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ABSTRACT Serum creatinine (SCr) is widely regarded as a standard biomarker for assessing glomerular 

filtration rate (GFR) and is commonly used to guide dose adjustments for renally eliminated drugs. However, 

the application of SCr as a marker for evaluating GFR and drug dosing in kidney injury has significant 

limitations that are often overlooked in clinical practice. This oversight can result in subtherapeutic drug 

concentrations or adverse drug reactions due to inappropriate dosing adjustments based on SCr levels alone. 

This review aimed to highlight the factors affecting serum creatinine (SCr) and the challenges associated with 

using SCr as a biomarker for assessing glomerular filtration rate (GFR) and adjusting drug doses with regard to 

its limitations and variability. The findings of this review underscore the complexity of SCr regulation, which is 
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affected by its synthesis, metabolism, and excretion processes (glomerular filtration, tubular secretion, tubular 

reabsorption and extra-renal elimination), and disease states (such as trauma-induced hyperfiltration and HIV) 

and the use of medications (drug-creatinine interactions) lead to altered renal excretion of creatinine, either 

increasing or decreasing its levels. Additionally, the renal excretion pathways for drugs and creatinine are not 

entirely the same, making it difficult to use creatinine to evaluate drug renal excretion. In conclusion, SCr is an 

imperfect index of GFR and adjusting drug dosing, and the development of multi-biomarker panels, 

incorporating biomarkers from different excretory pathways-particularly those involving tubular transport-holds 

promise for improving the evaluation of renal excretory function and ensuring safer and more effective drug 

dosing. 

Keywords creatinine; GFR; drug dosing adjustment; biomarker; kidney injury  

Introduction 

The kidney plays a crucial role in facilitating the excretion of numerous drugs and their metabolites from 

the body. The dysregulation or decompensation of kidney function may directly affect the pharmacokinetics, 

pharmacodynamics or toxicity of drugs. Glomerular filtration rate (GFR) represents the overall filtration rate of 

the functioning nephrons, and is therefore considered the optimal method for measuring overall kidney function 

and making disease diagnosis decisions 1  

Creatinine-based estimation of glomerular filtration rate (GFR) has served as the primary approach for 

assessing kidney function and adjusting drug dosages 2. In 1847, Liebig discovered heating creatine with 

mineral acids formed a new substance, which he named creatinine. In 1886, Jaffe observed a creatinine reaction 

with picric acid in an alkaline medium, and this method, known as the Jaffe reaction, was used for measuring 

creatinine in clinical laboratories until the early 21st century 3. Due to the fact that creatinine precursors are 

synthesized by the liver, creatinine was considered a product of nitrogen metabolism at the time of Jaffe’s 

discovery. In 1926, Rehberg demonstrated that creatinine was eliminated into the urine via glomerular filtration 

and was neither secreted nor reabsorbed, thus proposing creatinine as a biomarker of GFR 4. 

Although measuring the renal clearance rate of exogenous biomarkers such as inulin, 99mTc-

diethylenetriamine pentaacetic acid, 125I-othalamate and 51Cr-EDTA is more accurate (with inulin being the gold 

standard), these measures are not routinely performed in clinical practice due to cumbersome and invasive 

operation. Instead, adjusting the dosage of drugs mainly excreted by the kidneys commonly relies on the levels 

of endogenous filtration markers such as serum creatinine (SCr) to measure glomerular filtration rate. 5,6. In 

clinical administration, elevated SCr is often of great concern as drug eligibility and dosage depend on estimates 

of GFR. However, the correlation between an increase in SCr and a decrease in GFR is not absolute, thus 

failling to reflect deteriorating renal function or decreased drug excretion. For example, most patients with a 

GFR of about 40 mL/min appear to have normal CLCr (creatinine clearance) 7. Besides, the SCr level may still 

be within the normal range on the first day of severe renal failure, and the measured GFR may not decrease 

significantly until 7-10 days 8. Furthermore, some drugs can reversibly increase SCr levels without affecting 

GFR 9. Therefore, it is recognized that serum creatinine is an imperfect biomarker for evaluating glomerular 

filtration rate or adjusting drug dosage, which can be attributed to changes in creatinine biosynthesis, 

metabolism, renal tubular transport and drug interactions in most clinical settings.  

This review aims at systematizing the current knowledge on the factors that affect SCr levels in vivo and 

identifying the challenges of using creatinine as a biomarker for kidney function and measuring drug dosing 

adjustment. 

Factors Affecting SCr Level 

Creatinine Biosynthesis  

Creatinine is mainly produced in skeletal muscles from the non-enzymatic dehydration and cyclization of 

creatine and phosphocreatine, and creatine is a nitrogenous organic acid produced by the liver, kidneys and 

pancreas 10, of which 75% is phosphorylated to produce phosphocreatine by creatine kinase (CK), while the 

remainder is present in its free form 10,11. The serum creatine level in adults is about 1.6-7.9 mg/L 12. A 70-kg 
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man contains 120 g creatine, and roughly 1.7% of the total creatine pool (1.1% creatine/day and 2.6% 

phosphorylcreatine/day) is nonenzymatically converted to creatinine daily 13,14. 

As illustrated in Figure 1, the biosynthesis of endogenous creatinine is a multi-step process. The first step 

is to synthesize guanidine acetate in kidney catalyzed by L-arginine-glycine amidinotransferase (AGAT), 

mainly in the mitochondrial membrane space and less in cytoplasm. In the second step, guanidinoacetate 

methyltransferase (GAMT) facilitates the transfer of a methyl group from S-adenosylmethionine, producing 

creatine and S-adenylhomocysteine in the liver. The third step is creatine transport via Na+-Cl--dependent 

creatine transporter (SLC6A8), followed by CK-mediated creatine phosphorylation to form phosphocreatine. 

The final step is to form creatinine through non-enzymatic dehydration/cyclization of creatine, which can freely 

diffuse out of the cell and ultimately be removed in urine. 

Endogenous creatine synthesis is complicated due to the lack of specific enzymes required by most tissues, 

making dynamic interactions between metabolic enzymes and transportation between different tissues 

necessary. 

AGAT, the rate-limiting enzyme and de novo synthesis-initiating step, is predominantly expressed in the 

kidney. Despite the presence of significant amounts of AGAT in the livers of pigs, monkeys, and humans, it is 

widely acknowledged that the majority of guanidinoacetate synthesis predominantly occurs in the kidney 15,16. 

Creatine and L-ornithine exert negative pre-translational feedback on AGAT expression in the kidney 17. 

However, creatinine and phosphocreatine are both ineffective. AGAT expression may be under the control of 

hormonal factors, including estrogens, testosterone, thyroid hormones and growth hormone 13,17,18. In rats that 

have undergone thyroidectomy or hypophysectomy, AGAT activity in the kidney is reduced, but it can be 

restored by administering thyroxine or growth hormone, respectively. AGAT levels in rat kidneys are 

downregulated by estrogens and diethylstilbestrol, while upregulated by testosterone. Additionally, AGAT 

levels in kidneys, livers and other tissues are decreased in some situations, such as fasting, vitamin E deficiency 

and streptozotocin-induced diabetes 19-21. 

GAMT, the second enzyme in creatine synthesis, is most strongly expressed in the liver, testis, caput 

epididymis and ovaries. As a whole, creatine synthesized by the liver is sufficient to meet the requirements for 

creatine in the entire body 22. Although the GAMT level in female liver is higher than that in males, estradiol, 

testosterone, cortisol, thyroxine and growth hormone have little effect on GAMT activity in rat liver 23,24. In 

contrast to the suppression of AGAT expression by creatine in the kidney, the expression of GAMT in the liver 

is not under the control of creatine or ornithine. The influencing factors and regulation of GATM are still 

unclear. 

Creatine transporter (SLC6A8) predominantly mediates the uptake of creatine rather than creatinine to 

skeletal muscle, brain, kidney and heart 25, and its expression and/or activity is regulated by diet, hormonal 

factors, guanidinoacetate and extracellular creatine concentration, with negative regulation by high creatine 

levels occurring more rapidly than the positive control mediated by creatine deficiency 17,26. Dietary creatine 

supplementation depresses the expression of the creatine transporter in rats 27. Importantly, dietary creatine 

supplementation results in a 3 to 20-fold increase in serum creatine concentration, but only a 10-20% increase in 

muscle creatine 17. This result is attributed to the low permeability of creatine in muscles. Consistently, the 

creatine transporter expression is downregulated by extracellular creatine of > 0.1 μM (with IC50 ≈ 20-30 μM). 

More than 5 mM guanidinoacetate or guanidinopropionate also decreases creatine transport, but D-/L-ornithine, 

creatinine and phosphocreatine have no effect 28. Conversely, creatine transporter activity is inhibited by 

isoproterenol, norepinephrine, clenbuterol and N6,2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate in vitro, 

which can be related to the regulation of intracellular cyclic adenosine monophosphate levels 29. In addition, the 

uptake of creatine is inhibited by the Na+-K+-ATPase inhibitors ouabain and digoxin. Insulin and insulin-like 

growth factor increase the activity of Na+-K+-ATPase, ultimately resulting in increased uptake of creatine 30-32. 

CK is a central controller of cellular energy homeostasis, predominately located in skeletal muscles, 

myocardium and brain, and reversibly catalyzes the metabolism of creatine by utilizing ATP to generate 

phosphocreatine and ADP. Most tissues express two CK isoenzymes, dimeric cytosolic and octameric 

mitochondrial CK. Cytosolic CK consists of two subunits, B (brain type) or M (muscle type), which yields three 

isoenzymes: CK-MM, CK-BB and CK-MB 33-35. In addition to three cytosolic CK isoforms, there are two 
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mitochondrial CK isoenzymes, the ubiquitous and sarcomeric forms 33. The presence of cytosolic and 

mitochondrial CK plays multiple roles in cellular energy homeostasis 36-38. In the healthy subject, total CK is 

mainly composed of the MM isoform, but depends on age, gender race, muscle mass as well as disease state 39.  

Creatinine Metabolism  

Creatinine is excreted exclusively through a combination of glomerular filtration and tubular secretion, 

with minimal binding to plasma proteins and negligible metabolism in healthy individuals. In severe renal 

insufficiency, up to 68% of generated creatinine may be metabolized or excreted via extrarenal routes 40-42. 

However, extrarenal elimination has not been observed in patients with mild to moderate renal insufficiency 12.  

Gut microbiota-mediated degradation and oxidative metabolism may facilitate the catabolism of creatinine 

(Figure 2) 17,43. There may be two pathways of microbial-mediated degradation of creatinine: 1) Creatinine can 

be broken down into 1-methylhydantoin and ammonia through the action of creatinine deaminase and cytosine 

deaminase in various bacteria and fungi, and 1-methylhydantoin is further broken down into N-

carbamoylsarcosine and sarcosine by 1-methylhydantoin amidohydrolase and N-carbamoylsarcosine 

amidohydrolase, respectively 44,45. In this pathway, 1-methylhydantoin amidohydrolase is a rate-limiting 

enzyme, and consequently, N-carbamoylsarcosine is in much lower concentration than other intermediary 

metabolites and even undetectable 45. 2) Creatinine is hydrolyzed to creatine which is partly reabsorbed or 

degraded by bacteria, and the production of creatine by creatininase is then degraded by creatinase to urea and 

sarcosine 17,45. Sarcosine is further converted to glycine by sarcosine oxidase or sarcosine dehydrogenase, and in 

the end to methylamine by sarcosine reductase. In addition, only a few studies have addressed the conversion of 

creatinine to methylguanidine, which can be further decomposed to methylamine via methylguanidine 

amidinohydrolase 17,46,47. 

Two oxidative pathways of creatinine catabolism have been demonstrated: 1) Creatinine is metabolized to 

methlguanidine and the intermediate creatol, creatone A, or creatone B 48,49. However, it is unclear whether 

these steps of the pathway are enzyme-catalyzed reactions 47,48,50,51. ROS may selectively stimulate the 

formation of methlguanidine from creatinine 52,53. 2) Creatinine also can be converted to 1-methylhydantoin, 

which is further degraded to 5-hydroxy-1-methylhydantoin, methylparabanic acid, N5-methyloxaluric acid as 

well as the end product methylurea 54,55. As shown in Figure 2, the formation of 1-methylhydantoin from 

creatinine may depend on bacterial degradation rather than non-enzymatic metabolism 17. In patients with 

chronic renal failure (CRF) or uremia, the formation of creatinine degradation products is increased and may 

further deteriorate kidney function 56,57. 

Transport and Excretion of Creatinine 

The vectorial transport of cationic compounds, along with some anionic and zwitterionic compounds, is 

regulated by the organic cation transporter 2 (OCT2) located on the basolateral membrane and the multidrug and 

toxin extrusion proteins (MATE1 and MATE2-K) on the apical membrane. Many anionic drugs are transported 

by the uptake organic anion transporter 1 (OAT1), OAT2 and OAT3 on the basolateral membrane, as well as the 

efflux transporters multidrug resistance-associated protein (MRP) 2 and MRP4 on the apical membrane 58. Other 

transporters, such as organic anion transporting polypeptide 4C1 (OATP4C1), P-glycoprotein (P-gp), novel 

organic cation transporters (OCTN1 and OCTN2) and breast cancer resistance protein (BCRP), may also be 

involved in mediating the renal secretion of some compounds 1. 

Renal tubular transporter-mediated uptake of creatinine via OCT2, OCT3, OAT1, OAT2, and OAT3 has 

been found in both in vivo and in vitro studies 59-61. Creatinine is a low affinity substrate for OCT2, with in vitro 

Km values of 1.9 ± 0.4 62, 4.0 ± 0.3 mM 61 or 56.4 ± 3.4 mM 63. However, both Km values are significantly higher 

than the physiological (about 45-85 μM for male and 30-60 μM for female) and even the pathophysiological 

concentrations of creatinine in humans. Therefore, the function of hOCT2 is not saturated under physiological 

conditions. Single-nucleotide polymorphisms of OCT2 (rs2504954) have been associated with the SCr levels 64. 

The creatinine uptake mediated by OCT3 is similar to [68, 69] or lower than that by OCT2 [65, 67], but the 

expression of renal OCT3 is extremely low in vivo. It is worth noting that in hyperuricemia rats, the plasma 

concentration of creatinine significantly increased, while its renal clearance decreased, and the renal clearance 

ratio of creatinine to inulin dropped from 1.62 to 1.09 65. Considering that the data were corrected for inulin 
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clearance, this observation could be explained by a decrease in tubular secretion of OCT2 and/or MATE1 

transporters, rather than a decrease of GFR. 

OAT1 and OAT3 are responsible for the uptake of many anionic compounds. Although the fact that 

creatinine at physiological pH is a foundation, the uptake of creatinine by mOAT1 (Km=6.7 mM) and mOAT3 

(Km >10 mM) were observed in vitro and in vivo 59,66. However, several studies have demonstrated that 

creatinine is not a substrate for OAT1, aligning with findings that creatinine uptake is mediated by OAT3 rather 

than OAT1 or OAT2 60-62,64, but the contribution of OAT3 to creatinine clearance is significantly lower 

compared to that of OCT2 63. On the contrary, Ciarimboli et al. found that creatinine was not transported by 

mOAT3 in cell lines transfected with mOAT3 60,64.  

OAT2 is found in both the basolateral and apical membranes of human renal proximal tubules, whereas in 

rats, it is localized only in the apical membrane 67, and its mRNA level is 3-fold higher than that of OCT2 68. 

OAT2 has many substrates that are the same as OAT1 and OAT3. Creatinine is the substrate of OAT2 and has 

high affinity (Km values of 0.80-0.99 mM) [68,71], and the transport efficiency for OAT2 is approximately 37-

1850 times that of OCT2, MATE1 and MATE2-K 67. 

MATE1 and MATE2-K are responsible for the efflux of creatinine from renal tubular cells 62,67,69. Kinetic 

analyses demonstrated that creatinine has a low affinity for MATE1 and MATE2K, with Km values of >10 and 

>20 mM, respectively 67,70. It is unclear whether MRP2, MRP4, P-gp and BCRP mediate renal tubular clearance 

of creatinine. 

It has been proven that creatinine can be reabsorbed in renal tubules (5-10%), but its mechanism remains 

unclear 63,67. Researchers speculated that creatinine reabsorption could be mediated by OAT2 67 or OAT4 63, 

which could also be a passive process during low urine flow 71.  

There is still controversy surrounding renal tubular transporters mediated creatinine elimination.  

Our study demonstrated that the uptake of d3-creatinine was significantly enhanced in OCT2-

overexpressing cells compared to control cells, but not MATE1, MATE2-K, OAT1, OAT2, OAT3, MRP4, 

OATP4C1, P-gp, PEPT2 and URAT172. 

Interactions between Creatinine and Drugs 

Early studies suggested that creatinine was mainly passively filtered at the glomerulus with little secretion 

or reabsorption in renal tubules, and impaired kidney function resulted in a reduction of CLCr accompanied by 

an elevation of SCr. However, several drugs have been reported to affect creatinine secretion in renal tubules, 

thereby causing a transient non-pathologic increase in SCr without altering GFR. These changes can be 

attributed to the reversible inhibition of transporters responsible for the tubular secretion of creatinine 73. It is 

thus an important issue to understand how an increase in SCr results from pathologic injury or reversibly 

inhibited secretion. 

To distinguish that an increase of SCr is due to inhibition of renal tubular transporters rather than 

pathological changes, Chu X et al. carried out a retrospective analysis of the effect of inhibition of renal tubular 

OCT2, MATE1 and MATE2-K on SCr levels based on in vivo-vitro correlations 74 using a cutoff value of 

Cmax/IC50>0.1 and Cmax,u/IC50>0.19. The US Food and Drug Administration and the International Transporter 

Consortium recommend a cutoff value of Cmax/IC50 > 0.1 and Cmax,u/IC50 > 0.1 to evaluate the potential risk of 

drug-drug interactions (Table 1). They found that cimetidine 75-78, cobicistat 62,79, dolutegravir 80,81, dronedarone 
82, 7-[(3R)-3-(1-aminocyclopropyl) pyrrolidin-1-yl]-1-[(1R,2S)-2-fluorocyclopropyl]-8-methoxy-4-

oxoquinoline-3-carboxylic acid (DX-619) 83, pyrimethamine 84,85, rilpivirine 86-88, ranolazine 89, ritonavir 79,90, 

salicylate 91,  telaprevir 92-94 , and trimethoprim 95-98 reversibly increased SCr levels by ≥ 10% without affecting 

GFR, and amiodarone 99 and vandetanib 100 reversibly increased SCr levels by >10% but changes in GFR were 

not observed. In the phase 1 study, INCB039110 101,102, an inhibitor of the Janus kinases (JAKs) with selectivity 

for JAK1, reversibly increased SCr but did not affect GFR 101. However, both Cmax/IC50 and Cmax,u/IC50 

resulted in a false-negative prediction for telaprevir. In addition, ranitidine had a Cmax,u/IC50 higher than 0.1 for 

OCT2, MATE1 and MATE2-K, but had no effect on SCr or CLCr 60. 
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Eisner et al demonstrated that para-aminohippuric acid, a classical substrate of OAT1, induced a decrease 

in creatinine secretion and increased SCr levels 59. Notably, tubular handling of creatinine could be dependent 

on serum albumin levels 103. Collectively, the increase of SCr or decrease of CLCr can be attributed to the 

inhibition of creatinine secretion mediated by one or more renal tubular transporters. However, inhibition of 

renal tubular transporters does not necessarily lead to elevated SCr. 

Challenges of Creatinine as a Biomarker for Renal Function and Drug Dosing Adjustment 

There is indeed a relationship between GFR and CLCr in young adults without renal diseases 8. However, 

SCr is an imperfect biomarker for estimating GFR and its levels can be influenced by various factors mentioned 

above. Firstly, as fractional secretion varies inversely with GFR, SCr levels cannot be changed by renal tubular 

hypersecretion of creatinine with the deterioration of glomerular function 7. Secondly, some drugs act by 

competitively inhibiting the transport of creatinine in renal tubules as a result of SCr elevation without changing 

GFR. Thirdly, a substantial fraction of creatinine is metabolized rather than excreted with a sharply decreased 

GFR. Fourthly, the rise in SCr following a reduction in GFR is delayed due to kinetic changes in creatinine 

production and accumulation. For example, the serum half-life of creatinine is approximately 4 h at a normal 

GFR of 120 mL/min/1.73 m2 but extends to 16 h at a GFR of 30 mL/min/1.73 m2 9. Fifthly, SCr is also affected 

by other factors, including weight, gender, age, muscle metabolism as well as intake or use of protein 

supplements. Notably, glomerular hyperfiltration occurring as a consequence of underlying disease is often 

ignored because of no change or mild decrease in SCr 104-107. Therefore, appropriate increases in drug dosing 

would rarely be carried out, which would lead to subtherapeutic concentrations of drugs 108 (Figure 3).  

Variations in creatine pool size can substantially impact creatinine production. Total muscle mass is a 

critical factor in determining creatine pool size, and conditions such as aging 109, dietary protein deficiency, 

progressive muscular dystrophy 110, chronic glucocorticoid therapy 111, sepsis 112, hyperthyroidism and 

poliomyelitis 113, can decrease the production of creatinine. The size of the creatine pool is diminished during a 

creatine-free period or dietary protein deficiency, but the rate of conversion of creatine to creatinine remains 

unaffected 114,115. Although creatinine levels in meat (0.2-0.4 mg creatinine and 3.5-5 mg creatine per gram of 

uncooked lean beef) are very low, meat is also a major source of creatinine as a consequence of high conversion 

ratio from creatine to creatinine (18-65%) 12,116,117. Consequently, the excretion of creatinine decreases by 10-

30% when reducing dietary meat content. Moreover, a slight change in the turnover ratio of creatine will have a 

significant impact on creatinine production because of the relatively large pool size of the creatine. Fitch and 

Sinton found that the turnover ratio of creatine increased to 2.2-3.8% per day in some patients with muscular 

dystrophy 118.  

Tubular secretion of creatinine was identified in an early study investigating the clearance of exogenously 

administered creatinine 119. The exogenous creatinine excretion was decreased in a high plasma creatinine state 

produced by infusion of creatinine, which could be related to the competitive inhibition of renal tubular 

secretion of creatinine 119. As discussed above, some compounds can increase SCr by up to 40% without altering 

GFR 83,91. During severe renal insufficiency the elimination of creatinine via glomerular filtration decreases and 

tubular secretion is increased by as much as 60% 7,120. Thus, the contribution of active secretion of creatinine in 

renal tubules could result in an overestimation of GFR. 

Creatinine is eliminated solely by the kidney in healthy people. Extrarenal creatinine elimination occurs 

only in patients with severe renal insufficiency. This mechanism is thought to result from the degradation of 

creatinine in the intestinal lumen by gut microbiota. The increased level of creatinine caused by renal 

dysfunction induces bacterial creatininase activity, resulting in degradation and loss of creatinine 42,121, and 

creatinine degradation can be abolished by antibiotics 121. Consequently, the GFR could be overestimated by 

CLCr as a result of extrarenal elimination. 

Creatinine synthesis, metabolism and elimination are altered in certain disease states, which could lead to 

inaccurate assessment in GFR by using SCr clearance. Aging is linked to changes in renal structure and 

function, with glomerular filtration rate (GFR) decreasing by approximately 8-10 mL/min/1.73 m² per decade 

after the age of 30 122,123. Consistently, renal clearance of creatinine is also decreased with aging. However, this 

fall in CLCr with the progressive decrease in GFR is commonly accompanied by a decrease in creatinine 

production, and consequently, SCr may not be affected 124. 
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GFR in early pregnancy increases by 50% compared to that of later pregnancy levels 125. However, the 

ratio of creatinine to inulin clearance is slightly above 1.0 (normal ranges from 1.1 to 1.4) in the first and early 

second trimester, and is approximate or slightly lower than that in later pregnancy, suggesting that tubular 

secretion of creatinine is attenuated during pregnancy, especially in the latter half. As a result of the decrease in 

CLCr in pregnancy, a SCr concentration above 8 mg/L is an abnormal result 126.  

Acute kidney injury (AKI) leads to a rapid decrease in GFR. Although GFR is effectively equal to zero at 

the early stage of AKI, SCr may be only slightly above baseline. Conversely, SCr continues to increase at the 

early stage of recovery from AKI 127. In patients with CRF, because of increased tubular secretion of creatinine, 

the creatinine/inulin clearance ratio is as high as 2.5 at a lower GFR 120. Of note, tubular clearance of creatinine 

is significantly enhanced at GFR from 40 to 80 mL/min/1.73 m2 7. Even if the GFR is reduced to 15 

mL/min/1.73 m2, SCr changed by only 2.0 mg/L, but these changes could not be considered significant 12. In 

addition, reduced creatinine production and increased extrarenal metabolism are also observed in CRF 40,114. 

Thus, the rate of decline in SCr may not accurately reflect the rate of decline in GFR in some instances of 

physiological and pathological changes, which can result in incorrect drug dosages. 

Diabetes mellitus is often associated with a deterioration in kidney function 128. Some studies found that 

GFR increased by 27% and 16% in recently diagnosed patients with T1DM 107,129 and T2DM 130, respectively. 

Generally, GFR in untreated diabetes is higher than that in short-term insulin-treated diabetes 131. Consistently, 

CLCr is increased in early diabetes. During diabetic ketoacidosis and diabetic coma, GFR decreases and SCr 

increases. However, the decline in GFR is not associated with a parallel increase in SCr. McCance and 

Widdowson found three of four patients with diabetic coma had the creatinine/inulin clearance ratio less than 1 

(0.42-0.85) 132, suggesting that creatinine could also undergo the reabsorption in renal tubules. In diabetic 

nephropathy, SCr levels remain within the normal range despite the GFR is as low as 36 mL/min/1.73 m2 133, 

which could be attributed to  enhanced secretion of creatinine in renal tubules. Consequently, changes in SCr do 

not reliably predict variations in GFR. 

Summary and Perspective  

A reliable assessment of renal function is essential for evaluating renal disease stage and progression, 

determining the need for dialysis therapy, screening kidney donors and adjusting drug dosages. GFR is generally 

accepted as the best overall measure of kidney function. Over 70 equations based on SCr levels have been 

developed to estimate GFR. Among these, the Cockcroft-Gault formula and the Modification of Diet in Renal 

Disease (MDRD) formula are the most extensively studied and widely applied 2,134,135. Over the years, the 

importance of SCr determination in diagnosing renal disease and monitoring disease progression cannot be 

overemphasized. However, a large number of researchers have pointed out that there is no absolute correlation 

between GFR and SCr 136-139. The relationship between SCr and measured GFR is not linear but curvilinear, and 

a given value of SCr can be associated with a wide range of measured GFR values (30-90 ml/min/1.73 m2) 137, 

which can cause difficulty in distinguishing between a normal GFR and an abnormal one 140. The estimated 

GFR by SCr is insensitive at a GFR above 60 ml/min/1.73 m2, creating a “creatinine-blind range” 138,141, and 

thus the measurement of SCr is limited as a diagnostic marker for the early stages of renal injury 142. As a result, 

SCr as a marker for adjusting drug dosages may not achieve satisfactory therapeutic objectives 143, which can be 

attributed to failure to recognize the variations in non-GFR determinants including generation, tubular secretion 

or reabsorption and extra-renal elimination of creatinine. To accurately predict kidney function via SCr levels, 

the factors affecting creatinine synthesis, metabolism and elimination would need to be fully considered in 

clinical settings. Under creatinine intake control, simultaneous monitoring of plasma levels of creatinine and its 

precursors, guanidinoacetate and creatine, can indirectly reflect creatinine synthesis. Although it is difficult to 

evaluate creatinine metabolism mediated by gut microbiota in vivo, renal or extra-renal elimination of creatinine 

can be determined via ECT/PET imaging using radioactively labeled creatinine. In view of the unclear 

mechanism of renal tubular transport of creatinine, it is particularly important to elucidate the renal tubular 

transporters that mediate elimination of creatinine. 

Some researchers have argued that serum cystatin C is a better biomarker for estimating GFR than SCr 
144,145. However, serum concentration of cystatin C can be affected by inflammation and changes in protein 

catabolism 146,147, and the biological variation in cystatin C levels is far higher than that in creatinine 138. One 
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study published in the New England Journal of Medicine demonstrated that the estimated GFR by serum 

cystatin C was not more accurate than SCr, and the combination of SCr and serum cystatin C was more precise 

than equations using either marker individually for estimating GFR 148. In addition, some investigators 

suggested that cystatin C at higher levels of GFR might be a better filtration marker than creatinine 149,150. Thus, 

to some extent, the use of cystatin C can avoid the risk associated with the “creatinine-blind range”, and 

estimating GFR by the combination of serum cystatin C and SCr may be a better choice. 

Kidney tubular secretion is another important renal functional parameter and 61% of all drugs are 

eliminated through tubular secretion mediated by transporters rather than through glomerular filtration 146. Thus, 

a strategy of drug dosing adjustment should be based on the actual mechanism of kidney drug elimination, not 

just on the GFR. Importantly, renal tubules are vulnerable to a variety of injuries 151. Based on these reasons, the 

development of markers for renal tubular transporters will be of great use in the early diagnosis of renal injury 

and adjustment of drug dosages. In recent years, growing research has focused on identifying potential 

biomarkers for renal tubular transporters, with several endogenous compounds being recognized as biomarker of 

these transporters. Thiamine and N-methylnicotinamide are potential substrates for the cation transport system 

(OCT2-MATE1/2-K) in renal tubules 69,152-154. Hippurate and taurine, cyclic guanosine monophosphate, and 6β-

hydroxycortisol and glycochenodeoxycholate sulfate have been proposed as endogenous probes for the 

evaluation of OAT1, OAT2 and OAT3 function, respectively 155-157. In addition, some tubular proteins, 

neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1) and N-acetyl-β-D-

glucosaminidase (NAG) have all emerged as early and sensitive markers for renal tubular injury 158. 

Unfortunately, these markers are not currently used to adjust drug dosages clinically. Therefore, the evaluation 

system of renal excretion pathways of drugs based on multiple biomarkers should be established. 

Renal elimination of endogenous and exogenous compounds is affected by many factors, including renal 

blood flow, GFR, and renal tubular excretion and reabsorption, and monitoring these changes will be conducive 

to evaluating renal excretory function. When creatinine is used as a marker for GFR and drug dosing 

adjustment, changes in its synthesis, metabolism and excretion and other influencing factors need to be fully 

considered (Figure 4). 

Conclusion 

SCr as a biomarker for evaluating glomerular filtration function (GFR) and adjusting the dosage of drugs is 

imperfect, which is particularly reflected in low correlation, insensitivity and high variation of non-GFR 

determinants. This could be related to changes in the generation, tubular secretion or reabsorption, and extra-

renal elimination of creatinine. However, there is a lack of latest research evidence about the biosynthesis, 

metabolism and extra-renal elimination of creatinine. Therefore, in order to better evaluate renal function and 

adjust drug dosages, studies on the elimination pathways of creatinine in vivo should be necessary, and the 

combination of multiple markers of renal function should be developed.  
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Table 1 Effect of compounds on SCr, CLCr and GFR in humans 

Compounds Dose regimen Increase of 

SCr  

(%) 

Decrease of 

CLCr (%) 

GFR Cmax  

(µM) 

fu Inhibited transporters a 

Amiodarone 400-200 mg or 

400-400 mg, 
p.o., qid, 1 y 

11 / / 0.8–2.3 0.04 OCT2, MATE1, MATE2-K, P-

gp 

Cimetidine 400 mg, p.o, bid, 
7 d 

400 mg, p.o., 

qid, 3 w 
400-200-200-200 

mg, p.o. 

400-400-400-800 
mg, p.o.  

13.5 
25.8 

38.2 

22.2 

18.2 
14.8, 37.5 

35.5 

20.3 

NS 
NS 

NS 

NS 

9.36 
/ 

/ 

18.7 

0.80 OCT2, OAT2, OAT3, MATE1, 
MATE2-K 

Cobicistat 150 mg, p.o., qd, 

7 d 

10.5  8 NS 2.21 0.08 OCT2, OAT2, MATE1, 

MATE2-K 

Dolutegravir 50 mg, p.o., qd, 
14 d 

50 mg, p.o., bid, 

14 d 

9.1 
16.7 

10 
14 

NS 
NS 

6.75 
13.11 

0.01 OCT2, MATE1, MATE2-K 
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/, data are not reported or available; bid, twice daily; Cmax, maximum plasma concentration; CLCr, creatinine 

clearance; d, day; DX-619, 7-[(3R)-3-(1-aminocyclopropyl)pyrrolidin-1-yl]-1-[(1R,2S)-2-fluorocyclopropyl]-8-

methoxy-4-oxoquinoline-3-carboxylic acid; fu, plasma unbound fraction; GFR, glomerular filtration rate; 

INCB039110, (2-(3-(4-(7H-pyrrolo[2,3-day]pyrimidin-4-yl)-1H-pyrazol-1-yl)-1-(1-(3-fluoro-2-

(trifluoromethyl)isonicotinoyl)piperidin- 4-yl)azetidin-3-yl)acetonitrile); i.v., intravenous; MATE, multidrug 

and toxin extrusion protein; NS, no significance; OAT, organic anion transporter; OATPs, organic anion 

transporting polypeptides; OCT2, Organic cation transporter 2; P-gp, P-glycoprotein; p.o., oral; qd, once daily, 

qid, four times daily; SCr, serum creatinine; SI, significantly increased compared with baseline level; tid, three 

times daily; w, week; y, year. 

a: Data from http://transportal.compbio.ucsf.edu. 

 

Dronedarone 400 mg, p.o., 

bid, 7 d 

10-15 13.8 NS 0.30 0.02 OCT2, MATE1, P-gp 

DX-619 800 mg, i.v., qd, 

4 d 

32.3 27 NS 22.04 0.29-

0.35 

OCT2, MATE1, MATE2-K 

Famotidine 10 mg, i.v., SD 

20 mg, p.o., bid, 

7 d 
200 mg, p.o., SD 

NS 

NS 

/ 

NS 

NS 

SI 

NS 

/ 

/ 

about 

1.3 

0.39 
/ 

0.8 OCT1, OCT2, OCT3, MATE1, 

MATE2-K 

INCB039110 600 mg, p.o., 

bid, 8 d 

SI / NS 3 / OCT2, OAT2, MATE1, 

MATE2-K 

Pyrimethamine 50 mg, p.o., SD  

100 mg, p.o., SD 

SI 

18.5 

16.5, 20.0 

/ 

NS 

NS 

2.29 

4.6 

0.13 OCT2, MATE1, MATE2-K 

Ranolazine 1000 mg, p.o., 
bid, 5 d 

12.4 11 (NS) NS 4.87 0.37 OCT2, MATE1, MATE2-K 

Rilpivirine 25 mg, p.o., qd, 
48 w 

small 
increase 

/ NS 0.58 0.003 OCT2, MATE1, MATE2-K 

Ritonavir 100 mg, p.o., qd, 

7 d 

NS NS or 25 NS 2.16 0.015 OCT2, MATE1, MATE2-K, P-

gp, OAT2, OATPs 

Salicylate 4 g/d, p.o., 10 d 38.4 24.7 NS / / OAT1 

Telaprevir 750 mg, p.o., tid, 

12 w 

SI / NS 5.82 0.04-

0.24 

P-gp, but not OCT2 and 

MATE1/2-K 

Trimethoprim 5 mg/kg, p.o., 

bid, 10 d 

5 mg/kg, p.o., 
qid, 10 d 

100 mg, p.o., 

bid, 10 d 
200 mg, p.o., 

bid, 14 d 

22.2 

31.3 

14.8 
18.4 

21.3 

16.0 

/ 
21.8 

/ 

/ 

NS 
NS 

17.5 

29.6 

/ 
9.92 

0.58 OCT2, MATE1, MATE2-K 

Vandetanib 300 mg, p.o., qd, 
SD 

SI / / 0.25-
0.27 

0.10 OCT2, MATE1, MATE2-K 
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Figure 1 Creatinine biosynthesis. ADP, adenosine 5'-diphosphate; AGAT, L-arginine-glycine 

amidinotransferase; ATP, adenosine 5'-triphosphate; CK, creatine kinase; GAMT, guanidinoacetate 

methyltransferase; SLC6A8, solute carrier family 6 member 8. 

 

 

 

 

Figure 2 Creatinine metabolism. 
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Figure 3 Influencing factors of SCr in evaluating GFR. GFR, glomerular filtration rate; SCr, serum creatinine. 

 

 

 

 

 

 

Figure 4 Kidney function evaluation and drug dosing adjustment from the perspective of SCr and new 

approaches. ECT, emission computed tomography; GFR, glomerular filtration rate; LC-MS, liquid 

chromatography-tandem mass spectrometry, MATE, multidrug and toxin extrusion protein; OAT, organic anion 

transporter; OATP4C1, organic anion transporting polypeptide 4C1; OCT2, Organic cation transporter 2; P-gp, 

P-glycoprotein; PET-CT, positron-emission tomography computed tomography.  

 

 


