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Abstract  

Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the loss of 

dopaminergic neurons. Genetic factors, inflammatory responses, oxidative stress, metabolic disorders, cytotoxic 

factors, and mitochondrial dysfunction are all involved in neuronal death in neurodegenerative diseases. The risk 

of PD can be higher in aging individuals due to decreased mitochondrial function, energy metabolism, and AMP-

activated protein kinase (AMPK) function. The potential of AMPK to regulate neurodegenerative disorders lies 

in its ability to enhance antioxidant capacity, reduce oxidative stress, improve mitochondrial function, decrease 

mitophagy and macroautophagy, and inhibit inflammation. In addition, it has been shown that modulating the 

catalytic activity of AMPK can protect the nervous system. This article reviews the mechanisms by which AMPK 

activation can modulate PD. 
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VTA: Ventral Tegmental Area 

α-syn: α-synuclein 

GABA: γ-aminobutyric acid 

AMPK: AMP-Activated Protein Kinase 

IL: Interleukin 

TNF: Tumor Necrosis Factor 

OxPh: Oxidative-Phosphorylation 

ROS: Reactive Oxygen Species 

MFN: Mitofusin 

OPA: Optic Atrophy 

Drp-1: Dynamin-Related Protein 

PGC-1: Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1 

FA: Fatty Acid 

FOXO: Forkhead Box Class O Family Member Proteins 

mTORC: Mammalian Target Of Rapamycin Complex 1 

TSC-2: Tuberous Sclerosis Complex 2 

Raptor: Regulatory-Associated Protein of mTOR 

MFF: Mitochondrial Fission Factor 

OMM: Outer Mitochondrial Membrane  

TFAM: Mitochondrial Transcription Factor A 

TFEB: Transcription Factor EB 

ULK-1: Unc-51-like Autophagy Activating Kinase 

UPS: Ubiquitin-Proteasome System 

CMA: Chaperone-Mediated Autophagy 

APPL1: Adaptor Protein, Phosphotyrosine Interacting With PH Domain And Leucine Zipper 1 

NOX: NADPH Oxidase 

NO: Nitric Oxide 

iNOS: Nitric Oxide Synthase  

PARK7: Parkinson Disease-7 Gene 

NF-kB: Nuclear Factor Kappa B 

NURR1: Nuclear Receptor-Related Protein 1 

 

 

1. Introduction 

Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the loss of 

dopaminergic neurons.1–3 In 2016, it was estimated that PD affected 6.1 million people worldwide, up from 2.5 

million in 1990, and this figure is predicted to more than double by 2040.4 Moreover, PD is present in 

approximately 3% of individuals aged 65 and above, with the largest number of cases reported in those over 70 

years old.5 

Clinically, symptoms of PD can be categorized as non-motor signs and motor symptoms. The non-motor 

symptoms are more common and emerge years before motor symptoms.6 Non-motor symptoms comprise loss of 

sense of smell, sensory disturbances (such as pain), sleep disorders, autonomic disorders (orthostatic hypotension), 

gastrointestinal disorders (constipation), urogenital disorders, sexual dysfunction, as well as cognitive deficits and 

dementia.7 Motor symptoms include bradykinesia, tremors at rest, rigid muscles, impaired posture, and imbalance. 

In addition to the main symptoms, patients may show other motor symptoms like micrography, freezing, masked 

face, decreased blink rate, dysphagia, and softened voice.8  
Pathologically, the key characteristics of PD are the damage to dopaminergic neurons in substantia nigra 

pars compacta (SNpc) and ventral tegmental area (VTA), depletion of dopamine in the striatum, and the presence 

of Lewy bodies in the cytoplasm formed mainly by the α-synuclein (α-syn) protein. PD affects various 

neurotransmitters aside from the dopamine system, such as noradrenaline, serotonin, glutamate, γ-aminobutyric 

acid (GABA), acetylcholine, and neuropeptides. The development of PD may also be caused by the degeneration 

of cholinergic neurons in the mynert nucleus, norepinephrinergic neurons in the locus cereus, and serotoninergic 

neurons in the raphe nuclei.9 Non-motor symptoms caused by non-dopaminergic neurotransmitter system 

dysfunction are unresponsive to dopaminergic therapy.10 

Along with genetic factors, inflammation, oxidative stress, mitochondrial dysfunction, and cytotoxic 

factors 11,12, metabolism-related dysfunction is also involved in the pathophysiology of PD.13 Evidence shows that 

impaired regulation of glucose metabolism, which occurs in early PD, reduces antioxidant capacity and neuronal 

survival.14 Furthermore, during the initial stages of PD, oxidative stress, a crucial characteristic of metabolic 
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syndrome, leads to mitochondrial structural abnormalities and mutations in mitochondrial DNA, which worsen 

oxidative stress and ultimately cause neuronal death.15 

Energy dysregulation is implicated as a possible trigger for PD, indicating that a deeper understanding 

of the molecular pathways controlling energy balance could lead to identifying therapeutic targets. The AMP-

activated protein kinase (AMPK) signaling pathway regulates metabolism, cell growth, and autophagy,16 and 

serves as a metabolic energy sensor and controls both lipid and carbohydrate metabolism inside the cell.17,18 

Moreover, inhibiting AMPK expression or activity results in an increase in pro-inflammatory cytokines such as 

interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α,19 whereas stimulating AMPK pathway has been 

shown to boost neuroprotection.20 AMPK is also involved in regulating macroautophagy,21 mitochondrial 

biogenesis,22 and gene expression.23  

Energy balance in cells is maintained by AMPK, which inhibits energy consumption and activates energy 

production processes in response to specific conditions to restore ATP levels.24 The mitochondrial oxidative-

phosphorylation (OxPh) pathway is commonly used to produce ATP from glucose. Hence, increasing AMPK 

activity is a viable strategy to avoid bioenergetics failure and boost energy levels in vulnerable neurons.25 AMPK 

stimulates glucose transport through glucose membrane vectors and the breakdown of stored glycogen in the 

cytoplasm.25,26 AMPK also provides substrates for other OxPh sources like fatty acids (FA) and glutamine.27 

During calorie restriction, AMPK acutely increases the uptake and transfer of FAs to the mitochondria for 

catabolism, oxidation, and energy production. Long-term activation of AMPK can influence energy metabolism 

by activating regulatory factors like forkhead box transcription factors (FOXO) and peroxisomal proliferator-

activated receptor-gamma coactivator (PGC)-1 α for energy production and consumption.28–30 

Furthermore, AMPK regulates cellular ATP production and energy levels by restricting anabolic 

processes.24 AMPK inhibits processes that require ATP, like new protein production and cell growth, to maintain 

the ATP level in energy-constrained conditions.31 The mammalian target of rapamycin complex (mTORC)-1 is 

an essential cellular protein that promotes protein synthesis and growth and induces nutrient signals.24 Evidence 

shows that AMPK inhibits mTORC-1 through activating tuberous sclerosis complex (TSC)-2 and inhibiting 

regulatory-associated protein of mTOR (RAPTOR).32,33 Also, AMPK has the ability to decrease protein 

production by inhibiting the synthesis of ribosomal RNA.34 

AMPK activation provides a significant neuroprotective effect and enhances cell survival against several 

cytotoxic agents. The mechanisms that AMPK activation may use to regulate PD-related pathology were 

summarized in this review (Table 1). 
 

2. AMPK Effect on Mitochondrial Function  

Cell metabolism relies on organelles called mitochondria, which provide energy through the OxPh process. 

The OxPh generates additional substances, particularly reactive oxygen species (ROS), that can negatively affect 

mitochondrial function when produced excessively. The decrease in cellular energy production following 

mitochondrial dysfunction creates a vicious cycle of chronic ROS production and worsens mitochondrial 

dysfunction.35 Therefore, cells' essential functions are to control mitochondrial health, biogenesis, fission-fusion 

dynamics, and mitochondrial autophagy (mitophagy).36 The process of mitochondrial quality control declines with 

age, particularly in those with PD.37,38 Additionally, accumulated α-syn may be the reason for mitochondrial 

damage in PD.39,40 

Mitochondria can change their structure, size, and shape through repetitive cycles of fission and fusion.41 

Mitochondrial dynamics can be influenced by calcium homeostasis, apoptosis, and respiration. Genetic mutations 

or exposure to toxins can lead to changes in mitochondrial dynamics, causing neurodegenerative disorders. The 

fusion of mitochondria is accomplished by two groups of GTPases: mitofusins (MFN1 and MFN2) located in the 

outer mitochondrial membrane and optic atrophy (OPA)-1 located in the inner mitochondrial membrane.42 Fission 

is another alteration in mitochondrial dynamics where dynamin-related protein (DRP)-1 is the key factor.43  
Dopaminergic neurons in the SNpc have limited mitochondrial content and rely heavily on energy 

balance for survival.44 Sporadic and familial forms of PD affect diverse aspects of mitochondria, including their 

bioenergy capacity, quality control, life cycle, morphology (fission and fusion), transportation, and control of 

cellular apoptosis pathways.45 Furthermore, PINK1 and PARKIN genes play a key role in mitochondrial function 

and quality control as they detect damage in mitochondria and facilitate mitophagy to eliminate and replace 

dysfunctional mitochondrial components.46,47 Ubiquitination of MFN1 and MFN2 proteins, which are involved in 

mitochondria fusion, depends on the Parkin/PINK1 pathway, wherein PINK1 phosphorylates MFN2, resulting in 

Parkin recruitment and protein ubiquitination.48 This process is essential to identify mitochondria for degradation 

through mitophagy and prevent them from reintegrating into the mitochondrial network. However, this process is 

disturbed by PD, leading to the accumulation of abnormal mitochondria and respiratory dysfunction. Moreover, 
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loss of DRP-1 in dopaminergic neurons leads to the degeneration of SN neurons in mice and a Parkinson's-like 

phenotype due to depletion of axonal mitochondria.49  

One of the primary regulators of mitochondrial biogenesis is a transcriptional activator called PGC-1.50 

According to prior studies, PD causes a decline in the expression of PGC-1 and its downstream genes responsible 

for controlling cellular bioenergy and mitochondrial biogenesis.51,52 Interestingly, overexpression of PGC-1 can 

prevent dopaminergic neuron death caused by α-syn overexpression or rotenone-induced damage, potentially 

improving PD-like pathologies.52  

As AMPK is vital for intracellular energy metabolism in response to energy depletion, it is expected that 

AMPK has a significant impact on mitochondrial homeostasis. An in vitro study has shown that α-syn 

overexpression reduces AMPK activity, leading to a decrease in cellular resistance to α-syn.53 A deficiency in 

AMPK activity can lead to reduced mitochondria and abnormal mitochondrial biogenesis due to disruption of the 

AMPK/PGC-1 axis, putting dopaminergic neurons at risk of degeneration and causing symptoms similar to 

PD.54,55 However, pharmacological AMPK activation provides neuroprotection.55 
Through activating PGC-1α, AMPK promotes mitochondrial biogenesis, activating mitochondrial 

transcription factor A (TFAM), leading to increased transcription and replication of mitochondrial DNAs.56,57 

Furthermore, AMPK enhances mitochondrial fusion, leading to the development of extensive and highly branched 

mitochondrial networks in a PGC-1-dependent way.58,59 Besides, AMPK activates mitochondrial fission factor 

(MFF) to promote mitochondrial fission but inhibits mTORC1 to suppress it.60,61 Therefore, it seems that the role 

of AMPK in intervening mitochondrial homeostasis is context-dependent based on cellular energy status. In mild 

energy depletion, it may stimulate fusion to boost energy production, but under prolonged and intense cellular 

stress, it may trigger fission to promote mitophagy and initiate mitochondrial biogenesis to substitute the impaired 

ones. 

AMPK also facilitates mitochondrial function by controlling the direct phosphorylation of target proteins 

and transcriptional regulation of the relevant genes.62 Mitophagy is a physiological process that eliminates 

damaged mitochondria while promoting mitochondrial biogenesis pathways to replenish mitochondrial levels.63,64 

Through the phosphorylation of Unc-51-like autophagy activating kinase (ULK)-1, AMPK promotes mitophagy 

by facilitating autophagosome formation and directing damaged mitochondria to lysosomes.65 AMPK activation 

also couples mitochondria fission with mitophagy by phosphorylating MFF and activating DRP-1 to maintain 

energy bioavailability and high-quality mitochondria.66,67  

The mitochondrial electron transport chain is the major source of ROS, and cells rely on antioxidant 

mechanisms to prevent damage from ROS and maintain redox homeostasis. Proper cellular function and metabolic 

stress adaptation necessitate the regulation of ROS generated by mitochondria.68,69 Damage to essential cellular 

components caused by excessive free radical production and impaired redox balance in neurons contributes to the 

degeneration of dopaminergic neurons in the SN. The low glutathione levels, high levels of oligomeric α-syn, 

high iron and calcium contents, mitochondrial dysfunction, and dopamine degradation and oxidation are 

responsible for ROS production in PD.70,71 Genetic mutations in SNCA, PARKIN, PINK1, LRRK2, FBXO7, 

ATP13A2, GIGYF2 and HTRA2 are also responsible for impairing mitochondrial function and morphology, 

leading to ROS formation.72 The connection between oxidative stress and PD pathogenesis is backed up by 

neurotoxin-induced animal models (6-hydroxydopamine (6-OHDA), rotenone, and 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)), which result in ROS generation and gradual loss of nigrostriatal dopaminergic 

system.73–76 

Aberrant production of ROS and imbalanced redox status activate AMPK to maintain redox homeostasis. 

AMPK promotes the expression of antioxidant enzymes such as glutathione peroxidase (GPx), superoxide 

dismutase (SOD), and catalase (CAT) to mitigate ROS generation by activating Sirt1/PGC-1α/FOXO-1 pathway 

(Fig.1). However, pharmacological or genetic inactivation of AMPK leads to elevated mitochondrial ROS levels, 

promoting cytotoxicity.69 Nuclear factor E2-related factor 2 (Nrf2) maintains redox balance and protects cells 

from oxidative damage. Nrf2 is usually kept in the cytoplasm during stress-free conditions, but it translocates to 

the nucleus on exposure to oxidative stress. Once bound to the antioxidant response element, it activates the 

expression of several antioxidative enzymes, including heme oxygenase-1 (HO-1), SOD, and GPx, which help to 

detoxify free radicals. Through phosphorylation, AMPK also enhances Nrf2 nuclear translocation, thus reducing 

ROS levels and inhibiting oxidative stress.77,78 Therefore, activating the AMPK pathway may serve as a 

therapeutic approach for inhibiting oxidative stress in PD. 
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Figure 1. Activated AMPK suppresses oxidative stress pathways related to PD by activating PGC-1α and Sirt 1 

pathways, resulting in increased antioxidant gene expression and inhibition of mitochondrial damages. ROS, 

Reactive oxygen species; AMPK, AMP-activated protein kinase; FOXO-1, Forkhead box class O family member 

proteins-1; Sirt 1, Sirtuin 1; PGC-1α, Peroxisome Proliferator-activated receptor-gamma coactivator-1; Nrf2, 

Nuclear factor E2-related factor 2; SOD, Superoxide dismutase; NQO-1, NAD(P)H quinone dehydrogenase 1; 

HO-1, Heme oxygenase-1;CAT, Catalase; GPx, Glutathione peroxidase. 

 

 

3. Effect of AMPK on macroautophagy 

Autophagy is a process that transfers waste products, cellular components, and large molecules to the 

lysosome for decomposition and ingestion.24 Autophagy disturbance is one of the etiologies of PD, leading to α-

syn accumulation in the brain.79 Moreover, deleting essential genes involved in autophagy, such as autophagy-

related gene-7 (ATG-7), can induce neurodegeneration similar to PD in mice.80 A recent study has shown that 

tricin, a natural flavonoid, can improve autophagy and ATG-7-dependent clearance of α-syn via an AMPK/mTOR 

pathway.81 

There are three main ways to remove α-syn from neurons: the ubiquitin-proteasome system (UPS), 

chaperone-mediated autophagy (CMA), and macroautophagy.82 Removing α-syn oligomers requires 

macroautophagy-mediated degradation because UPS and CMA are ineffective. To accomplish this, 

autophagosomes are formed to separate cytoplasmic components and carry them to lysosomes.83,84 In both PD 

patients and animal models, macroautophagy is stimulated by transcription factor EB (TFEB), which mediates 

lysosomal biogenesis and macroautophagy development due to increased α-syn levels.85,86 In the PD mice model, 

overexpression of α-syn causes macroautophagy dysfunction and increases dopaminergic neuron degeneration in 

SNpc and movement disorders. These defects can be improved by overexpression of TFEB or Beclin-1 (another 

autophagy regulator), suggesting that macroautophagy regulation can be helpful in the PD to reduce α-syn 

accumulation and neuronal damage.86,87 

Autophagy initiation is mainly driven by ULK-1, while the inhibition of ATG-13 phosphorylation by 

mTORC-1 leads to a decrease in the ULK-1 complex activity, ultimately suppressing autophagy.88,89 ULK-1 factor 

initiates the formation and maturation of autophagosomes through the Beclin-1 phosphorylation.90 Evidence 

suggests that AMPK boosts autophagic degradation by activating ULK-1 through phosphorylation and inhibiting 

mTORC1 and blocking its inhibitory effect on ULK-1.91 Moreover, AMPK promotes lysosomal biogenesis by 

increasing the activity of TFEB92 and improving the transcription of proteins required for macroautophagy by 

FOXO-3.93 Preclinical studies indicate that autophagy-promoting agents can improve α-syn clearance and provide 

neuroprotection.94 Metformin has been shown to stimulate autophagy and protect nigrostriatal neurons in PD 

models by activating the AMPK/FOXO-3 pathway.53,95,96 Moreover, resveratrol exhibits neuroprotective 

properties in PD models by inducing autophagy via AMPK activation and mTOR inhibition.97,98 Therefore, 

AMPK-dependent stimulation of autophagy may hold promising potential for developing new therapeutic 

strategies in PD. 
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4. Effect of AMPK on Genetic PD 
Genetic PD is rare; however, several types are identified that account for almost 30% of familial cases.99 

Genetic mutations in LRRK2, PARK2, PARK7, PINK1, or the SNCA gene can lead to familial cases of PD. 

Accumulating studies show that mutations in SNCA, GBA, and LRRK2 genes result in overexpression of α-syn 

and increased secretion of pro-inflammatory cytokines, leading to the development of motor dysfunction.92,100–102  

PARK7 (also known as DJ-1) is the gene responsible for the expression of DJ-1 protein, and its mutation 

causes genetic form and early onset of PD.103 A critical function of DJ-1 is nuclear communication with 

mitochondria.104 The wild-type DJ-1 enzyme prevents glycolysis metabolite damage in cells metabolizing 

carbohydrates.105 It protects cells from oxidative stress-induced cytotoxicity by enhancing Nrf2 transcriptional 

activity and preventing Nrf2 inactivation.106,107 Moreover, DJ-1 is one of the influential factors in cellular signals, 

including transcription of tyrosine hydroxylase, dopamine receptor, and p53 signaling pathway.104 PINK1 is also 

transcriptionally up-regulated by Nrf2, which shields dopamine neurons from neurotoxicity induced by oxidative 

stress.106,107 AMPK can enhance Nrf2 nuclear translocation through phosphorylation and inhibiting oxidative 

stress. 77,78 

PARKIN, PINK1, LRRK2, and PARK7 genetic mutations cause mitochondrial morphology and function 

abnormalities.108 Point mutations in the PARK7 (NM_007262.5) gene include p.Leu166Pro (c.497T>C), 

p.Ala104Thr (c.310G>A), p.Met26Ile (c.78G>A), p.Asp149Ala (c.446A>C), p.Glu64Asp (c.192G>C), 

p.Leu10Pro (c.29T>C), and p.Pro158del (c.471_473del).109 Activation of AMPK by adaptor protein 

phosphotyrosine interacting with PH domain and leucine zipper (APPL)-1, an endosomal adapter protein, can 

protect against the p.Leu166Pro (c.497T>C) mutation of the PARK7 gene.110  

 

5. Effect of AMPK on inflammation  

Both preclinical and clinical PD studies have proved that the onset and progression of PD involve 

neuroinflammation and immune dysfunction.111 The causes of inflammation in PD include exposure to heavy 

metals, environmental toxins, bacterial and viral infections, and pesticides.112  

Microglia, a part of the innate immune system in the central nervous system (CNS), are categorized into 

M1 and M2 subtypes. The M2 phenotype has anti-inflammatory and cytoprotective properties, essential for 

maintaining CNS homeostasis. Upon microglia activation, the M2 subtype is transformed into the M1 subtype, 

known to be cytotoxic and pro-inflammatory.113–115 In the pathology of PD, the accumulation of α-syn and the 

increase of ROS in dopaminergic cells promote neuronal death, followed by the release of damage-associated 

molecular patterns (DAMPs) from neurons, resulting in an increase in the activity of M1 microglia in the CNS.116 

Preclinical PD models have shown that microglial activation and secretion of pro-inflammatory cytokines, 

particularly IL-6 and IL-1β, precede the degeneration of dopamine neurons.117,118  Additionally, there is a 

connection between pathological α-syn accumulation and the PD brain's heightened inflammation.119,120 

The blood-brain barrier becomes weaker when inflammation increases in the brain, leading to the 

penetration of harmful substances like ROS and NO, which cause further damage.121 In a 6-OHDA-induced PD 

model, the amount of pro-inflammatory cytokines such as IL-1, IL-6, TNF-α, and INF-γ were increased, while 

anti-inflammatory cytokines such as IL-10 was decreased, indicating dysregulation in the immune system and the 

occurrence of inflammation in the CNS.122 In basal condition, nuclear factor kappa B (NF-κB) is inactive, localizes 

in the cytoplasm, and tightly bound to an inhibitor of nuclear κB (IκB). Upon activation by DAMPs, IκB kinase 

(IKK) targets IκB for degradation, resulting in translocation of NF-κB to the nucleus, pro-inflammatory gene 

expression, and damage to dopaminergic neurons through impaired mitochondrial function and autophagy by 

suppressing Sirt1/FOXO-PGC-1α pathway.123,124 

On the other hand, nuclear receptor-related protein 1 (NURR1) controls the expression of genes essential 

for the survival of dopaminergic neurons and has the potential to inhibit NF-κB activity when activated.125 Nrf2 

transcription factor not only boosts antioxidative defense but also plays a critical role in regulating inflammation 

and has been substantiated to obstruct inflammatory responses prompted by inflammatory factors. Typically, Nrf2 

is expressed at high levels in glial cells, and its activation reduces neuroinflammation.121 The survival of 

dopaminergic neurons is influenced by Nrf2 and NF-κB, which behave as antagonistic transcription factors. Nrf2 

negates NF-κB signaling, while NF-κB silences Nrf2 target genes and deprives it of necessary co-transcription 

factors. However, a lack of Nrf2 results in an increase in NF-κB levels through proteasome-mediated IκB 

degradation. Therefore, activation of the Nrf2 pathway can alleviate PD symptoms by reducing cellular damage 

from oxidative stress and neuroinflammation, as well as improving mitochondrial function.126,127 

Evidence suggests that chronic inflammation leads to a gradual decrease in AMPK function128, while an 

increase in AMPK activity encourages microglial anti-inflammatory M2 polarization.129 Furthermore, AMPK 

suppresses NF-κB activation in the brain to inhibit inflammatory responses.130,131 In an MPTP-induced PD model, 

liraglutide was shown to modulate the AMPK/NF-κB pathway, leading to improvements in PD-related motor 

symptoms, rescue of dopaminergic neurons, and diminished activated microglia in the SN.132 Another pathway 
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by which AMPK regulates inflammation is sirtuin1 (Sirt1). Indole-3-carbinol was reported to activate the 

AMPK/Sirt1 pathway and reduce nervous system inflammation in PD model mice.133 Moreover, AMPK reduces 

inflammation by inhibiting NOX-mediated ROS production and decreasing nitric oxide synthase (iNOS)-

mediated nitric oxide (NO) production.134–137 AMPK also acts as a cofactor for Sirt1 activity and Sirt1 activation 

protects dopaminergic neurons through inhibiting iNOS, p53, and NF-κB expression, and increasing FOXO-

3/PGC-1α pathway.138–141 The next target of AMPK in nerve cells to deal with neuroinflammation is activation of 

Nrf2.142 As shown in Figure 2, AMPK activation through modulation of several pathways can protect 

dopaminergic neurons from inflammation.  

 
Figure 2. The phosphorylation of AMPK targets multiple signaling pathways to inhibit neuroinflammation 

responses related to PD. This results in the suppression of NF-κB translocation to the nucleus and expression of 

pro-inflammatory cytokines while enhancing the expression of anti-inflammatory cytokines. AMPK, AMP-

activated protein kinase; NOX, NADPH oxidase; iNOS, Inducible nitric oxide synthase; FOXO-3, Forkhead box 

class O family member proteins-3; Sirt 1, Sirtuin 1; PGC-1α, Peroxisome proliferator-activated receptor-gamma 

coactivator-1; Nrf2, Nuclear factor E2-related factor 2; NF-κB, Nuclear factor kappa B; IL, Interleukine; TNF-α, 

Tumor necrosis factor-α; DAMP, Damage-associated molecular patterns; ROS, Reactive oxygen species; α-Syn: 

α-Synuclein. 

 
 

6. Effect of AMPK on cell survival and apoptosis 

In PD, the activation of the intrinsic apoptotic pathway induces the death of dopaminergic neurons in the 

SNpc. Many studies suggest that PD is connected with mitochondrial-mediated apoptosis, leading to an increase 

in pro-apoptotic factors like BAX and cytochrome c, caspase-9, and caspase-3, and a decrease in anti-apoptotic 

factors such as Bcl-2 and Bcl-XL. As mentioned, PD is associated with a chain of events that drive cells toward 

apoptosis, including genetic mutation, accumulation of α-syn, neuroinflammation, ROS production, and 

mitochondrial dysfunction.48,143–145 Besides, genetic mutation of PD-related genes, namely Parkin, LRRK2, 

PINK1, and PARK7, contribute to mitochondrial impairment and apoptosis.99,143 

AMPK plays a dual role in regulating cell death and survival, depending on the type of stress and cells, 

and duration of exposure.146–148 Some studies have shown that the activation of AMPK for a prolonged duration 

can activate c-Jun N-terminal protein kinase (JNK), leading to apoptosis in liver cells and pancreas beta cells.149,150 

However, another study showed that activation of AMPK inhibited dexamethasone-induced apoptosis in 

thymocytes.151 Conversely, some studies suggest that the activation of AMPK-related pathways could prevent the 

apoptosis pathway, particularly in neurons, by correcting mitochondrial abnormalities. Furthermore, 5-

aminoimidazole-4-carboxamide ribonucleoside (AICAR) triggers AMPK activation that prevents apoptosis while 

inhibiting AMPK activity induces cell apoptosis.152–156 Additionally, an in vitro study demonstrated that disruption 

of the AMPK/Sirt1 signaling pathway by sevoflurane caused an increase in the apoptosis rate in neural cells while 

promoting AMPK level can improve apoptosis.157 In the intracerebral hemorrhage model, activating the 

αVβ5/AMPK pathway by Irisin, a myokine, inhibited apoptosis in the brain.158 In an MPTP-induced PD model, 

activation of the AMPK/MAPK pathway by osmotin administration reduced α-syn and apoptosis-related 
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proteins.159 Besides, treatment with the AMPK agonist, GSK621, attenuated mitochondrial dysfunction and 

apoptotic neuronal death in the SNpc in the MPTP-induced PD mice model by activating the AMPK/GSK-

3β/PP2A.160 Therefore, the regulation of apoptosis by AMPK is a controversial topic that requires more study. 

 

Table 1. The AMPK downstream pathways to protect dopaminergic neurons. 

Signaling pathways Outcome References 

AMPK/mTORC-1 

AMPK/mTOR/ULK-1 

AMPK/Sirt1/PGC-1α 

Increases Autophagy 

Increases Mitophagy 

161–163 

164,165 

AMPK/Nrf2 

AMPK/Sirt1/PGC-1α 

AMPK/Sirt1/Nrf2 

AMPK/Nrf2/TXNIP 

AMPK/Sirt1/FOXO-1 

Reduces Oxidative Stress 130,133,164–167 

AMPK/PGC-1α/NF-κB 

AMPK/Sirt1/FOXO-3 

AMPK/Sirt1/NF-κB 

AMPK/AKT/NF-κB 

AMPK/Nrf2/TXNIP 

Reduces Inflammation 130,133,166,167 

AMPK/Akt/mTOR 

AMPK/Sirt1/NF-κB 

AMPK/FOXO-3 

AMPK/Sirt1/mTOR 

AMPK/MAPK/mTOR 

AMPK/GSK-3β/PP2A 

Inhibits apoptosis 95,133,161–163,168,169 

 

Conclusion  

The pathophysiology of PD is complex and mulifactorial, involving abnormalities in mitochondrial 

function and morphology, impaired energy metabolism, genetic mutation, aggregation of α-syn, resulting in loss 

of dopaminergic neurons. AMPK can regulate multiple biological functions, including mitochondrial 

homeostasis, mitophagy, autophagy, oxidative stress, inflammation, and apoptosis, by which effectively prevents 

PD-related pathology (Fig. 3). To treat PD effectively, conducting additional preclinical research is necessary to 

gain a better understanding of the potential benefits and drawbacks of AMPK activation. This will help identify 

specific downstream pathways of AMPK and avoid activating any detrimental pathways. 

 

 
Figure 3. Protective effect of AMPK against Parkinson's disease etiologies. Activated AMPK target Parkinson’s 

disease-related etiology by decreasing neuroinflammation, oxidative stress and apoptosis, and improving 

mitochondrial function, mitophagy, and autophagy. ROS, reactive oxygen species. 
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