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Abstract 
 Purpose: T cell-based immunotherapy, especially chimeric antigen receptor (CAR)-T cells, 

has emerged as an appropriate approach for treating hematologic malignancies and is currently 

under investigation in clinical trials for solid tumors. Despite significant improvements in 
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CAR-T cell production processes, the isolation and expansion of CAR-engineered T cells 

continue to pose significant challenges. The aim of this research is to provide a simple and 

cost-effective method for the isolation and expansion of human CAR-T cells. This novel 

concept applies coated FBS culture plates and focuses on enhancing viability and functionality 

to improve the adherence of suspended T cells. 

Methods: This study evaluated a two-dimensional (2D) culture technique for isolating the 

CAR-T cells that target prostate-specific membrane antigen (PSMA) utilizing matrices pre-

coated with 0.2% glutaraldehyde and FBS. Jurkat cells were transduced with a lentiviral vector 

encoding the anti-PSMA CAR construct. FBS-coated and commercialized Matrigel-coated 

matrices were used for single-cell isolation and clonal expansion. Functional tests were 

conducted to assess the activation and proliferation of CAR-T cells and the IFN-γ release assay 

subsequent to cloning and expansion. 

 Results: Transfection efficiency markedly improved, with 88.4% of Lenti-X 293T cells 

demonstrating GFP expression. Among the Jurkat cells, 57.1% showed GFP expression post-

transduction, of which 34.1% showed surface expression of anti-PSMA CAR. Clonal 

expansion on the FBS-coated matrix proved effective, yielding 92.1% GFP-positive isolated 

cells. Functional assays demonstrated that CAR-T cells co-cultured with LNCaP cells exhibited 

significantly enhanced proliferation, activation (as indicated by CD69 and CD25 expression), 

and cytokine release assay (IFN-γ) compared with those co-cultured with DU 145 and mock 

cells. 

Conclusion: This new approach is efficient, economical, and scalable for isolating specific 

homogenous T cells and promoting their clonal proliferation and expansion. Furthermore, this 

method improves T cell adherence, proliferation, and functional effectiveness, offering a 

potential foundation for advancing CAR-T cell therapies aimed at solid tumors. Future research 

should concentrate on optimizing culture conditions and testing this method in preclinical 

animal models to ensure its clinical applicability and efficacy. 

Keywords: Cancer immunotherapy, CAR-T cells, clonal expansion, 2D culture system, FBS 

coating, single cell isolation 

 

Introduction 

Adoptive T-cell treatment has proved promising in cancer immunotherapy through gene-

modified T cells that express a tumor-specific T-cell receptor, also known as chimeric antigen 

receptor (CAR)-T cells.1 This therapeutic approach is effective against B-cell malignancies; 

however, its efficacy in treating solid tumors has not yet been established. Clinical trials with 

T-cell therapy have demonstrated promising outcomes in the treatment of solid tumors; 

consequently, researchers have focused on enhancing the reliability and applicability of such 

therapeutic approaches in this field.2-4  

Despite the promising clinical outcomes of CAR-T cell therapies, T-cell heterogeneity remains 

a significant challenge for the development of effective T-cell-based treatments.5 Due to 

heterogeneity of peripheral blood T lymphocytes, it might be challenging to identify a specific 

function in a specified T cell population across several types of experiments and obtain clear 

results.6 The pivotal step in adoptive cell therapy is the single-cell isolation and clonal 

expansion of human CAR-T cells. In a culture of suspended cells, isolating and separating 

individual cells remains a complex technological problem,5 with the yield, purity, and viability 

of T cells as the key challenges.7 Accordingly, developing effective culture methods for these 

cells is critical for advancing research and clinical study.8 Various strategies, including 

extracellular matrices (ECMs) in both two-dimensional (2D) and three-dimensional (3D) 

culture techniques, are being explored to enhance the efficiency of single-cell isolation and 

clonal expansion by improving cell adhesiveness and suspension cell growth.9  

Matrigel is widely used among scaffold-based 3D cell culture technologies because of its 

functional capacity to mimic the ECM.9-14 The 3D cell culture technologies are often too 

complex and expensive, and require specifically trained technical operators, which limits their 
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application to certain research centers. Moreover, particular equipment and skills needed for 

implementing and sustaining 3D cultures, and the complexity of handling cells in a 3D matrix 

pose technological obstacles that may limit repeatability.15 On the other hand, ongoing 

investigations to develop more effective 2D culture systems may enable the efficient clonal 

expansion of single T-cells. Since 2D cultures are simpler to set up and maintain, and require 

low-cost materials and equipment, they are suitable for large-scale research and laboratory 

operations.12,16 Fetal bovine serum (FBS) mimics the key aspects of the ECM while enhancing 

cell adhesion, viability, and proliferation.15,17,18 The abundance of fibronectin and vitronectin 

in FBS enhances cell adhesion and proliferation. FBS-coating of cell culture plates significantly 

improves the growth and function of suspended cells.8,15,19 The current study investigates the 

development of an easy-to-use 2D cell culture method for CAR-T cell isolation and expansion. 

This paper aims to investigate if FBS coating on surface plates improves the effectiveness of 

clonal expansion of single suspension cells, and to create a 2D model system for expanding 

CAR-T cells. After expanding the selected clone, we evaluated the functionality and 

effectiveness of this second-generation nanobody-based CAR-T cell, which targets prostate-

specific membrane antigen (PSMA). This evaluation focused on the expression of the 

activation markers on the cell surface and the cell's proliferative capacity against the LNCaP 

cell line, used as a model for prostate cancer. 

Materials and methods 

 Cell lines and cell culture conditions 

All cell lines used in this study were purchased from the National Cell Bank of Iran (NCBI), 

Pasteur Institute of Iran. We grew Jurkat E6.1 cells in RPMI-1640 (Biosera, France) 

supplemented with 10% FBS (Gibco, Life Technologies, USA), penicillin (100 IU/mL; Sigma-

Aldrich), and streptomycin (100 µg/mL; Sigma-Aldrich). Lenti-X 293T, human embryonic 

kidney 293T (HEK-293T), LNCaP (prostate-specific membrane antigen (PSMA)-positive 

human prostate cancer (PC) cell line), and DU 145 (PSMA-negative human PC cell line) were 

cultured in high-glucose Dulbecco’s Modified Eagles Medium (DMEM; Biosera, France) 

supplemented with 10% FBS, penicillin (100 IU/mL), and streptomycin (100 µg/mL). Lenti-X 

293T and HEK293T cells were used for the production of lentiviral particles and the titration 

of the produced lentiviruses, respectively. All cell lines were cultured in 95% humidity at 37 

°C and 5% CO2. 

 CAR construct 

PSMA-NB, a single-domain antibody fragment (nanobody) against PSMA, was used to confer 

tumor-antigen specificity ((kindly provided by Dr. W. M. van Weerden) in the CAR construct. 

The second-generation anti-PSMA CAR, comprised of PSMA-NB, CD8α hinge, CD8 

transmembrane, 4-1BB endodomain, and CD3-zeta signaling domain was synthesized by 

Biomatik Company (Cambridge, Canada) and subcloned into a lentiviral expression vector 

pCDH under the CMV promotor. The plasmid was then propagated in Escherichia coli (DH5α) 

and confirmed through colony PCR, restriction enzyme confirmation, and Sanger sequencing.  

 Lentivirus production  

To generate the lentivirus, 4×106 Lenti-X 293T cells were seeded into a 6-cm cell culture petri 

dish 4-5 h prior to transfection in DMEM with 10% FBS. Lenti-X293T cells were transfected 

with pCDH transgene plasmid, packaging plasmid (psPAX2), and envelope plasmid (pMD2.G) 

using a mix of polyethyleneimine (PEI) and serum-free media (DMEM). At 6 hours post-

transfection, the medium was replaced with fresh medium. After 24 h, the supernatant 
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containing the lentiviral particles was collected in conical tubes every 12 h until 48 h post-

transfection and stored at 4 °C. Flow cytometry was used to evaluate the transfection efficacy 

in the Lenti-X 293T cell line after 72 hours. To this end, green fluorescent protein (GFP) 

expression was measured by flow cytometry as a hallmark of CAR expression (Partec PAS-

III). 

 Lentivirus titration 

Different amounts (10, 20, 50, 100 and 250 µL) of the harvested virus were used to transduce 

HEK-293T cells, according to the Trono Lab protocol.20 In brief, the amounts of crude virus 

were mixed with 5 × 104 HEK-293T cells and raised to 1 mL with complete DMEM. After 48 

h, the percentage of GFP-positive cells was measured by flow cytometry. Viral titer 

(transducing units (TU)/mL) were calculated as follows: 

 Titer (
TU

mL
) =

Total number of seeded cells ×[
% of GFP−positive cells 

100
] 

Volume of non−concenstrated vector 
.  

After the calculation of virus titer, the multiplicity of infection (MOI) was also determined as 

follows: 

 MOI =
viral particles used per well

number of cells originally seeded 
.  

 

 

 Jurkat cell transduction  

To express the CAR construct in Jurkat cells, 1 × 105 cells were transduced with MOI=20 in 

complete RPMI-1640 in a 24-well plate. Flow cytometry was used to identify GFP-positive 

cells, as the indicator of CAR gene expression, after incubating cells for 72 h. 

 Evaluation of the surface expression of CAR 

To evaluate surface expression of anti-PSMA-CAR, 1×106 transduced cells were resuspended 

in 100 μL staining buffer (phosphate-buffered saline (PBS) supplemented with 2% FBS). Then, 

0.5 μg MonoRab™ rabbit anti-Camelid VHH antibody (GenScript, China) and 0.5 μg PE-

donkey anti-rabbit IgG secondary antibody (BioLegend, USA) were added in sequence, and 

incubated for 45 min at 4 °C. After washing the cells with PBS, flow cytometry was performed. 

 Limiting dilution and single-cell isolation 

Single anti PSMA CAR-T cells were isolated by serial dilution and seeded in 96-well plates. 

Then, 10 mL of a 10 cell/mL cell suspensions was prepared, 100 µL of that cell solution was 

transferred into each well of six 96-well plates and incubated at 37 °C in 5% CO2 for 10–14 

days. All wells were examined for two weeks and the single clones were transferred to a new 

well and propagated. 

Matrix preparation  
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For FBS exposure, 96-well treated cell culture plates (SPL, Korea) were pre-coated with 0.2% 

glutaraldehyde for 15 minutes to activate the hydroxyl groups of the treated surface plate, and 

were washed three times with deionized water. Next, 300 µL of FBS was added to plates coated 

with dry glutaraldehyde and left at 56 °C for 30 minutes, and then air-dried at room temperature 

for 24 hours. 21,22 Matrigel-coated plates serving as the positive control were prepared as 

follow: 40 µL of cold Corning® Matrigel® Matrix (Corning, USA) was added to each well of 

a 96-well plate and solidified at 37 °C for 45 min. For FBS/Matrigel-coated matrix preparation, 

first, FBS and Matrigel were coated, respectively, as mentioned above. Then, a 10 cells/mL 

cell suspension was prepared for isolating the single anti-PSMA-CAR-T cells by serial dilution. 

Then, 100 µL of the cell solution was transferred into each well of prepared FBS-coated, 

Matrigel-coated, and FBS/Matrigel-coated 96-well plates and incubated at 37 °C in 5% CO2. 

Until the formation of colonies, the fresh medium was added during expansion. After clonal 

expansion, cells were transferred into 24-well plates and proliferated in complete RPMI-1640 

at 37 °C in 5% CO2 for further analysis. 

 CAR-T cell activation assay 

In a 96-well tissue culture plate, 103 target cells (LNCaP and DU 145) were seeded and co-

cultured with anti-PSMA-CAR-T cells with an effector-to-target (E:T) ratio of 3:1. Anti-

PSMA-CAR-T cells were harvested after 18 and 24 h then washed with PBS. 1 ×106 cells were 

resuspended in 100 µL staining buffer containing 0.25 μg PE‐conjugated anti‐human CD69 

and PE- anti human CD25 antibody (BioLegend, USA), incubated at 4 °C for 45 min. Then, 

the target and mock T (Transduced pCDH) cells were analyzed by flow cytometry. 

 CAR-T cell proliferation assay 

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was performed to 

evaluate the proliferation rate of anti-PSMA-CAR-T cells co-cultured with target cells. To this 

end, 3 ×104 target cells were seeded per well in 100 μL of complete DMEM and incubated at 

37°C for 16 h. Then, anti-PSMA-CAR-T cells were co-cultured with target cells in an E:T ratio 

of 10:1 and 3:1 for 48 h. Next, 96-well plates were centrifuged at 500 ×g for 10 min, and the 

supernatant was gently removed. After that, 20 μL of MTT (Sigma-Aldrich, USA) solution (5 

mg/mL in PBS) was added to each well and incubated at 37 °C for 4 h. Then, formazan crystals 

were dissolved in 150 μL of DMSO, and optical density was measured at 590 nm. The 

proliferation rate was measured as follows: 

  
𝑶𝑫(𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍𝒘𝒆𝒍𝒍 − 𝒕𝒖𝒎𝒐𝒓 𝒄𝒆𝒍𝒍𝒔 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒆𝒇𝒇𝒆𝒄𝒕𝒐𝒓)

𝑶𝑫(𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒆𝒇𝒇𝒆𝒄𝒕𝒐𝒓 𝒄𝒆𝒍𝒍𝒔 − 𝒎𝒆𝒅𝒊𝒂)
× 100  

Cytokine release assay 

A 96-well tissue culture plate was inoculated with 2 × 10¹ target cells per well, namely LNCaP 

and DU 145. After 16 hours of incubation, E:T ratios of 1:10 (2 × 10² cells/well) and 3:1 (6 × 

10⁴ cells/well) were used to compare the two CAR-T and mock T cells groups To evaluate 

interferon γ (IFN‐γ) secretion, the supernatant was harvested after 24 hours and evaluated by 

an ELISA kit (Quantikine Kit; R&D Systems, Minneapolis, MN). The standard curve was 

utilized to determine the concentrations. 

Statistical analysis 

Data was analyzed in GraphPad Prism software Vs.8.0 using repeated measures two-way 

ANOVA test where appropriate. Mean relative value ± standard deviation was used to present 
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the number of T cells expansion after coculturing with targeted cell lines and the percentage of 

CAR-T cells. The results are shown as percentage in histograms. 

Results 

 Lenti-X 293T cell transfection and virus production 

Lenti-X 293T cells were transfected with pCDH-anti-PSMA-CAR, psPAX2, and pMD2.G to 

produce lentiviral vectors. After 48 h, 88.4% of Lenti-X cells expressed GFP as the reporter 

protein (Figures 1a and 1b). 

 
Figure 1. Lenti-X 293T cell transfection and GFP expression analysis 
a. Phase contrast (left) and fluorescence microscopy (right) images of Lenti-X 293T cells transfected 

with the pCDH-anti-PSMACAR construct, where GFP expression is clear. Scale bar: 100 µm. 

b. Flow cytometry histogram showing GFP expression in Lenti-X 293T cells, where 88.4% of the cells 

are GFP-positive, indicating a high transfection efficiency. 

 Lentivirus titration  

To assess the titration of lentiviral vectors, HEK-293T cells were transduced with varying 

concentrations of crude supernatant. Our results showed that 10, 50, 100, and 250 µL of crude 

supernatant of the harvested virus corresponded to 14.2%, 16.2%, 23.2%, and 44.6% 

transduction rates, respectively (Figure 2a). Then, 10 µL of crude supernatant was considered 

for viral titration. The viral titration was calculated at 1.03 × 107 TU/mL. 

 Transduction of Jurkat cells and evaluation of CAR surface expression  

Jurkat cells were transduced with a lentiviral vector at a MOI =20. Following efficient 

transduction, fluorescent microscope analysis revealed GFP-positive cells. Flow cytometry 

determined that 57.1% of Jurkat cells express GFP (Figures 2b and 2c). Next, the anti-PSMA-

CAR expression was evaluated among the GFP-positive Jurkat cell population. The results 

showed that anti-VHH antibodies are capable of detecting anti-PSMA-CAR constructs on the 

surface of 31.8% of GFP-positive Jurkat cells (Figure 2d). 
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 Figure 2. Lentivirus titration and CAR expression in transduced Jurkat cells 
 a. Flow cytometry analysis of GFP expression in HEK-293T cells transduced with different amounts 

(10 µL, 50 µL, 100 µL, and 250 µL) of harvested lentiviral supernatant. The GFP-positive rates were 

14.2%, 16.2%, 23.2%, and 44.6%, respectively. 

b.Phase contrast (left) and fluorescence microscopy (right) images of Jurkat cells transduced with the 

lentiviral vector expressing GFP. Scale bar: 20 µm. 

c. Flow cytometry histogram showing GFP expression in 57.1% of Jurkat cells following transduction. 

d. Flow cytometry histogram showing surface expression of anti-PSMA-CAR in 31.8% of engineered 

Jurkat cells.  

 

Single-cell isolation on different matrices and clonal expansion  

After preparation of FBS-coated, Matrigel-coated, and FBS/Matrigel-coated matrices, anti-

PSMA-CAR-T cells were subjected to a limitation dilution (1 cell/well). After 14 days, the 

low-count colonies were monitored and followed for 21 days to promote generation of high-

count colonies (Figure 3). We could not separate the colonies on Matrigel-coated and 

Matrigel/FBS-coated matrices because they were entrapped in 3D matrices. Contrarily, 

colonies on FBS-coated matrix did not exhibit a strong attachment; therefore, they were 

separated easily and processed later. Then, the separated cells were transferred into a 24-well 

plate and expanded until they reached a suitable count for further analysis. After expansion, 

the purity of the isolated cells was assessed in terms of the expression of the CAR construct. 

The results showed that 92.1% of isolated cells expressed GFP as an indicator of CAR 

expression (Figure 4). 
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Figure 3. Single-cell isolation and colony formation of anti-PSMA-CAR-T cells  

Phase contrast images of the anti-PSMA-CART cells on. a. FBS-coated, b. Matrigel-coated, and c. 

FBS + Matrigel-coated matrices at day 14 (left) and day 21 (right). Scale bar: 20 µm. 
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Figure 4. Transduction efficiency and GFP expression analysis in Jurkat cells 
a. Phase contrast (left) and fluorescence microscopy (right) images of Jurkat cells transduced with 

lentiviral vectors expressing GFP. High transduction efficiency is evident from widespread expression 

of GFP. Scale bar: 20 µm. 

b. Flow cytometry histogram shows that 91.2% of Jurkat cells are GFP-positive that proves the efficient 

expansion of isolated Jurkat cells. 

 

 Activation of anti-PSMA-CAR-T cells  

Surface expression of CD69 and CD25 was considered a T-cell activation marker in the co-

culture of anti-PSMA-CAR-T cells with LNCaP, DU 145 and mock cells. Our results showed 

that 21.1% and 20.2% of anti-PSMA-CAR-T cells co-cultured with LNCaP cells expressed 

CD69 and CD25 on their surfaces, respectively, those co-cultured with DU 145 and mock cells 

did not show any surface expression (Figure 5a and 5b). 

 Proliferation of anti-PSMA-CAR-T cells 

MTT assay was run to assess the relative proliferation rate of anti-PSMA-CAR-T cells co-

cultured with LNCaP and DU 145 cells in different E:T ratios. Our results showed that LNCaP 

and DU 145 cells in E:T 3:1 and 10:1 significantly improved proliferation of anti-PSMA-CAR-

T cells. (P-value <0.0001 for both) Furthermore, the proliferation of anti-PSMA-CAR-T cells 

co-cultured with LNCaP with E:T 10:1 significantly improved than those with E:T 3:1. (P-

value = 0.0002; Figure 5c) 

Cytokine release assay 

T cells were cocultured with LNCaP and DU 145 cells in E:T ratios of 10:1 and 3:1, 

respectively, to assess the capacity of anti-PSMA-CAR-T cells to secrete IFN‐γ in reaction to 

the target cells. The cytokines were tested 24 h later after collecting the supernatant. As seen 

in Figure 5, when CAR-T cells interacted with LNCaP cells, they released much more IFN-γ 

than when they interacted with DU 145 cells or mock cells. The amounts were about 900pg/mL 

in a 10:1 ratio and 400 pg/mL in a 3:1 ratio (Figure 5d). 

 



Accepted Manuscript (unedited) 

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. 

 
10 | P a g e  
 

 
Figure 5. CAR-T cell proliferation, T-cell activation marker and cytokine release assay 

a. Flow cytometry histograms show CD69 and b. CD25 expression in anti-PSMA CAR-T cells that 

are co-cultured with LNCaP cells at left side and with DU 145 cells at the right side. The percentage 

of CD69 and CD25-positive cells (PE+) is 21% and 19.6% in the CAR-T cells co-cultured with LNCaP 

and DU 145 cells and mock cells. 
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c. Proliferation rate of anti-PSMA CAR-T cells that were co-cultured with LNCaP and DU 145 cells at 

effector-to-target (E) ratios of 3:1 and 10:1. The proliferation rate is significantly high when CAR-T 

cells are co-cultured with PSMA-positive LNCaP cells compared to PSMA-negative DU 145 cells and 

mock cells. The statistical significance was represented as ***, p < 0.001 or ****, p<0.0001. 

d. Anti-PSMA CAR and fake T cells were cocultured with target cells at 3:1 and 10:1 effector-to-target 

ratios, and after 48 hours, the production of IFN-γ was assessed.T cells were measured using ELISA. 

Results were presented as means ± SD (****, p<0.0001). 

 

Discussion 

Single-cell isolation is essential for various applications, such as the development of 

monoclonal stable cell lines, the production of monoclonal antibodies, gene editing, and stem 

cell and CAR-T cell therapies.21,22 As for suspended cells, isolating and separating individual 

cells remains a complicated technique.6 

ECM regulates a diverse array of fundamental processes essential for the growth, operation, 

and stability of all eukaryotic cells.23,24 Matrigel, a commercialized matrix, is widely used for 

cell culture and expansion.23-25 Nonetheless, it has limited use in cellular biology and 

therapeutic cell manufacture due to its complicated batch-to-batch variation, lack of 

repeatability, high cost, and safety concerns.25,26 Furthermore, Matrigel is not suitable for 

physical or pharmacological modifications, making it difficult to fine-tune the matrix to 

promote the desired cell behaviors and accomplish specific biological results.10,25-27 Therefore, 

are actively pursuing the development of straightforward and effective methods for single-

clone isolation. 

Currently, a heterogeneous population of transduced CAR-T cells and non-transduced T cells 

is transferred to patients. The efficacy of CAR-T therapies can be significantly influenced by 

this heterogeneity. Consequently, additional research is required to enhance the efficiency of 

CAR-T cell manufacturing methodologies. The optimal function and expansion of these cells 

are not achieved when they are expanded under complex and suboptimal conditions. This can 

impede their capacity to face the immunosuppressive and challenging conditions that surround 

solid tumors, potentially resulting in T cell exhaustion and a loss of functionality.28,29 On the 

other hand, CAR-T cells are more likely to be able to survive in the immunosuppressive tumor 

microenvironment after being infused if they are grown in conditions that help them multiply 

and spread out evenly. This is due to the fact that T cells that are cultured in optimal conditions 

with nutrient-rich media are clonally expanded, resulting in increased survival and functional 

capacity.30 Consequently, they have a better ability to respond to the tumor microenvironment. 

Biomaterials derived from naturally occurring ECM have generated remarkable interest in 

tissue engineering and regenerative medicine.27,31,32 Numerous studies have demonstrated that 

cell adhesion in anchorage-dependent cells is mediated in vitro by the adsorption of serum 

proteins in the growth medium.9 Johannes Hackethal described several ways for isolating 

human ECM components from diverse sources and found that active serum recovered from 

ECM had significantly lower DNA remains than the Tris-NaCl separation technique. However, 

due to the complex composition of the serum, which contains numerous bioactive proteins, the 

precise methods of decellularization remain unidentified and may depend on many pathways.33 

Gabriella Rainaldi et al. investigated the role of fibronectin, vitronectin, and other ECM 

proteins in the adhesion of K562 cells to the positively charged polylysine surface. Their 

findings indicated that cells on FBS-coated plates exhibited prolonged survival and maintained 

their morphology.34 
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According to Zhang et al., cells in two-dimensional cultures are polarized such that only a 

portion of their membrane may communicate with the extracellular matrix and other cells in 

the culture. The remaining portions of the cell are exposed to the bulk culture fluid.35 In 2008, 

Gieni and Hendzel discovered that this process leads to mechanical transfer and polarized 

integrin binding, which are not normal. In two-dimensional cultures, cells are exposed to the 

same uniform concentration of growth factors, cytokines, nutrients, and membrane-bound 

cytokines as in the bulk medium. Soluble factors that affect cell motility, cell-cell 

communication, and differentiation have dynamic concentration gradients that fluctuate over 

time within living organisms.36 

FBS has long been extensively used as a crucial component in cell expansion media, largely 

owing to its capacity to promote cell adhesion and support cellular proliferation.34 Researchers 

compared the development and differentiation of primary human bone marrow MSCs 

(BMSCs) grown in conventional FBS-containing αMEM medium to a commercial serum-free 

medium. The FBS-containing media was supplemented with Fibroblast Growth Factor-2 

(FGF2), which increases cell proliferation and maintains a stem-like state.16,28 Abbasalipour et 

al. developed a simple and effective approach for enhancing the efficacy of lentiviral 

transduction in K562 cells by promoting cell adherence to the plate surface using FBS. The 

flow cytometry revealed that the transduction rate in K562 cells reached 64.5% following 

treatment with FBS on the plate.37 

Scientists developed anti-CD3 (aCD3) nanoarrays, a new platform for stimulating T cells 

which are made using site-directed protein immobilization and self-assembled nanopatterning, 

and provide precise control of ligand orientation and surface density.  ACD3 density on 

nanoarrays is linked to the activation of primary human CD4+ T lymphocytes, as demonstrated 

by CD69 expression, IL-2 production, and cell growth. Nanopatterning facilitated the 

immobilization of aCD3, which led to an unprecedented finetuning of the T cell response, and 

a much higher rate of cell activation on these surfaces than that on aCD3-coated plastics.37 

This study aimed to develop an optimized, straightforward, and economical method for 

isolating human T cells, while preserving their capacity for expansion and functionality. A 

second-generation nanobody-based CAR-T cell targeting PSMA antigen was expressed in 

Jurkat T cells using lentivirus vectors. Single CAR-T cells were effectively isolated and 

expanded using an optimized FBS-based method. Functional testing showed that the expanded 

CAR-T cells could recognize and target PSMA-expressing LNCaP prostate cancer cells.  

Increased CD69 expression in effector cells co-cultured with target cells confirmed the 

functional integrity and specificity of CAR-T cells.38 Johnson et al. observed that activation 

marker expression predicts CAR-T cell efficacy, which corroborates our findings.39 The 

proliferation assay demonstrated that the expanded single CAR-T cell clone exhibited 

significantly greater proliferation when cocultured with target cells, compared to control cells. 

In 2016, antigen-expressing target cells were found to boost CAR-T cell proliferation and 

cytotoxicity.  

Our 2D culture technique with an FBS-coated matrix is an economical and accessible approach 

for therapeutic use. This approach corroborates the previous studies indicating that mimicking 

the in vivo extracellular matrices improves cell expansion. Nevertheless, in comparison to more 

conventional two-dimensional (2D) cultures, three-dimensional (3D) systems are more 

accurate representations of the intricate architecture and relationships observed in nature. Cells 

cultured in 3D environments experience mechanical signals that more accurately mimic 

physiological conditions, along with varying amounts of oxygen, nutrients, and growth 

agents.40 All of these factors have a major impact on how cells function, from proliferation to 

migration to medication responsiveness. Improved 3D culture techniques, such as organoids 
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and custom extracellular matrices, have expanded the horizons for studying developmental and 

pathological events, elucidating molecular pathways, and potentially enhancing drug discovery 

research. This method, which mimics in vivo conditions, is however not appropriate for 

isolating T cells due to challenges in enhancing viability and isolating Matrigel.10 

Our functional experiments demonstrated that CAR-T cells can proliferate. This finding is 

similar to what Tsang et al. reported, i.e., fibronectin coatings boosted T cell proliferation and 

function and were activated against PSMA-positive LNCaP cells more than DU 145 cells.12,41 

Ghassemi et al. also found that CAR-T cell expansion in a concentrated growth factor medium 

improved engraftment and effectiveness.42 

Nonetheless, long-term challenges remain. T cell behavior is very variable, and the CAR-T cell 

population's natural heterogeneity may increase this variability further over time. This variation 

may affect the expansion uniformity and repeatability as well.5,10 Even though 2D culture may 

be a simple and economical way for cell isolation and expansion, setting up in vivo is necessary. 

Future research should concentrate on hybrid systems that combine the benefits of simple and 

affordable 2D cultures with the physiological significance of 3D matrices. Future studies are 

recommended to compare the functional assays of CAR-T cells in a 3D platform with those in 

a 2D platform. Modern imaging and single-cell analysis capabilities might help optimize 

culture conditions by revealing CAR-T cell interactions with cancer cells. Moreover, to 

translate these insights into therapeutic applications, our enhanced 2D culturing approach must 

undergo testing in preclinical settings. 

Conclusion 

In conclusion, our findings contribute to a feasible strategy for enhancing the clonal growth of 

CAR-T cells using the improved 2D culture procedures. This technique, which addresses the 

scalability and efficacy challenges, has the potential to significantly accelerate the development 

and implementation of CAR-T cell therapy, especially in solid tumors. By promoting cell 

proliferation under conditions that enhance viability and utilizing FBS as a matrix for adhesion 

and proliferation, we anticipate that the cells will exhibit enhanced performance and power 

when confronted with a cancerous cell. Furthermore, the 3D environment may be employed 

afterwards and in the clinic to maintain and improve the environment of the target cells and 

research should focus on confirmation of these results and the in vivo testing of CAR-T cells 

to ensure their functionality and therapeutic potential. 
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