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ABSTRACT 

Purpose: The present study aimed to fabricate microneedles (MNs) for transdermal 

delivery of insulin. Chitosan-conjugated carboxy phenyl boronic acid polymer was 

synthesized and characterized to load insulin in the form of nanoparticles. 

Methods: Optimized insulin nanoparticles (ILN-NPs) were loaded into MN arrays 

by micromolding, and the resulting MN patches were characterized by scanning 

electron microscopy (SEM) and mechanical failure tests. The microneedles were 

evaluated for skin insertion via a confocal laser scanning microscope. The in vivo 

efficacy (blood glucose levels (BGLs) and serum insulin concentration) of the MNs 

was studied in diabetic rats in comparison with traditional subcutaneous insulin 

injection. 

Results: In diabetic rats treated with MNs incorporated with insulin-loaded 

nanoparticles (ILN-MNs), the BGLs reached ≤ 200 mg/dL at 2 h following the 

application of the ILN-MNs and maintained BGLs ≤ 200 mg/dL from 2--8 h. The 

BGLs decreased to 29 mg/dL at 2 h following the subcutaneous administration of 

insulin. After 6 h, the BGLs rose to their initial level. These results were supported 

by the corresponding serum insulin concentrations. 

Conclusion: The findings of this study demonstrate the reliability of the developed 

ILN-MNs for sustaining normal BGLs in diabetic rats. Therefore, it can be further 

explored as an approach for diabetes treatment to improve patient outcomes and 

quality of life. 
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Introduction 

Diabetes mellitus, a metabolic disorder that prevails worldwide, requires the administration of insulin to maintain 

normal BGLs in patients. Although subcutaneous injections for insulin therapy are available for the management 

of type 1 diabetes, they have numerous drawbacks, such as tissue damage, anxiety, and pain, which can be 

challenging for patients, especially children.1–3 Therefore, novel approaches to replace hypodermic injection with 

needle-free high-pressure injection systems or techniques that promote patient compliance are being explored.4 

Current research is focused on developing micro- and nanoformulations for noninvasive delivery of insulin via 

inhalation, nasal, percutaneous, and oral routes.5–12 Among them, transdermal drug delivery systems (TDDSs) 

have received immense attention because they are less invasive and more convenient alternatives to subcutaneous 

insulin injection.13–15 Moreover, it has better patient compliance and can deliver insulin across the skin barrier for 

a longer duration with fewer fluctuations in glucose levels. A reduction in the risk of dose-related side effects 

results in a better quality of life for diabetic patients. The delivery of insulin through the skin can prevent hepatic 

first-pass metabolism and degradation through the gastrointestinal tract, which are the significant limiting factors 

of the oral administration of insulin.16–18 

Microneedles (MNs) are a novel and favorable approach for the transdermal delivery of insulin. These are small 

needles in the micron range in length that are designed to painlessly penetrate the outer layer of the skin and create 

microscopic channels, allowing for the delivery of drugs through the skin.19,20 Compared with traditional 

injections, MNs can provide more consistent delivery of insulin, which can lead to improved glucose control. In 

addition, MNs could lead to reduced healthcare costs by eliminating the need for healthcare providers to 

administer insulin injections. 

Various types of MNs have been developed for insulin delivery, including solid, coated, hollow and dissolving 

microneedles.21–24 Each type has its own unique advantages and disadvantages, and continued research to optimize 

microneedle design and improve their performance for insulin delivery is in progress.25,26 Currently, MNs 

fabricated using dissolving or biodegradable polymers are explored because they can ensure complete dissolution 

and degradation within the skin. In addition, these MNs are also nonreusable once removed from a patient’s skin, 

thus significantly minimizing infection related to transmission. Drugs can be retained within the polymer matrix 

of MNs, increasing their drug-loading capacity.27 

Nanoparticles (NPs) offer a potential solution to the challenges of insulin delivery by encapsulating insulin within 

a biocompatible and biodegradable material. These NPs protect insulin from degradation and allow for controlled 

release over an extended duration.28 

The present study explored the fabrication of a MN-based insulin delivery system incorporating insulin embedded 

in polymeric nanoparticles. The MNs were designed to offer the convenience of a lower dose, a reduced frequency 

of administration, and increased stability of insulin. A pharmacokinetic and pharmacodynamic evaluation of the 

developed MNs in diabetic rats was performed and is reported in this manuscript. 

Materials and methods 

Materials 

Insulin and chitosan (low molecular weight) were purchased from Sigma Aldrich (India), and 4-carboxy phenyl 

boronic acid and NHS (N-hydroxysuccinimide) were purchased from TCI Chemicals, Chennai, India. 1-(3-

Dimethylaminopropyl)3-ethylcarbodiimide hydrochloride (EDC). HCL was procured from Spectrochem Mumbai 

Pvt. Glacial acetic acid was purchased from NICE Chemicals PVT, Ltd., Kochi, Kerala, India. DMSO was 

purchased from FINAR Pvt. Sodium hydroxide pellets were purchased from Merck Life Science, Mumbai, India. 
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Polyvinyl alcohol (PVA) was purchased from TCI Chemicals, Chennai, India. Streptozotocin (98%) was 

purchased from Sigma Aldrich, India. The dialysis membrane (MWCO 12,000 kDa) was purchased from Sigma 

Aldrich, India. A contour glucometer was purchased from Ascensia Diabetes Care, India. The Rat Insulin ELISA 

Kit was purchased from Rhetoric Life Sciences Pvt Ltd., India. 

Methods 

Synthesis of the Chitosan-4-CPBA Conjugated Polymer 

Chitosan-conjugated 4-carboxy phenylboronic acid (4-CPBA) was synthesized from chitosan and 4-CPBA. 

Briefly, chitosan (100 mg) was dissolved in 2% glacial acetic acid solution and stirred for 45 min at room 

temperature to obtain a clear polymeric solution (Solution A). 4-CPBA (112 mg), EDC (175 mg), and NHS (100 

mg) were dissolved in DMSO (5 mL) under stirring at room temperature in the dark (Solution B). Solution B was 

added dropwise to Solution A and stirred for 24 h to form the conjugated polymer. The mixture was dialyzed via 

a dialysis bag (MWCO 12,000 kDa) against deionized water (5 L) for three cycles to remove unreacted 4-CPBA, 

crosslinkers, DMSO, and acetic acid.29 

 

Characterization of the Chitosan-4-CPBA Conjugated Polymer 

Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR studies were carried out on pure chitosan and 4-CPBA and crosslinked chitosan-4-CPBA via the potassium 

bromide (KBr) pellet technique. The spectra were recorded via FTIR (FTIR, Shimadzu) within a wavelength range 

of 400–4000/cm.30 

Differential Scanning Calorimeter (DSC) 

DSC (DSC 60 Plus, Shimadzu) thermograms were obtained for chitosan-conjugated 4-CPBA, 4-CPBA and 

chitosan. The samples were placed in a sealed aluminum pan, and the heating rate was maintained at 10 °C/min 

over the temperature range of 25–300 °C under a nitrogen flow rate of 50 mL/min.31 

Powder X-ray diffraction (P-XRD) 

The XRD patterns of chitosan-conjugated 4-CPBA, 4-CPBA, and chitosan were analyzed via a Rigaku Miniflex 

600 5th gen. Data were collected in scan mode at a scanning speed of 0.18°/min over a 2theta range of 5–60°. 

XRD was performed via Cu Kα radiation with a nickel filter, a voltage of 40 kV, and a current of 30 mA.31 

Nuclear Magnetic Resonance (H1 NMR) 

H1 NMR data of chitosan, 4-CPBA, and 4-CPBA-conjugated chitosan polymers were recorded via a Bruker 

Ascend 400 MHz. Each sample (3 mg) was transferred into Eppendorf tubes, and 0.5 mL deuterium oxide and 

3 µl TFA solution were added and left to dissolve overnight at room temperature for recording via H1 NMR.29 

Development of an HPLC method for the analysis of insulin 

An HPLC system with a UV detector (Shimadzu) equipped with LC solution software (version 3.1) was used. A 

YMC-Pack ODS-A column (C18, 250*4.5 mm internal diameter, particle size 5 µm, pore size 12 nm) was used 

for the separation of insulin. The isocratic mobile phase was composed of 10 mmol anhydrous sodium sulfate (pH 

2.3) adjusted with orthophosphoric acid and acetonitrile (70:30). Insulin elution was achieved at a flow rate of 1 
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mL/min, and the injection volume was 20 μL. The detection was carried out at λmax 214 nm, and insulin was eluted 

at 12 min. To determine the linearity, standard stock solutions of various concentrations (5, 10, 15, 20, and 25 

μg/mL) of insulin were prepared using 0.01 M HCl.32 

Preparation of insulin-loaded chitosan-4-CPBA-conjugated nanoparticles 

The synthesized polymers, chitosan-conjugated 4-CPBA (10 mg) and insulin (10 mg), were dissolved in 0.01 N 

HCL and mixed under magnetic stirring on a stirrer for 3 h at room temperature. An aqueous solution of 0.5 N 

NaOH was added dropwise until a white suspension was obtained. A white precipitate was obtained, indicating 

the formation of NPs.33 The formed NPs were separated by centrifugation at 10000 rpm for 10 min at 4 °C. 

 

Characterization of insulin-loaded chitosan-4-CPBA-conjugated nanoparticles 

The mean particle size, zeta potential, and polydispersity index (PDI) of the insulin-loaded chitosan-4-CPBA 

conjugate NPs were determined via a Zetasizer Nano ZS instrument (Malvern Instruments Limited, UK) at 

25 °C.34 In addition, the EE and loading capacity (LC) were calculated via the following equations. 

EE = 
𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑖𝑛−𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑖𝑛𝑠𝑢𝑙𝑖𝑛

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑖𝑛
 × 100 

LC = 
𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑖𝑛−𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑖𝑛𝑠𝑢𝑙𝑖𝑛

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
 × 100 

The free insulin was the insulin concentration in the supernatant, which was analyzed after suitable dilution via 

HPLC. To obtain the weight of the NPs, the supernatant was isolated, and the precipitate was weighed.35–37 

 

Fabrication of Microneedles with Insulin-loaded Nanoparticles (ILN-MNs) 

The microneedle master mold consisted of 225 pyramidal needles (15×15 array). The height of the needles was 

600 μm, and the space between the two needles was 500 μm. The needles were 200 μm wide at the base. The PVA 

solution (13%) was prepared by mixing PVA with Milli-Q water under stirring at 90 °C for 4 h. The PVA (13%) 

stock solution was combined with the ILN-NPs (3:2 ratio). The mixed solution was sealed and kept in a 

refrigerator (4 °C - 8 °C) to remove air bubbles. The ILN-PVA mixture (250 µL) was poured onto the surface of 

the PDMS micromold, and the molds containing the formulation were kept in a rotary shaker for approximately 

30 min to enable the penetration of the ILN-PVA mixture into the cavities of the MN. The mold was left overnight 

at 18 °C for drying.38,39 The fabricated MNs were stored in a desiccator until further use. For the preparation of 

bank MNs, a 13% PVA solution was poured into the mold in a similar manner to form blank MNs (blank MNs). 

Characterization of the MNs 

Scanning electron microscopy (SEM) 

The surface morphology and microneedle dimensions were analyzed via SEM (Hitachi tabletop, TM3030Plus). 

The optimized blank-MNs and ILN-MNs arrays were mounted on a sample stub with two-sided adhesive tape and 

observed under magnifications of 300 X and 100 X with an accelerating voltage of 5 kV.40 

Measurement of the mechanical failure force of the MNs 
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The mechanical properties of the prepared MNs were studied via TA. XT plus texture analyzer (Stable Micro 

Systems, Surrey, UK). The MN arrays (blank MNs and ILN-MNs) with the needle tips facing upward were placed 

on a flat rigid aluminum plate. Using a 5-mm-diameter flat-head stainless steel cylindrical probe, an axial force 

oriented perpendicularly to the plate (i.e., parallel to the MN vertical axis) was applied. The probe was able to 

press against the tips of the MN array at a constant speed of 1.1 mm/sec, and the trigger force was set at 50 N. 

The force required to move the metal cylinder as a function of distance until a displacement of 400 μm was reached 

was recorded by the texture analyzer.41,42 

Parafilm insertion study 

A sheet of parafilm (Parafilm M®, a blend of hydrocarbon wax and a polyolefin) was folded upon each other to 

obtain an eight-layered model membrane simulating skin tissue (~ 1 mm thickness). The test was performed via 

the manual insertion method, where the MN patch was placed over the parafilm sheet and held for 30 s with a 

downward force using a thumb impression. The MN patch was then removed from the parafilm membrane after 

insertion. Each layer was subsequently separated and visually inspected for the formation of holes in every layer 

to measure the depth to which the MNs could penetrate.43 

 

Microchannel Depth by Confocal Laser Scanning Microscopy 

 

The depth of insertion of the developed ILN-MN patch was examined via confocal laser scanning microscopy on 

freshly excised rat skin. The skin was treated with the ILN-MN patch via a thumb press and held in place for 1 h 

using occlusive tape. The porated site was treated with 50 μL of Rhodamine B, a fluorescent dye, for 30 min, after 

which the site was blotted with wet tissue wipes to remove excess dye. The tissue was then mounted on a coverslip 

and examined via a Leica SP-DMi8 laser scanning confocal microscope at 20× magnification. Excitation was 

carried out at a wavelength of 543 nm, and emission was carried out at 569 nm via an argon laser. XYZ sectioning 

was performed to detect the depth of the fluorescent dye penetration. The optical sections were reconstructed into 

a 3D model via Leica application suite X software. The depth of the microchannels was inferred indirectly on the 

basis of the migration of Rhodamine B down the microchannel.44,45 

 

Quantification of Insulin in the MNs 

To determine the content of insulin loaded in the ILN-MNs, insulin was extracted from the MNs with 1.5 mL of 

0.01 N HCL followed by vortex mixing to release the encapsulated insulin completely. The supernatant obtained 

after centrifugation for 10 min was separated and analyzed via the developed HPLC method. 

 

In vivo evaluation of the MNs in diabetic rats 

Induction of diabetes 

Animal studies were conducted in accordance with approval from the Institutional Animal Ethics Committee, 

Kasturba Medical College, Manipal Academy of Higher Education, Manipal (Approval number: 

IAEC/KMC/20/2019). Male Wistar rats weighing 250±20 g were used. Before the experiment, the animals were 

acclimatized in laboratory settings for 7 days and housed at 20–25 °C with 75% humidity and a 12:12-h light:dark 

cycle with unlimited food and water. For the induction of diabetes, the rats were fasted for 12 hr. with free access 

to water. Diabetes was induced by a single intraperitoneal injection of 40 mg/kg STZ dissolved in normal saline.46 
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Pharmacokinetic and pharmacodynamic evaluation 

The study commenced on the 8th day following STZ administration. Diabetic rats were fasted for 8 h prior to the 

experiment and remained fasted for 12 h during the experiment but had free access to water. The rats were divided 

into 4 groups (N=4). Group 1 served as a positive control, Group 2 received blank-MNs, Group 3 was administered 

plain insulin (10 IU) via subcutaneous injection, and Group 4 received ILN-MNs. The method of blood collection 

was randomized. Blood was collected alternatively from each animal in their respective group at different time 

points during the 12-hr study. Blood was collected from each rat at four time points to avoid pain and stress.47 

For subcutaneous injection, plain insulin was dissolved in 0.01 N HCl and mixed in a normal saline (1:9) ratio. In 

the case of transdermal application of the MNs, the fur of diabetic rats at the dorsal area was shaved. Blood 

samples (0.2 mL) were collected at various time points (0.5, 1, 2, 4, 6, 8, 10, and 12 hrs) through the retro-orbital 

plexus.48 Before blood samples were withdrawn, the rats were anesthetized with diethyl ether. The blood samples 

were allowed to stand for 1 h and then centrifuged at 6000 rpm and 4 °C for 10 min to isolate the serum, which 

was subsequently stored at -20 °C until further analysis. The BGLs were measured via a contour glucometer. A 

rat insulin ELISA kit was used to estimate the serum insulin levels at a wavelength of 450 nm (Rhetoric Life 

Science, India). Phoenix WinNonlin software was used for the estimation of the PK parameters.49 

Statistical analysis 

The results are expressed as the means ± SEMs. All the statistical calculations were performed via GraphPad 

Prism software (version 8.0.2.) for Windows, GraphPad Software (San Diego, California, USA). 

Results and Discussion 

Characterization of the Chitosan-4-CPBA Conjugated Polymer 

Fourier Transform Infrared Spectroscopy (FTIR) 

The FTIR spectra of chitosan, 4-CPBA, and the chitosan-4-CPBA conjugated polymer are depicted in Figure 1. 

The pure chitosan exhibited a primary amine peak at 1598.99 cm-1; free amine stretching at 3400--3500 cm-1; 

amide-linked carbonyl groups at 1691.57 cm-1; and bending from saturated hydrocarbons at 1431 cm-1, 1379.10 

cm-1, and 1327.03 cm-1; and C-O stretching at 1064.71 cm-1, which is in accordance with the chitosan FTIR spectra 

reported in the literature.50,51 The FTIR spectrum of 4-CPBA exhibited a characteristic C=O unsaturated aromatic 

ring acid present at 1689.64 cm-1, a boronic acid group (O-B-O) present at 1327.03 cm-1, and di-substituted 

benzene rings at 646.15 cm-1 and 848.68 cm-1, which agrees with the spectra reported in the literature.{Citation} 

The formation of the chitosan-4-CPBA conjugate was confirmed by the existence of an amide band at 1697.36 

cm-1 in the FTIR spectrum of the chitosan conjugate polymer. The characteristic peak of the primary amine NH 

vibration appeared at 1598.99 cm-1 in the spectrum of chitosan and disappeared in the spectrum of the chitosan-

CPBA conjugated polymer. Characteristic absorption bands of the para-substituted benzene ring were observed 

at 846.75 cm-1, 653.87 cm-1, and 460.99 cm-1 for the chitosan-4-CPBA-conjugated polymer, which is in 

accordance with the reported literature. 
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Fig. 1. FTIR spectra of chitosan, 4-CPBA and the chitosan-4-CPBA-conjugated polymer 

Differential Scanning Calorimetry (DSC) 

The change in the material attributes of chitosan after conjugation with 4-CPBA during the formation of the 

chitosan-4-CPBA conjugate polymer was studied via DSC analysis (Figure 2 (I)). Pure 4-CPBA exhibited an 

endothermic peak at ~205 °C, corresponding to its melting point. Notably, phenylboronic acids usually exhibit 

inconsistent melting points; hence, the endothermic peaks are considered decomposition temperatures. The peak 

is also attributed to the initial dehydration reaction of the phenylboronic acid forming the anhydrides.52 

Additionally, an exothermic peak was observed at ~229 °C, indicating a possible solid‒solid transformation, 

which has been previously reported. On the other hand, pure chitosan exhibited two prominent peaks, namely, an 

endothermic peak at ~72 °C and an exothermic peak at ~308 °C. The endothermic peak is attributed to the release 

of water molecules from the -NH2 and -OH groups present in the chitosan chains, and the exothermic peak is 

attributed to the degradation and depolymerization of the chitosan polymer. 

After the formation of the chitosan-4-CPBA conjugate polymer, the DSC thermograms presented two endothermic 

peaks at ~76 °C and ~131 °C and an exothermic peak at ~232 °C. The peak at ~76 °C corresponds to the 

endothermic peak of chitosan; however, it shifted slightly toward higher temperatures. The additional peak at 

~131 °C may be attributed to the continued dehydration of the chitosan-4-CPBA conjugate polymer owing to the 

presence of hydrophilic groups. The exothermic peak at ~232 °C corresponds to the degradation and 

depolymerization of the polymeric chain, as in pure chitosan (occurring at ~308 °C). The lower shift in the 

degradation temperature for the chitosan-4-CPBA conjugate polymer can be correlated with the loss of free -NH2 

and -OH groups due to conjugation with 4-CPBA.53,54 The absence of the peak at approximately 205 °C (melting 

point of 4-CPBA) clearly demonstrated the complete removal of the unreacted 4-CPBA by dialysis. 

Amide band exists 

at 1697.36 cm-1
Disappearance of primary amine 

NH vibration at 1539.60 cm-1

Amide band at 

1691.57 cm-1
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Fig. 2. DSC thermograms (I) and P-XRD diffractograms (II) of A: 4-CPBA, B: chitosan and C: chitosan-conjugated 4-CPBA 

polymers. 

Powder X-ray diffraction (P-XRD) 

P-XRD was carried out to determine the physical changes in the material attributes of the 4-CPBA, chitosan and 

chitosan-4-CPBA conjugate polymers (Figure 2(II)). 4-CPBA is a crystalline material55 and presents characteristic 

XRD peaks at 16°, 17.66°, 21.7°, 24.08°, 26.14°, 27.62°, 29.54°, 36.18°, and 38.92°. Chitosan, a polymer, 

exhibited two characteristic peaks at 10.24° and 19.92°, which is consistent with previously reported values 

corresponding to its semicrystalline nature.56 Chitosan also presented two additional peaks at 6.28° and 22.28°. 

The overall crystallinity index of 4-CPBA was 82.41%, and that of chitosan was 58.15%. However, the chitosan-

4-CPBA conjugate polymer only exhibited one peak at 22.56° and a crystallinity index of 26.63%. The chitosan-

4-CPBA conjugate polymer was clearly amorphous in nature, and the peak of chitosan at ~19° shifted to a higher 

angle (~22°), which can be attributed to successful conjugation with 4-CPBA. Furthermore, the absence of a peak 

at < 12° confirmed the change in the material attributes of the chitosan-4-CPBA conjugate polymer compared 

with those of the pristine 4-CPBA and chitosan. The observed shift in the peak of the chitosan-4-CPBA conjugate 

polymer is in good agreement with previous observations with conjugated chitosan.57–59 

Nuclear Magnetic Resonance (H1 NMR) 

The NMR spectra (Figure 3) of chitosan exhibited the characteristic peaks of chitosan, which were visible at 2.1 

ppm. The H1 NMR spectrum of 4-CPBA had peaks at 2.1, 3.1, 7.7, and 7.8 ppm. The H1 NMR spectrum of the 

chitosan-4-CPBA conjugate polymer showed peaks at 2.5 ppm to 2.7 ppm, 7.7 ppm, and 7.9 ppm. The distinctive 
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peaks observed in the spectra of chitosan-conjugated 4-carboxy phenyl boronic acid were found at 2.0 ppm (-CH3 

from the acetylated segment of chitosan) and 3.1-3.8 ppm (protons from the glucosamine ring). Additional peaks 

at 7.8-8.0 ppm, corresponding to the phenyl ring protons from the boronate moiety, were observed, indicating that 

the phenyl boronate groups were successfully conjugated to chitosan. The spectral data are in good agreement 

with those reported in the literature.60,61 

 

Fig. 3. H1 NMR spectra of a) chitosan, b) 4-CPBA, and c) chitosan-4-CPBA. 

Development of an HPLC method for the analysis of insulin 

The HPLC method for the estimation of insulin in the developed formulation was adopted from the previously 

reported method by Rajan et al., with certain modifications.32 The linearity graph was obtained by plotting 

different concentrations of insulin (x-axis) versus the average peak area (y-axis). A linear relationship was 

observed at concentrations ranging from 5–25 μg/mL. y=17404x–18600 was found to be a linear regression 

equation with a correlation coefficient of r2 =0.9997. The limit of detection (LOD) and limit of quantification 

(LOQ) were 0.70 and 0.65 μg/mL, respectively. 

 

Insulin-loaded chitosan-4-CPBA-conjugated nanoparticles: Particle size, zeta potential, drug encapsulation 

efficiency and loading capacity 

a) Chitosan

b) 4-CPBA

c) Chitosan-4-CPBA
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The insulin-loaded chitosan-4-CPBA nanoparticles had an average particle size of 509.34±31.14 nm, a zeta 

potential of 11.7±6.8 mV and a polydispersity index of 0.25±0 (Figure 4(a) and (b)). The results were consistent, 

which indicates that the uniform size of the NPs was maintained during the NP formulation process. 

The EE describes the system’s ability to entrap the therapeutic moiety within the nanocarriers, whereas the LC 

represents the amount of therapeutic moiety loaded per unit weight of the nanoparticle.62 Both of these parameters 

are crucial for the evaluation of nanoparticles. The EE was determined after separation of the NPs by 

centrifugation. To calculate the EE, the amount of free insulin in the supernatant was determined. The insulin-

loaded chitosan-4-CPBA-conjugated NPs had an EE of 80%, and the loading capacity (LC) was 30%. 

Zhang et al.36 prepared insulin-loaded PEG-g-chitosan nanoparticles by ionotropic gelation. The reported EE of 

insulin-loaded NPs was > 78%, and the LC was 38.6%. Similar findings were reported by Wu et al.63 in a study 

involving insulin-loaded phenyl boronic acid-grafted chitosan nanoparticles (PBACSNPs) for controlled insulin 

release. The insulin-loaded PBACS NPs displayed a high EE of 53.6% and an LC of 17.9%, with sizes ranging 

from 500--700 nm and zeta potentials ranging from +2.7--7.21 mV. Siddiqui et al.64 prepared 4-

formylphenylboronic acid-conjugated chitosan and used this conjugate to formulate insulin-containing NPs via 

polyelectrolyte complexation. The NPs had an EE of 81% and an insulin LC of 46%, and these NPs had a z-

average of 140 ± 12.8 nm, a zeta potential of +19.1 ± 0.69 mV and a PDI of 0.17 ± 0.1. The EE, LC, zeta size, 

zeta potential and PDI of our NPs are in accordance with the results of studies reported for insulin-loaded NPs in 

the literature. 

 

Fig. 4. a) Particle size and b) zeta potential of insulin-loaded chitosan-4-CPBA-conjugated nanoparticles. 

 

Scanning electron microscopy (SEM) 

SEM is a powerful tool used for characterizing the morphology and surface topography of MNs. SEM can provide 

high-resolution images of the microneedle surface, which can be used to evaluate the size and shape of the 

microneedles. The SEM images of insulin-loaded MNs typically show an array of micron-sized needles with sharp 

tips and uniform dimensions (Figure 5). A typical digital image of the MNs indicates successful replication of the 

mold. The SEM image of the MNs revealed a pyramid-shaped shape with a height of approximately 560 μm. The 

distance of the needle tip between two MNs was ~504 μm, and the width of the base for each MN was ~283 μm. 

The microneedles were long and sharp. 

 

a) b)
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Fig. 5. SEM images of microneedles under magnifications of 300 × and 100 × with an accelerating voltage of 5 kV. a) 

Magnifications of 100 ×, b) magnification of 150 ×, and c) magnification of 300 × 

Measurement of the mechanical failure force of the MNs 

The measurement of the mechanical failure force is an important parameter for evaluating the effectiveness and 

safety of MNs for transdermal drug delivery. Polymer MNs should have sufficient mechanical strength for 

penetrating the skin without mechanical failure. The mechanical failure force refers to the force required to break 

or fracture a microneedle and is an indicator of the strength and durability of the microneedle. 

The mechanical characteristics of the prepared dissolving MN patches were evaluated via the TA-XT texture 

analyzer compression mode, which continuously recorded the compression force and displacement. The 

mechanical strengths of the blank-MNs and ILN-MNs (Figure 6) indicate that the force required to press the metal 

cylinder against the needle increased with displacement over the tested range. The absence of discontinuous points 

in the force‒displacement curves confirmed the integrity of the needle. For the blank-MNs, the compression force 

reached 18 N when the displacement reached 400 μm, whereas for the ILN-MNs, the force reached 22 N when 

the displacement reached 400 μm. According to reported studies, fabricated MNs have sufficient strength to 

penetrate the skin. 

a)

c)

b)
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Fig. 6. Mechanical failure force analysis of microneedles. 

 

Parafilm Insertion Test 

The parafilm insertion test provides an indication of MN penetration as a function of depth. The fabricated MNs 

displayed visible holes in the first and second layers of parafilm, indicating complete penetration. However, the 

holes in the third and fourth layers of the parafilm were not clearly visible, indicating partial indentation (Figure 

7). The thickness of the stratum corneum ranges between 2 and 20 μm at different sites, and that of the epidermis 

is approximately 80 μm. Considering that the average thickness of each parafilm layer was approximately 127 

μm,65 the developed MNs were able to penetrate to a depth of 254 μm. The results obtained indicate that the MNs 

could easily breach the stratum corneum and reach beyond the epidermis. 

 

 

Fig. 7. Parafilm insertion test. 

Microchannel Depth by Confocal Laser Scanning Microscopy 

A rat skin sample was imaged and recorded to determine the depth at which the ILN-MN patch was inserted from 

the surface of the skin via confocal laser scanning microscopy, as shown in Figure 8. The penetration of 

Rhodamine B dye indicates the depth of the created microchannel, which resulted in a mean depth of 242.5 ± 

28.72 μm (n = 4). These findings are correlated with the insertion depth as determined by in vitro experiments 

(parafilm insertion study). The modest variation may be attributed to certain factors that directly affect the depth 
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of the microchannels, such as the force and time of application, moisture content and elasticity of the skin. Figure 

8(a) shows a representative image of the pores created upon application of the ILN-MN patch on the skin, whereas 

8(b) and 8(c) depict the microchannels created by the ILN-MN patch. Hair follicles have also been observed. 

 

Fig. 8. Confocal laser scanning microscopy images of the microchannels created upon application of the ILN-MNs: (a) pores 

created by the ILN-MN patch on the skin and (b) and (c) 3D images of the ILN-MN-treated rat skin illustrating the insertion 

depth. 

In vivo pharmacokinetic and pharmacodynamic evaluation of the MNs 

The in vivo pharmacokinetics and pharmacodynamics of the MNs were studied in 4 groups of diabetic rats. While 

the first group served as a positive control, the second group received blank-MNs that were devoid of insulin, the 

third group received plain insulin (10 IU) via subcutaneous injection, and the fourth group received the fabricated 

MNs incorporated with the insulin nanoparticles (ILN-MNs, 20 IU). These groups were included in the study to 

compare the performance of the MNs with that of the subcutaneous injection of plain insulin. 

The serum insulin concentration was estimated via a rat insulin ELISA kit, the results of which are displayed in 

Figure 9. The serum insulin concentration reached a maximum (Cmax) of 348.34 µIU/mL at 0.5 h, and the insulin 

levels remained stable for 2 h following the subcutaneous administration of insulin (10 IU). Thereafter, it 

decreased to 120 µIU/mL in the fourth hour, and a steep decline (45 µIU/mL at 8 h) was observed. The BGLs of 

diabetic rats after various treatments are shown in Figure 10. The positive control group and blank-MNs group 

did not exhibit hypoglycemic effects, and their blood glucose levels remained elevated during the study period. 

Hypoglycemia was observed in diabetic rats that were administered plain insulin (10 IU) subcutaneously. The 

BGL in this group decreased to 200 mg/dL at 0.5 h following insulin administration and decreased further to its 

lowest level of 29 mg/dL at 2 h. At 6 h, the BGL increased to its initial level. In diabetic rats treated with ILN-

a)

c)

b)
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MNs (20 IU), the BGLs reached ≤ 200 mg/dL at 2 h following the application of the MNs, and the BGLs were 

maintained at ≤ 200 mg/dL from 2--8 h. 

The AUC0-12 obtained for subcutaneous injection (10 IU) was 1495.35 h*µIU/mL. The maximum serum insulin 

concentration (Cmax) observed in the rats treated with the ILN-MNs (20 IU) was 216 µIU/mL at 2 h following the 

application of the MNs, and the AUC0-12 obtained was 1533.67 (h*µIU/mL) (Table 1).  Data are expressed as the 

mean ± SEM and were analyzed via one-way ANOVA followed by post hoc Tukey’s multiple comparison tests. 

There was no statistically significant difference in the serum insulin concentration following the administration 

of subcutaneous insulin injection compared with insulin nanoparticle-loaded MNs (ILN-MNs). Additionally, there 

was no statistically significant difference in the number of BGLs with subcutaneous insulin injection compared 

with the number of ILN-MNs. 
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Fig. 9. Serum insulin concentrations of diabetic rats from different treatment groups (SC: subcutaneous insulin injection; ILN-

MNs: microneedles incorporated with insulin-loaded nanoparticles; IU: international units) 
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Fig. 10. The blood glucose levels of diabetic rats from different treatment groups (S. C: Subcutaneous insulin injection, ILN-

MNs: Microneedles incorporated with insulin-loaded nanoparticles, IU: International Units) 
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Table 1. Pharmacokinetic parameters of insulin from ILN-MNs patches and S.C. insulin administration in diabetic rats (n =4) 

Group Dose (IU) C max (µIU/mL) 

 

T max (Hr) 

AUC last 

(h*µIU/mL) 

S.C 10 348.35 ±1.4  0.5 ±0.08 1495.35±1.1 

ILN MN 20 216.66 ±1.1  2 ±0.18 1533.67±1.7 

(SC: subcutaneous insulin injection; ILN-MNs: microneedles incorporating insulin-loaded nanoparticles; IU: international 

units) 

These findings show that MNs exhibit a longer and more sustained release profile of insulin than does 

subcutaneous injection. Delivery of insulin can be challenging owing to its susceptibility to enzymatic degradation 

and rapid clearance from the bloodstream. Anbazhagan and Suseela developed insulin-coated MNs and evaluated 

their blood glucose levels in diabetic rats.66 The formulation developed in the current study had insulin loaded 

inside the MNs, which ensured the protection of insulin, unlike the reported formulation in which insulin was 

coated on the MN surface. Additionally, in our study, we evaluated blood glucose levels and serum insulin 

concentrations. Most insulin-microneedle studies only measure blood glucose levels, and the corresponding 

insulin concentration is not reported. The nanoparticles protect insulin from degradation and allow for controlled 

release over an extended period.67 Transdermal delivery of insulin via MNs aids in sustaining insulin release, 

thereby preventing the rapid decrease in BGLs and minimizing hypoglycemia-related adverse effects. 

 

Conclusion 

In this study, microneedles loaded with insulin nanoparticles were fabricated to overcome the drawbacks of 

traditional insulin injections. Insulin was loaded into nanoparticles prepared with a chitosan-4-

carboxyphenyboronic acid-conjugated polymer. The prepared insulin-loaded nanoparticles were loaded in PVA-

based MNs. The fabricated MNs exhibited sufficient mechanical strength to penetrate the skin. The in vivo 

efficacy of insulin nanoparticle-loaded MNs was studied in diabetic Wistar rats in comparison with that of 

subcutaneous insulin injection. The BGLs and the insulin concentration demonstrated the superiority of the insulin 

NP-loaded MNs over traditional subcutaneous insulin injection. Overall, the fabricated MNs exhibited convincing 

efficacy as a promising approach for transdermal delivery of insulin, offering potential advantages over traditional 

injection methods. Further research is needed to optimize the microneedle design and evaluate its safety and 

efficacy for long-term use. 
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