for oral 

administration of biologics to local lymph nodes using carrier systems. 

5. Future Trends 
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The oral route is popular since it is straightforward and is low-cost. In the GIT, PPs are easily 

digested, and the hydrophilic nature of most endogenous peptides prevents them from crossing 

the epithelial barrier. Because of the complicated structure and diversity of PPs, no universally 

applicable strategy to deliver biologics were identified; several solutions inside this review 

specifically tailored for the peptide delivery are aforementioned. Several researchers have 

made efforts to promote absorption across the GIT in the development of new macromolecule 

technologies, and a number of these methods have shown promise in clinical studies. For PP 

drug delivery, PEGylation, mannosylation, glycosylation, cell-penetrating peptides (CPPs), 

targeted delivery, site-specific delivery, and mucoadhesive polymeric system are all potential 

possibilities. Researchers are currently combining approaches to improve oral bioavailability, 

such as CPPs with chitosan NPs, CPP with transcytosing peptides, delivery using 

polysaccharides as carriers, such as cellulose derivatives, alginates, cyclodextrin, CPP with 

PLA-NPs containing cyclic arginine, chitosan-taurocholic acid.  

Recently, some new techniques have been employed to overcome the barrier faced by oral 

bioavailability of biologics Eudratech Pep Technology, Peptelligence and Eligen Technology. 

Some new techniques for improving the bioavailability of oral peptides are under clinical 

investigation, such as the self-orienting millimeter scale applicator (SOMA), microneedles, 

luminal unfolding microneedle injector (LUMI), RaniPill, iontophoretic patch, use of 

sonophoresis technology, electroporation and iontophoresis techniques, micro-container with 

permeation enhancer, and peptidase and protease inhibitor. 

7. Challenges: Oral delivery of therapeutic PPs is still not as straightforward as delivery of 

small molecules. There are formulation challenges, an increased number of manufacturing 

steps, control on environmental conditions during manufacture, packing, storage and 

distribution. 

8. Conclusion 

The increasing relevance of biologics as treatments in diversity of ailments has reignited 

interest in developing oral delivery systems for these agents. The therapeutic potential of orally 

administered proteins and peptides is limited by their systemic instability in the GIT, enzymatic 

and acid catalyzed breakdown, inappropriate lipophilicity, structural variations, and low 

membrane permeability, as well as inadequate absorption via intestinal epithelia. Because of 

the above-mentioned thorns, the pathway of improved absorption of macromolecules by 

peroral administration are still challenging. Significant attempts have been undertaken in recent 

years to improve the bioavailability of orally given macromolecules. To deal with the harsh 

environment of the GIT, systemic instability, and boost bioavailability, absorption enhancers, 

enzyme inhibitors, chemical modifications, particle delivery, lipid-based carrier, site specific 

delivery, polymeric conjugation, and carrier systems were developed. These techniques had 

some early success, but only a handful have made it to the clinics. Patients, healthcare 

professionals, and pharmaceutical manufacturers all have different needs, and an ideal oral 

formulation must fulfil all of them. The focus of the study has shifted to innovative and vibrant 

techniques such as Emisphere, SNEDDS, Bubble-carrier strategy and many more. 

Currently, researchers using combinational approaches for enhancing oral bioavailability like, 

cell penetrating peptides CPP with chitosan NPs, CPP with transcytosing peptides, delivery 

using polysaccharides as carriers such as cellulose derivative, alginates, cyclodextrin, CPP with 

PLA-NPs containing cyclic arginine, chitosan-taurocholic acid conjugates, folate mediated 

lipid NPs, PEGylated lipid nanocapsules achieved by targeted NPs. As the significance of 

proteins and peptides in increasing along with their market share in pharmaceuticals, we 

believe that this review will guide the formulation scientist in selecting the optimal strategy for 

enhancing the therapeutic outcomes from their product. 
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Figure Captions 

Figure 1: U.S. Market size analysis for peptides from 2014-2025 

Figure 2: Physiology of GIT 

Figure 3: Macromolecule transportation mechanism 

Figure 4: PEGylation for improving properties of proteins 

Figure 5: Nanoparticulate delivery of biologics to enhance absorption 

Figure 6: Usage of peptide transporter to deliver a peptide linked drug across the membrane 

Figure 7: Emiphere Eligen® oral protein delivery technology 
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Figure 3 
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Figure 5 

 
 

Figure 6 
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Figure 7 

 
  

Acc
ep

ted
 M

an
us

cri
pt



Accepted Manuscript (unedited) 

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. 

 

 
28 | P a g e  
 

 

Table Captions- 

      Table 1: Common absorption/penetration enhancers and their mechanisms of action. 
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