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ABSTRACT 

Nanotechnology has revolutionized drug delivery, which offers innovative ways to 

maximize treatment efficacy while decreasing side effects. The lyotropic liquid 

crystalline nanoparticles, such as cubosomes and hexosomes, have gained 

substantial interest because of their distinctive molecular arrangements. Lipophilic, 

hydrophilic, and amphiphilic drugs can be encapsulated by cubosomes, making 

them versatile carriers in drug delivery systems. Different types of cubosomes, such 

as pH-responsive, temperature-responsive, light-responsive, enzyme-responsive, 

and multi-stimuli-responsive, have been discussed in this review detailing their 

preparation methods and therapeutic applications. Cubosomes possess high surface 

area, are biocompatible, and provide enhanced drug protection. However, 

formulation stability and scalability are the main challenges. This paper highlights 

the potential of cubosomes for targeted drug delivery, focusing on their ability to 

optimize bioavailability and controlled drug release. 
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Introduction 

Nanotechnology has developed drug delivery by providing novel solutions that improve treatment outcomes while 

reducing adverse effects. Active pharmaceutical ingredients (API) characterized by extremely low solubility 

present restricted bioavailability upon oral ingestion, diminished diffusion capacity via the outer membrane, the 

necessity for higher quantities during intravenous administration, and undesired side effects preceding the 

conventional formulation methods.1 Integrating nanotechnology in drug delivery mechanisms offers a pathway to 

overcome these constraints. Lyotropic liquid crystalline nanoparticles (LLCNP) emerge as exemplars of self-

assembling nanomaterials, showcasing remarkable potential.2–5 Among the array of nanostructured carriers, 

cubosomes epitomize a burgeoning class of nanosystems engineered to accommodate various active 

pharmaceutical ingredients, consisting of both hydrophobic and hydrophilic drugs, alongside biotherapeutics such 

as peptides, proteins, and nucleic acids. 6–9 

The process of liquid crystalline injectable formulations involves integrating amphiphilic molecules within a 

solvent, resulting in the formation of LLC phases. The amphiphilic structure of the molecule, additives, and the 

solution's conditions affect these phases.10 Friedrich Reinitzer made the first observation of LLCNP in 1999.11 

Like liposomes, they have intricate 2D and 3D nonlamellar nanostructures, including inverse hexagonal and cubic 

mesophases. The distinctions between liposomes and cubosomes are illustrated in Figure 1.   

Cubosomes are square and rounded shapes and possess an internal cubic lattice. They are thermodynamically 

stable structures characterized by honeycombed SL formulations that create two internal aqueous channels and a 

substantial interfacial area.12,13 Inside the bicontinuous cubic stage framework, there are three stages [Im3m 

(Schwarz) surface), Pn3m (Diamond surface), Ia3d (gyro surface)] to explain the distinct shapes, all of which 

additionally display boosted drug transportation in the target site. 14–17 According to Ayesha Waheed, the 

organized mesophase structure and nanoscale size range of liquid crystalline NPs make them useful drug carriers 

for molecules with different polarity, such as nucleic acids and proteins. A thorough analysis highlights how their 

3D structure and tunable coronas support a variety of applications, from theranostics to medication delivery.11 

Zhai et al. reflected that liquid crystalline drug delivery systems are promising for the future generation of 

nanomedicine, with their self-assembling amphiphilic lipids acting as efficient nanocarriers for a variety of 

medications, peptides, proteins, nucleic acids, and imaging agents. 18 

The unique cubic structure not only presents a platform for superior drug encapsulation and protection but also 

offers tailored solutions for targeted therapeutic interventions.19–21 Cubosomes possess high surface area and 

responsiveness to stimuli. Using this, researchers can design and tailor sophisticated delivery systems capable of 

precise control over drug release and distribution within the body. 22,23 Moreover, the diversity of types of 

cubosome each with its own set of advantages and challenges, underscores the necessity of a comprehensive 

exploitation.  We intend to inspire further research and innovation in the nanotechnology field, driving 

advancements in therapeutic interventions, and improving patient care.  

pH-Responsive Cubosomes 

There are pH differences between normal blood and pathological tissues (e.g., those affected by infection, 

inflammation, and cancer, which often become more acidic), among specific intracellular compartments such as 

the cytosol, endosomes, and lysosomes, and along the gastrointestinal tract. These differences are typically 

targeted by pH-responsive nanosystems. For this scope, "smart" molecules including polymers, lipids, and 

peptides are used since they are biocompatible and sensitive to specific pH levels because of their functional 

ionizable groups. 24,25 
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The pH-responsive mesophase, designed with a lipid-based LLC system composed of mono-linolein and pyridinyl 

methyl linoleate, transitions its symmetry from a reverse hexagonal phase (H2) at pH 7.4 to a bi-continuous cubic 

phase (pn3m) at pH 5.5. This transformation was studied and found to occur due to the protonation of the pyridinyl 

methyl linoleate's weakly basic head group near its pKa of 5.5. 26 This pH-triggered behavior leverages the acidic 

conditions in tumor tissues to enhance the release of drugs like Doxorubicin, potentially improving chemotherapy 

efficacy. By switching its structure under acidic conditions, this mesophase enables targeted drug delivery, 

improving the efficiency of cancer treatments. 27,28 

According to Rajesh et al., pH-responsive cubosomes lessen side effects while allowing a chemotherapeutic 

chemical to be delivered to tumors selectively. 29 According to Mertins et al., pH-sensitive polymer shells present 

novel prospects for topical and oral medication delivery that could lead to the development of innovative cancer 

treatments. Drug compounds that have electrochemical activity might also be advantageous for pH-responsive 

drug release. 30 At physiological pH, these NPs had a slow-releasing hexagonal structure, whereas, at the acidic 

pH of the tumor, they displayed a quick-releasing bi-continuous cubic phase. 31 

According to Manchun et al., pH-sensitive nanosystems have been synthesized to deliver medications to the 

endosomes or lysosomes within cancer cells, or the mildly acidic extracellular fluids of tumor tissue following 

endocytosis. After the medication accumulates in tumor tissue via enhanced permeability and retention effect, 

these systems can release it through specialized mechanisms. Alternatively, they can release the drug within 

endosomes and lysosomes via pH-controlled hydrolysis after cellular uptake through the endocytic pathway. 32  

According to Negrini et al., linoleic acid, a weak acid with a pKa of approximately 5, provides pH responsiveness. 

At pH 7, it is essentially in the deprotonated charged state, while at pH 2, it is primarily protonated and neutral. 

This results in changes to the critical packing parameter of the LLC. 33 In the study by Prajapati et al. pH-

responsive cubosomes were synthesized by blending 2-Hydoxyoleic acid with glycerol monooleate at varying 

mass ratios to examine pH-induced structural transformation for targeted drug delivery to cancer tissues. The 

research aimed to investigate the composition and pH dependence of drug-loaded NPs, providing insights into 

their pH-triggered transformation [Figure 2.]. 34 

Temperature Responsive Cubosomes 

Numerous investigations have corroborated the hypothesis that drug release from thermos-responsive polymers 

can be triggered by slight temperature variations. However, in recent years, thermos-responsive drug delivery 

systems have primarily been utilized in the delivery of anti-cancer drugs and imaging agents.35 Poloxamers stand 

out as widely explores thermo-responsive systems, renowned for their versatility. Thermo-responsive systems 

offer numerous advantages, such as the formulation of an in-situ gelling-controlled release system. 36 

Mohsen et al. elucidated the significance of a thermos-sensitive system in enhancing the intranasal 

delivery of Lamotrigine. By integrating optimized cubosomes into a thermosensitive in situ gel,the system 

enhances the physical stability, nasal residence time, and patient compliance. The thermos-sensitive gel undergoes 

a sol-gel transition in response to temperature changes, facilitating the administration as a liquid that transforms 

into a gel upon contact with the nasal mucosa. The transition augments drug absorption across the nasal mucosa 

membrane, thereby improving the efficacy of lamotrigine in epilepsy treatment. The thermosensitive property is 

attributed to the in-situ gel into which the optimized cubosomes are incorporated. The synergistic combination of 

cubosomes and the thermosensitive gel enhances drug absorption and efficacy by prolonging nasal residence time 

and facilitating drug release at the target site. 37 
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According to Dabkowska et al., the tiny poly(N-isopropylacrylamide) nanogels act as precise thermos-responsive 

controllers in regulating the hydration of liquid crystalline surface layers. 

Their rapid transition from a swollen to a collapsed state, induced by temperature changes, allows controlled 

release of water from the surface while preserving the integrity of the lipid matrix. This capability enables the 

secure encapsulation of delicate bioactive molecules within the lipid matrix, presenting a promising avenue for 

controlled-release applications. 38 

Light responsive cubosome 

Light-responsive nanocarriers offer a non-invasive, highly adaptable, and precisely controlled method for drug 

delivery. 39 The advancement of stimuli-responsive materials is crucial, marking the initial utilization of photo-

switchable amphiphiles for the creation of light-sensitive cubic LLC dispersions, known as cubosomes. This 

innovation enables external manipulation of the LLC structure, facilitating the on-demand release of entrapped 

guest molecules. To produce these cubosomes, azobenzene photo surfactants, which have an azobenzene-alkyl 

tail and a neutral tetra ethylene glycol head group, are used with monoolein-water systems. 40 The lipid/water 

system can be made photo-responsive by including plasmonic NPs or photochromic compounds. When these 

components are activated, the lipid bilayer's permeability changes either temporarily or completely, enabling or 

prohibiting the movement of molecules that are encapsulated [Figure 3.]. By using photothermal and 

photochromic techniques, this has been accomplished.41  

Chen et al. highlighted that phototherapy, which includes photothermal therapy and photodynamic therapy, has 

attracted considerable interest among researchers because of its non-invasive nature, precise spatial and temporal 

selectivity, and low toxicity.42 As per Fong et al., plasmonic hydrophobized gold nanorods are integrated into 

mesophases produced by diverse lipid/water combinations to fabricate light-responsive bulk self-assembly lipid 

systems. The gold nanorods nestled within the liquid crystalline matrix were stimulated by Near Infrared laser 

light, inducing localized plasmonic heating of the mesophase. This facilitated the reversible manipulation of 

nanostructure, contingent upon the concentration of nanorods and the composition and heat capacity of the liquid 

crystalline matrix. 41 

 According to Angelova et al. in host-guest LLC mesophases of lipids intended as molecular switches for the "on-

demand" release of chemicals, Small-Angle X-Ray Scattering (SAXS) has shown light-triggered effects. A tiny 

quantity of a lipid with an azobenzene photoactive unit that was synthesized successfully has been added to host 

liquid crystalline mesophases made up of oleic acid and monoolein. 43 According to Jia et al., a promising class 

of photo-switchable molecules that hasn't gotten much attention in the literature is hexaaryl biimidazoles. The one 

that exhibits remarkable negative photochromism and is sensitive to green light is (2,20-dimethoxy diphenyl 

imidazole)-1,10-binaphthyl.44 The photosensitive cubosomes utilized in the study by Bazylin´ ska et al represent 

a substantial advancement in targeted therapy for melanoma skin cancer cells. These cubosomes, laden with 

photosensitizing dyes such as Chlorin e6 or meso- tetraphenylporphine-Mn (lll) chloride, exhibited enhanced 

biocompatibility, heightened therapeutic efficacy with significant cytotoxic effects post-irradiation effective 

bioimaging capabilities, and potential for future applications in photodynamic therapy and bioimaging of skin 

malignant melanoma. The innovative approach presents a promising avenue for precise and efficient treatment of 

melanoma skin cancer, underscoring the potential of cubosomes are versatile drug delivery systems for improved 

therapeutic outcomes. 45 
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Enzyme-responsive cubosomes 

One of the most promising types of smart stimulus-responsive NPs is enzyme-responsive NPs. Enzymes are 

needed for the body's lipid processing to transform lipids into cellular fuel 41. The hepatoprotective properties and 

oral bioavailability of Coenzyme Q10 can be significantly enhanced by utilizing Glycerol Monooleate (GMO) 

cubosomes stabilized with P407. To overcome the challenges associated with piperine distribution, such as 

hydrophobicity and 1st pass metabolism, tween 80-modified GMO cubosomes have been developed. In vivo 

studies indicate that these cubosomes markedly amplify cognitive function, suggesting their potential as a 

noninvasive, brain-targeted delivery system for Alzheimer’s disease treatment. Similarly, the incorporation of 

curcumin into phytantriol cubosomes has demonstrated a substantial increase in oral bioavailability, achieving at 

least a 14-fold improvement compared to free curcumin. 46 

According to Tan et al. cubosomes containing the antimicrobial peptide were found to have a notably greater 

bactericidal impact following enzyme exposure than pure peptide which lost its bactericidal action upon 

proteolysis46. The significance of enzyme-sensitive cubosomes lies in their potential application as drug-delivery 

systems that can respond to specific enzymatic triggers. In the presence of enzymes present in the target tissue, 

the cubosomes can be synthesized for releasing payloads in a controlled fashion. This targeted and triggered 

release mechanism enhances the efficiency and specificity of drug delivery, especially in customized treatments 

of various diseases, hence offering precise dosage and minimal off-target effects. Fusion of enzyme-sensitive 

molecules and cubosomes can develop smart nanocarriers that react to specific biological cues such as enzyme 

activity levels in diseased tissues. 47,48  

Based on the study conducted by Li et al, using enzymes as triggers, chemical selectivity and substrate specificity 

can be achieved. Enzyme-catalyzed reactions can be performed under moderate conditions, low-temperature 

aqueous environments, and neutral or near-neutral pH levels. Phospholipase exhibited high selectivity hydrolyzing 

fatty ester bonds at the sn-2 position of glycerophospholipids. Such cubosomes also increased the efficacy of 

urokinase-type plasminogen activator, a thrombolytic drug. Its encapsulation within the enzyme-responsive 

cubosomes aid in targeted drug release realized due to specific enzymatic triggers within the thrombus 

microenvironment. This ensures the thrombolytic agents retain protection while in circulation and are precisely 

released at the thrombosis site. 49 

Multi stimuli responsive cubosomes 

Dual and multi-responsive, including stimuli-responsive NPs, are the innovative drug delivery strategies 

developed for combinational chemo-phototherapy. Integrating multiple stimuli - such as pH and redox, pH and 

temperature, temperature and magnetic field, enzyme activity, and others- resulted in multi-responsive drug 

delivery systems. For example Co-loading photosensitizer and chemotherapeutic agents onto graphene oxide NPs 

has shown a marked improvement in cancer treatment efficacy compared to monotherapy.50 For targeted 

photodynamic treatment, a pH-responsive nanophotomedicine (pH-NanoPM) was developed. This nano 

photomedicine was constructed through the self-assembly of a pH-responsive polymeric photosensitizer (pH-

PPS), incorporating approximately 10nm-sized pH-cleavable mPEG (pH-pH-mPEG). When HeLa human 

cervical cancer cells were exposed to pH-NanoPM, enhanced cellular internalization was observed at the acidic 

tumor pH compared to the normal pH, leading to a significant increase in cancer cell cytotoxicity. The fusion of 

metal NPs and stimuli-responsive polymers onto one platform has garnered a lot of attention in recent years. Zhou 

et al. stated that a drug in combination with a polymer containing selenium may be employed successfully for 
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multi-stimuli responsive drug release. They created metal-organic frameworks with pH-triggered properties for 

drug delivery systems and selenium-containing PEG micelles with redox-triggered features. It is observed that the 

shell can only break down in low pH conditions, the cores collapsed readily in the presence of redox agents. 51 

As reported by Sauraj et al. in their study on pH-sensitive prodrug NPs for targeted chemo-photodynamic therapy, 

the integrated platform was formed by encapsulating the photosensitizer after connecting the chemotherapeutic 

agent DOX to the polymer PEG via a pH-sensitive (Schiff base) bond. Under acidic pH conditions, the NPs 

exhibited pH-responsive release behavior, leading to the simultaneous release of the medication and 

photosensitizer. An in vivo investigation revealed that NPs had higher antitumor efficacy against the cells when 

compared to free drugs and photosensitizers. 50 Details on types of cubosomes and their potential applications are 

given in Table 1.  

Table 1. Types of responsive cubosomes and their potential applications 

Types of responsive 

cubosomes 

Composition Drug used Applications References 

pH-responsive Monoolein 

Pluronic F127 

Ionizable amino lipids 

Doxorubicin Anticancer 

Therapy 

Rajesh et al. 52 

Light-responsive 

cubosomes 

Photoswitchable 

amphiphiles such as 

azobenzene photo 

surfactants and 

monoolein 

Nile Red Controlled drug 

delivery. 

Jones et al. 53 

pH-responsive 

cubosomes 

Monoolein and the 

amino lipids N-

(Pyridin-4-ylmethyl) 

oleamide and N-

(2(piperidine-

1yl)ethyl) oleamide 

7-ethyl-10-hydroxy 

camptothecin, which 

is an active 

metabolite of the 

anticancer prodrug 

irinotecan 

Anticancer 

Therapy 

Rajesh et al. 54 

pH-responsive 

cubosomes 

Monoolein 

N-arginine-modified 

chitosan and alginate 

Anthelmintic drugs 

including 

ivermectin, 

mebendazole, and 

praziquantel 1. 

oral drug 

delivery systems 

Mathews et al. 
55 

Cubosomes in 

thermos responsive 

gelling system 

Glyceryl monooleate, 

Pluronic® F127, 

Docetaxel Controlled-

release 

Rarokar et al. 
56 

Thermosensitive 

cubosomes 

Poloxamer 407 

Glyceryl monooleate 

Lamotrigine intranasal 

delivery 

Mohsen et al. 
57 

Thermosensitive 

cubosomes 

poly(N,N-dimethyl 

acrylamide)-block-

poly(N-isopropyl 

acrylamide) 

glycerol-monooleate 

- targeted drug 

delivery 

Balestri et al.  
58 

pH-responsive 

cubosomes 

Monoolein. 

Brucea javanica oil 

Doxorubicin combined 

delivery for 

cancer treatment. 

Li et al. 59 

 

Top-down and bottom-up approaches for cubosomes preparation 

In the bottom-up approach, cubosomes are fashioned through the dispersion of droplets from the inverse micellar 

phase into an aqueous medium heated to 800C. subsequently, a gradual cooling process ensues, prompting 

crystallization and the emergence of cubosomes. The hydrotrope incorporated within the cubosomes formulation 

assumes a pivotal role in thwarting the development of a bulk cubic gel phase. Its action involves a dissolution of 
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the cubic gel, while the subsequent introduction of water, in conjunction with sonication, diminishes the solubility 

of the liquid crystalline particles, thus fostering the genesis of cubic entities. 60 

According to Gaballa et al., poloxamer 407 and soulan C24 were used as stabilizers throughout the top-down 

process of creating GMO cubosomes. 61 As per Garg et al., the surfactant employed in the production of 

cubosomes includes poloxamer 407, with the concentration ranging from 0%-20% w/w about the dispersion 

phase. Typically, a concentration of 2.5%-10% w/w of the total weight of the dispersion is necessary for the 

monoglyceride/surfactant mixture. In addition to poloxamer, polyvinyl alcohol (PVA) is utilized as a dispersion 

stabilizer. 62 According to Bryant et al. phytantriol solutions in a variety of diluents, such as glycerol, ethanol, 

honey, lactic acid, and choline chloride-glycerol, were used to create cubosomes. Applying these solutions 

dropwise to water containing poloxamer 407 stabilizers was done following a well-established cubosome 

synthesis protocol. 63 According to Gaballa et al. to avoid cubosome dispersion aggregation, F127 or another 

appropriate stabilizer must be used. The selection of the ideal preparation technique still focuses primarily on 

stability, biocompatibility, and optimal drug release. 64,65 

Challenges and considerations 

Addressing the potential challenges inherent in cubosomes production and stability is paramount to fully 

harnessing their potential in pharmaceutical applications. A significant obstacle is the elevated viscosity of the 

cubic phase, which complicates large-scale production processes. Moreover, cubosomes tend to exhibit low 

entrapment efficiency for water-soluble drug molecules due to the significant water content within their structure. 

This constraint not only has an impact on overall medication loading capacity, but it also impairs the delivery 

system's effectiveness.  Nano-sized nature of cubosomes can undergo particle growth upon prolonged standing 

and is problematic for parenteral formulations. This causes stability and uniformity issues, demands innovative 

approaches to mitigate particle proliferation, and assures long-term stability. 24,66–68 

There is continuous research on cubosomes in drug delivery aimed at surmounting production limitations and 

augmenting stability. Researchers hope to unlock the complete potential of cubosomes by tackling difficulties 

associated with cubosomes such as viscosity maintenance during the synthesis and refinement of drug-loading 

methods for hydrophilic compounds. The NP engineering and tailored formulations promise to mitigate stability 

concerns connected to particle growth, thereby enhancing the suitability of cubosomes for various administration 

routes including parenteral delivery. The challenges can be resolved with interdisciplinary research efforts, 

shaping the future landscape for customized drug delivery options. 23,69–71 

 

Diverse utilization 

Cubosomes have emerged as a promising drug delivery system, presenting advantages over traditional liposomes 

because of their unique inner cubic structure. This unique configuration provides a significantly larger interfacial 

surface area, facilitating the encapsulation and protection of higher quantities of hydrophilic and hydrophobic 

drugs compared to liposomes 72–74. Notably, cubosome preparation primarily employs shear and homogenization 

techniques, eliminating the need for organic solvents. Furthermore, cubosomes exhibit superior solubilization 

capacities in contrast to conventional lipid or non-lipid carriers, making them excellent vehicles for protecting 

delicate drugs, such as peptides and proteins, from enzymatic degradation and in vivo degradation.75 Nanocarriers, 

including cubosomes, exhibit minimal toxicity and biocompatible characteristics, making them effective delivery 

methods for a wide range of substances in various applications. 76–79 
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Cubosomes have shown promise as nanocarriers for anticancer medications. The unique structure of cubosomes 

suggests their potential application in melanoma treatment, with both passive and active targeting strategies 

demonstrating validity in preclinical and clinical research. In the realm of oral drug delivery, liquid crystalline NP 

technology emerges as a sophisticated solution, adept at orchestrating precise in vivo drug distribution. By 

strategically releasing particles at distinct absorption sites, such as the upper or lower intestine, it effectively 

navigates the challenges of regional absorption, a critical consideration for medications characterized by narrow 

absorption windows. 80–84 

In targeted drug delivery, cubosomes have exhibited enhanced permeability and retention when administered to 

rabbit corneal tissue sections, showcasing their potential for ocular applications. Additionally, cubosomes have 

been found to increase ocular bioavailability by prolonging the half-life at the corneal surface and exhibiting 

mucoadhesive properties, enhancing corneal permeability. For topical drug delivery, the bio-adhesive 

characteristics of cubic phases make them suitable for mucosal depositions and topical drug delivery systems. 

These systems leverage liquid crystal and liquid crystal NP technology to create bio-adhesive liquid crystalline 

systems in situ, facilitating precise and efficient drug distribution to mucosal surfaces. In contrast to conventional 

administration approaches, topical drug delivery systems offer temporary protection to sensitive and irritated skin 

by creating a thin layer on mucosal surfaces. These systems further fine-tune the nanostructure to attain the desired 

delivery profiles, representing a sophisticated approach to dermatological care. 52,85 

Conclusion 

Cubosomes demonstrate strong potential as smart drug delivery systems, owing to their ability to respond to 

physiological stimuli such as temperature, pH, and enzymatic activity. This review presents that cubosomes 

support the initial hypothesis of their functional adaptability since they show great potential as carriers for site-

specific and controlled drug delivery. Their distinctive structural characteristics and biocompatibility imply useful 

benefits in improving drug stability and release profiles. By minimizing off-target effects and enhancing delivery 

precision, cubosomes could contribute meaningfully to the development of safer and more effective therapies. 

Future studies may centre on optimizing formulation parameters, increasing manufacturing scale, and conducting 

in vivo studies to support their clinical relevance in particular therapeutic settings. 
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