Accepted Manuscript (unedited)

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.

Systematic Review

How to cite this article:

Narimani S, Rahbarghazi R, Salehipourmehr H, Taghavi Narmi M, Lotfimehr H, Mehdipour R. Therapeutic Potential of Endothelial Progenitor Cells in Angiogenesis and Cardiac Regeneration: A Systematic Review and Meta-Analysis of Rodent Models. Advanced Pharmaceutical Bulletin, doi: 10.34172/apb.025.45122

Therapeutic Potential of Endothelial Progenitor Cells in Angiogenesis and Cardiac Regeneration: A Systematic Review and Meta-Analysis of Rodent Models

Samaneh Narimani¹, Reza Rahbarghazi^{1, 2*}, Hanieh Salehipourmehr³, Maryam Taghavi Narmi², Hamid Lotfimehr², Robab Mehdipour³

¹Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran ²Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

³Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

ARTICLE INFO	ABSTRACT
Keywords: Endothelial Progenitor Cells Myocardial infarction Rodents Regenerative outcomes	Purpose : Myocardial infarction (MI), the leading cause of human mortality, is induced by a sudden interruption of blood supply. Among various stem cell types, endothelial progenitor cells (EPCs) are novel and valid cell sources for the restoration of vascularization in the ischemic tissue. The present study aimed to evaluate the regenerative properties of EPCs in rodent models of MI.
Article History: Submitted: January 04, 2025 Revised: June 04, 2025 Accepted: June 04, 2025 ePublished: June 16, 2025	Methods : A comprehensive systematic search was implemented in Cochrane Library, Embase, PubMed, Scopus, and Web of Science databases without language limitation in Sep 2024. Of the 67 papers pooled, 42 met the inclusion criteria and were subjected to multiple analyses. Results : Compared to the MI group, the overall effect size was confirmed in the groups receiving EPC with enhanced angiogenesis (SMD: 2.02, CI 95%: 1.51-2.54, $p<0.00001$; I2: 82%), reduced fibrosis (SMD: -1.48; 95% CI – 2.15, -0.81; $p<0.0001$; I2: 88%), improved ejection fraction (EF; SMD: 1.72; 95% CI – 1.21, 2.23; $p<0.00001$; I2: 87%), and fractional shortening (FS; SMD: 1.58; 95% CI – 1.13, 2.03; $p<0.00001$; I2: 82%). Data confirmed significant improvements in the cardiac tissue parameters after intramyocardial injection of EPCs. Conclusion : These data showed that EPC transplantation is an alternative therapy to ameliorate ischemic myocardium in rodents via the stimulation of angiogenesis, reduction of fibrosis, and improvement of fractional shortening and ejection fraction.

*Corresponding Authors:

Reza Rahbarghazi, Email: rezarahbardvm@gmail.com, ORCID: 0000-0003-3864-9166

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.

Introduction

Ischemic heart disease (IHD) is a global leading cause of human mortality and disability in the clinical setting.¹ Typically, MI occurs following partial or complete occlusion of a coronary artery leading to massive cardiomyocyte damage, inflammation, and subsequent fibrotic changes.² Notably, the contraction of fibroblasts and collagen fibers at the healing site can contribute to the thinning of the left ventricle (LV). Over time, the reduction of ejection fraction (EF) and lethal arrhythmias in an ischemic heart can be life-threatening.³ Currently, percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) are clinical modalities for the restoration of blood and reduction of cardiomyocyte injury.⁴ Unfortunately, these approaches are not fully effective, and the development and application of *de novo* therapeutic strategies are highly recommended.⁵

In recent decades, the discovery and application of stem cells in various pathological conditions have revolutionized regenerative medicine.⁶ It has been shown that stem cells can promote the healing of ischemic myocardium via the release of cytokines, growth factors, and direct differentiation into cardiomyocytes.^{6,7} Besides, these cells can accelerate the regeneration of injured myocardium via juxtacrine interaction and production of pro-angiogenesis factors.^{8,9}

According to recent data, it has been confirmed that EPCs are valid cell sources for restoring dysfunctional endothelium via various reparative functions, especially promoting angiogenesis and vasculogenesis.¹⁰ In this regard, EPCs alone or in combination with other stem cells or mature cells have been used in different studies to accelerate regenerative outcomes and circumvent limitations associated with the administration of single stem cell type alone.^{11,12} Proteomic analyses have proved the existence of common specific surface molecules such as CD133, CD34, vascular endothelial growth factor-2 (VEGFR-2), Tie-2, and Sca-1 between EPCs and hematopoietic stem cells.¹³ Following various pathologies and hypoxic conditions, EPCs are recruited from the bone marrow niche, the primary storage site in adults, to the circulation system.¹⁴ Circulating EPCs migrate toward the injury sites in a cytokine gradient manner where they gradually lose their stemness features (CD133 \downarrow , and CD34 \downarrow) and mature into endothelial cells (ECs; CD31 \uparrow and vWF \uparrow).¹⁵ Besides differentiation capacity, EPCs release several proangiogenesis factors (IGF-1, VEGF, HGF, FGF-2, etc.) to expedite the formation of new blood vessels in the hypoxic areas.¹⁶ Data have indicated that the injection of EPCs in several animal models of MI can improve the healing of myocardium through the stimulation of angiogenesis, regulation of inflammation, and control of extracellular matrix (ECM) remodeling.¹²

In the present systematic review, the application of EPCs in the rodent model of MI and their potential in the restoration of injured myocardium mainly via angiogenesis was explored. To the best of our knowledge, there are few reports related to systematic review and metanalysis of EPCs in humans and different animal models of MI. Most of the studies have investigated the diagnostic properties of EPCs under certain pathological conditions such as ischemic diseases in humans or there are several reposts related to separate applications of EPCs in certain MI models in animals.¹⁷⁻¹⁹ Although the reparative properties of EPCs have been proved in different MI animal models, it is imperative that data from various experiments with similar objectives be combined and assessed to minimize the possible bias and make logic in the interpretation of the obtained data.²⁰ In the last decades, rodents have been widely used for different experiments related to the MI model due to inherent advantages like small body mass and easy handling pre- and post-MI induction with minimal space and resources. Besides, researchers can have access to various rodents with similar genetic characteristics which facilitates high repeatability.²¹ It seems that data from this study can provide invaluable data about the eligibility of EPC application in the alleviation of MI in the clinical setting.

Accepted Manuscript (unedited)

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.

Material and methods

The current systematic review and meta-analysis were conducted based on the PRISMA 2020 statement guideline. The used protocol was registered in the PROSPERO database (CRD42024571517).

Search strategy

A comprehensive systematic search was implemented in Cochrane Library, Embase, PubMed, Scopus, and Web of Science databases without the limitations of language and date in Sep 2024. After the completion of the systematic search, collected articles, experiments, and contacted authors were carefully monitored and validated for subsequent evaluations. The abstracts from the international congresses were also monitored. The strategy used in this study is shown in **Supplementary Table 1**.

Study design considerations

All preclinical studies associated with the application of EPCs in rodent models of MI, including mice and rats were reviewed. Rodents with experimentally induced MI in any age in both genders were included. EPCs transplantation in human counterparts, and other species (*i.e.*, rabbits, porcine, canines, etc.), and *in vitro* experiments were excluded from the present analysis. Data related to the administration of EPCs alone, but not in combination with other stem cell types, were collected. Also, studies related to the use of EPC exosomes in rodent models of MI were not included. Articles with no access to their full texts were not considered. In **Table 1**, inclusion and exclusion criteria are outlined.

The primary outcome indicators were "angiogenesis", and "infarct size". The secondary outcome indicators were "LVEF", and "fractional shortening (FS)". For the meta-analysis, the data containing at least one of the outcomes measured between 1- and 8 weeks post-EPC transplantation were used. If studies contained more than one set of data for primary or secondary outcome analysis, the selection was done based on the more relevant and common data.

Inclusion criteria	Exclusion criteria
 Preclinical studies about EPCs as therapy on rodent models (mice and rats), with cardiac infarction in any age or gender Endothelial progenitor cells Studies including the combination therapy with EPC such as scaffold, miRNA, growth factors, and other type of stem cells Studies with CD34+ cells transplantation All experimental studies (preclinical) 	 Not an animal study Other animal study rather than rodents Not a myocardial infarction model Clinical studies on humans In vitro studies Other types of stem cells Studies with CD133+ cells transplantation Studies including combination therapy with EPC and other types of stem cells Not transplantation of EPC and just mobilization investigation EPCs-derived exosome transplantation Other study type In vitro studies Studies without any access to the full text, or studies in the other languages, and retracted studies

Table 1. Inclusion and exclusion criteria

Study selection

Once the databases were searched for the relevant papers, all collected citations were uploaded to EndNote 18 software with duplicate studies being deleted. Two separate reviewers blindly screened the titles and abstracts to

ensure the eligibility of the studies in terms of the inclusion and exclusion criteria. Any discrepancy was rechecked again by a third blind reviewer.

Data collection

The collected data from multiple search databases were organized using PRISMA guidelines. For this purpose, articles were entered into an Excel spreadsheet. The process was continued by an independent review of the selected abstracts by the same reviewers. Any disagreements were critically assessed until a precise decision was made and the opinion of a third reviewer was obtained if it was required.

Evaluation of methodological quality

Using the modified CAMARADES checklist, two independent reviewers monitored the methodological validity of the quantitative publications selected for retrieval before their inclusion in the systematic review. Again, any disagreements were resolved through consultation with a third reviewer.

Statistical analysis

The results of the selected data were analyzed using RevMan 5.4.1. Data are presented as mean \pm SD with a 95% confidence interval (CI). Statistical heterogeneity was analyzed using the I2 value and the chi-square test. In this study, p<0.05 and I2>50% were considered statistical heterogeneity. Fixed and mixed models were used for low and high heterogeneity in the parameters analysis. The subgroup analysis was performed if needed. Publication bias was assessed using funnel plots and more formally with both Begg and Mazumdar's rank correlation test (Kendall's tau) and Egger's regression test. Begg's test assesses the correlation between the effect estimates and their variances, while Egger's test examines the relationship between the effect estimates and their standard errors. A p-value of less than 0.05 was indicative of statistically significant publication bias.

Results

Description of studies and risk of bias

The flow chart for data selection and handling is presented in **Figure 1**. Here, a modified CAMARADES quality checklist was used to assess the collected experiments. Of all peer-reviewed articles, 67 declared compliances with animal welfare regulations. It is worth mentioning that random allocation to different groups was detected in 28 studies and 42 experiments expressed a conflict-of-interest statement. Furthermore, 6 articles had blinded induction of MI in the rodent models and 30 studies benefitted from both animal exclusion criteria and blind outcome assessment based on our evaluation. In the selected articles, no study declared the methodology related to sample size calculation (**Figure 2**). All articles were included for quality synthesis (**Table 2**).

Table 2. Characteristics of included and excluded studies

Author (s)	Year	Study group	Species	Sex	Age (weeks)	Weight	status	Type of Disease	Intervention	The time between injury induction and the start of medication	Administra tion route	Cell type	Markers for cell characterization	EPC count
Atluri, P. ²²	2013	1: control (coronary ligation alone, $n =$ 14), 2: implant of decellularized ECM ($n = 13$), 3: implant of ECM seeded with EPCs ($n = 12$), 4: implant of the engineered construct ($n=9$).	Wistar rat	Male	Adult	250-300 g	Healthy	MI	LAD ligation	After LAD ligation	Implanted	EPC from the bone marrow of Wistar rats' long bones	CD34, VEGFR2, DiL-Ac-LDL, isolectin, Aminoactinomyci n D	5×10^6 cells/cm 2
Burghoff, S. ²³	2010	1: Controls (n = 3), 2: Control/+ phytohemagglutinin (n = 3), 3: MI (n = 3), 4: MI/+phytohemaggluti nin (n = 2).	Wistar rat	Male	ND	350 g	Healthy	MI	LAD ligation for 2 h	4 days after LAD ligation	Intracoronar y transplantati on	EPCs from human peripheral blood	BS-1, DiL- AcLDL, vWF, CD31, CD144, CD3, CD34	1 × 10 ⁶ hEPCs in 500 μl
Chang, Z. ²⁴	2018	1: healthy control, 2: sham-operated (only strung without the ligation of the artery; PBS injection), 3: model (subjected to LAD ligation and PBS injection), 4: EPC group (injection of immunofluorescence- confirmed EPC in the MI). (n = 10/group)	Sprague -Dawley rat	Male	6 weeks	300-350 g	Healthy	AMI	LAD ligation	2-3 min surgery completion	Intramyocar dial injection	EPC from rats' peripheral blood	CD133, Flk-1	200 μL of 5 × 10 ⁵ /μl EPCs
Fang, Y. ²⁵	2018	1: experimental (ESCs injection) (n=10), 2: negative control groups (PBS only) (n=10).	Sprague -Dawley rat	Femal e	6-8 weeks	200-220 g	Healthy	AMI	Rats were injected with vitamin D3 once every 30 days (2x106 U/kg) and	Following anaesthetizing	Intramyocar dial injection	Autologous ESCs	ND	1 x 10 ⁴ ESCs in 100 μl

									received a high-fat diet containing 2% cholesterol, 3% lard oil, 0.5% sodium cholate, 0.2% propylthioura cil and 94.3% basic diet supplemented with vitamin D3 (1.25x106 U/kg) to establish acute myocardial infarction.					
Gaffey, A. C. ²⁶	2015	1: control (LAD coronary artery ligation with the injection of PBS), 2: EPCs alone, 3: STG alone, 4: STG-EPC construct. (n=41)	Wistar rat	Male	Adult	250-300 g	Healthy	MI	LAD ligation with suture	After LAD ligation	Intramyocar dial injection of EPCs alone/ Treatment with the STG-EPC construct	EPC from the bone marrow of Wistar rats' long bones	DiL-LDL, VEGFR2, CD34	7×10^5 cells in 100 µl
Gaffey, A. C. ²⁷	2019	1: control (LAD ligation with injection of PBS, n = 10), 2: EPCs alone (n = 9),3: blank STG (n = 9), 4: STG + EPC construct (n = 11).	Wistar rat	Male	Adult	250-300 g	Healthy	AMI	LAD ligation	After LAD ligation	Intramyocar dial injection of EPCs alone/ treatment with the STG-EPC construct	EPC from the bone marrow of Wistar rats' long bones	DiL-LDL, VEGFR2, CD35	7×10^5 cells in 100 µl
Quan, Z. ²⁸	2017	1: control (injection of PBS), 2: EPC (injection of PBS containing EPCs), 3: $T\beta4$ -EPC (administration of EPCs pre-treated with $T\beta4$. (n = 8/group)	Sprague -Dawley rat	Femal e	Adult	200±20 g	Healthy	MI	Permanent LAD ligation	After the establishment of MI	Intramyocar dial injection	EPC from the bone marrow of Sprague- Dawley rat's femurs and tibias	CD34, CD133, VEGFR2	2 x 10 ⁶ EPCs in 100 μl

Schuh, A. ²⁹	2012	1: injection of SDF-1a infected EPCs (n = 8) intramyocardial or intracoronary, respectively (n = 8), 2: injection of non- transduced EPCs (intramyocardial (n = 8) and intracoronary (n = 8)), 3: medium as control group (n = 10).	Sprague -Dawley rat	Femal e	Adult	200-250 g	Healthy	MI	LAD ligation for 90 min	90 min after LAD	Intramyoca rdial and intracoronar y	EPC from Sprague- Dawley rats' spleen	PECAM1, vWF	1 x 10 ⁶ EPCs in 100 μl
Schuh, A. ³⁰	2008	1: BrdU-labelled EPCs ($n = 12$), 2: SDF-1a ($n = 8$), 3: EPCs+SDF-1a ($n = 8$), 4: (placebo control) only culture medium ($n = 12$).	Sprague -Dawley rat	Femal e	Adult	200-250 g	Healthy	AMI	LAD ligation	4 weeks after LAD ligation	Intramyocar dial injection	EPC from human peripheral blood	Dil-Ac-LDL, VEGFR2, lectin, vWF	1 x 10 ⁶ EPCs in 100 μl
Sen, S. ³¹	2010	1: EPCs transduced by AAV-IGF-1, 2: or AAV-lacZ.	Sprague -Dawley rat	Male	7- 8 weeks	ND	Healthy	MI	LAD ligation	Immediately after LAD ligation	Intramyocar dial injection	Autologous EPC from peripheral blood	Cell culture only	$\begin{array}{c} 1 \times 10^4 \\ \text{cells in} \\ 20 \ \mu l \end{array}$
She, Q. ³²	2012	1: Dil-ac-LDL fluorescence-labeled p6HRE-CMV- VEGF165-transfected EPCs, 2: pCMV- VEGF165-transfected EPCs, 3: EPCs, 4: normal saline, 5: sham surgery (control). (n = 10/group)	Sprague -Dawley rat	Male	Adult	180-230 g	Healthy	AMI	Permanent LAD ligation	After the establishment of MI	Tail vein injection	EPC from the bone marrow of Sprague- Dawley rats' femurs	CD34, CD133, VEGFR2, Dil-ac- LDL	2 x 10 ⁷ cells/ml
Zhao, Y. ³³	2018	1: sham (surgery without LAD ligation), 2: EPC (EPC re-suspended in EGM-2), 3: Tβ4-EPC (Tβ4 pre-treated human EPCs), 4: control blank EGM-2 without cells. (n = 40)	Sprague -Dawley rat	Male	8 weeks	200-250 g	Healthy	MI	LAD ligation	After LAD ligation	Intramyocar dial injection	EPC from human peripheral blood	VE-cadherin, KDR, CD34, AC133, Dil-LDL, lectin	1 x 10 ⁶ in 150 μl

Boyle, A. J. ³⁴	2005	1: (MI, n=5) no treatment, 2: (ACE/BB, n=5) quinapril and metoprolol in drinking water, 3: (EPCs, n=5) human CD34+ cells, 4: (ACE/BB + EPCs, n=5) quinapril, metoprolol, and EPCs.	Rowett (mu/mu) athymic nude rat	Male	10 weeks	ND	Nude	AMI	LAD ligation	2 days after LAD ligation	Intravenous injection	CD34+ cells from human peripheral blood	CD34	2 x10 ⁶ cells
Chaudeurge, A. ³⁵	2012	1: iron-loaded EPCs, and magnetic guidance ($n = 14$), 2: iron-loaded EPCs, without magnetic guidance ($n = 10$), 3: culture medium alone ($n = 7$).	Wistar rat	Femal e	ND	250 g	Immuno compete nt	MI	LAD ligation for 30 min, followed by 20 min of reperfusion + aorta cross- clamping	20 min after LAD ligation	Intramyocar dial injection	EPC from human umbilical cord blood	CD31, CD144, VEGFR2, vWF	5 x10 ⁵
Demetz, G. ³⁶	2017	1: IGF-2-transfected EPC-derived cells, 2: vector-only- transduced EPCs, 3: Control (PBS only).	Athymic nude rat	Male	6- 8 weeks	ND	Nude	AMI	LAD ligation for 30 min	30 min after LAD ligation	Intramyocar dial injection	EPC from human umbilical cord blood	CD34	1×10^{6} cells in 100 µL
Frederick, J. R. ³⁷	2010	1: control (n = 22), 2: ECM alone (ECM, n = 13), 3: ECM stimulated with SDF (ECM+SDF, n = 11), 4: ECM seeded with cells but not activated with SDF (ECM+EPC, n = 15), 5: ECM seeded with EPCs and activated with SDF (EPCM, n=21).	Lewis rat	Male	ND	250-300 g	Healthy	MI and progress ion to cardiom yopathy	LAD ligation	Following LAD ligation	Sutured to the anterolateral LV	EPC from Lewis rats' bone marrow	Dil-Ac-LDL, I- isolectin B4, CD3, 7AAD, CD45, VEGFR2, CXCR4	ND
Li, H. ³⁸	2018	1: control (n = 22), 2: blank vector (n = 24), 3: miR-126-3p transfection (n = 20).	Nude rat	ND	ND	200-250 g	Nude	ICM (Ischem ic Cardio myopat	LAD ligation	4 weeks after LAD ligation	Intramyocar dial injection	EPC from human peripheral blood	Ac-LDL, CD34, CD133	3 × 10 ⁶ EPCs

								hy Mada)						
Mehmood, A. ³⁹	2015	1: serum-free medium injected, 2: untreated EPCs transplanted, 3: DZ treated EPCs (DZ EPCs) transplanted. (n = 6 survived rats in each group)	Wistar rat	Male	ND	200-250 g	Healthy	MI	Permanent LAD ligation	Immediately after LAD ligation	Intramyocar dial injection	EPC from bone marrow	CD34, VEGFR2, eNOS, vWF, VE- cadherin	10 ⁶ EPCs in 70 μl
Li, S. H. ⁴⁰	2015	1: Control (PBS injection), 2: EPCs, 3: transfection group (hTERT-EPCs).	Sprague -Dawley rat	Male and Femal e	4 weeks	80-100 g	Healthy	MI	LAD ligation for 1 h	ND	Intramyocar dial injection	EPC from the bone marrow of SD rats Femur, humerus, tibias	CD31, CD34, CD133, VWF, FLK-1	ND
Lian, F. ⁴¹	2008	1: the implantation (n = 60) received Dil- labelled EPCs, 2: the control (n = 60) received IMDM.	Sprague -Dawley rat	Male	8-10 weeks	300-350 g	Healthy	AMI	LAD ligation	After LAD ligation	Intramyocar dial injection	Autologous EPC from rats' peripheral blood	CD31, CD34, VWF, FLK-1, Ac- LDL	2×10^5 EPCs
Poh, K. K. ⁴²	2020	1: T β 4-treated EPCs (n = 7), 2: non-T β 4 treated EPCs (n = 6), 3: medium alone injected (n = 6).	Zucker diabetic fatty rat	ND	20 weeks	ND	Diabetic	AMI	Permanent LAD ligation	10 min after MI	Intramyocar dial injection	EPC from blood collected from cardio-puncture of Zucker diabetic fatty rats	CD34, KDR	$\begin{array}{c} 1\times 10^6 \\ \text{in } 200 \\ \mu L \end{array}$
Yao, Y. ⁴³	2011	a) MI (n=60): 1: SPIO-labeled EPCs, 2: unlabeled EPCs, 3: PBS, b) sham MI group (n=10).	Sprague -Dawley rat	ND	ND	250±30 g	Healthy	AMI	LAD ligation	After LAD ligation	Intramyocar dial injection	EPC from Sprague– Dawley rats tibias and femurs	KDR/Flk-1, eNOS, CD31, UEA-1-lectin, Ac- LDL-Dil, CD34	1×10 ⁶ EPCs
Garikipati, V. N. ⁴⁴	2015	1: GFP+ WT- BMPAC (n = 22), 2: IL-10 KO-BMPAC (n = 12) BMPAC with or without miR-375 knockdown.	Wild- type and IL-10 knockou t mice of C57BL/ 6J backgro und	Male	8 weeks	ND	Wild- type and IL-10 knockou t	AMI	LAD ligation	Immediately after LAD ligation	Intramyocar dial injection	EPC from wild- type and IL-10 knockout mice of C57BL/6J background bone marrow	Cell culture only	1×10^5 cells in 15 µL
Ahmadi, A. ⁴⁵	2014	1: GFP+ CACs, 2: collagen matrix only, 3: GFP+ CACs + collagen	C57BL6 /J mice	Femal e	9 weeks	ND	Healthy	MI	LAD ligation	1 week after MI	Ultrasound- guided closed-chest procedure	Circulating angiogenic cells (CACs) from eGFP mice	CD34, CD133, c- kit, CXCR4	5×10^5 cells in $50 \ \mu L$

Brunt K R ⁴⁶	2012	matrix, 4: PBS (Sigma) as control.	Nude	Femal	ND	18-20 g	Nude	MI	Permanent	At the time of	intramyocar dial injection	(C57BL/6-Tg (CAG-EGFP)) bone marrow	Cell culture only	5 x10 ⁵ in
	2012	Akt EPCs, 4: HO-1 EPC, 5: Akt/HO-1 EPCs.	mice	e		10 20 5			LAD ligation	occlusion	dial injection	EPCs from human peripheral blood		15 μL
Chen, X. ⁴⁷	2013	1: sham (n = 15), 2: medium (n = 15), 3: lenti-eNOS (n = 15), 4: control EPCs (n = 15), 5: eNOS-EPCs (n = 15).	C57BL/ 6 mice	Male	6-10 weeks	ND	Healthy	AMI	LAD ligation	1 h after MI	Intramyocar dial injection	EPC from C57BL/6 mice bone marrow	CD34, CD133, KDR, CD45	1 × 105 cells in 20 μL
Cheng, Y. ⁴⁸	2012	1: PBS (vehicle, $n = 12$), 2: PBS containing EGFP- EPCs (EPC, $n = 18$), 3: PBS containing recombinant human EPO (EPO, $n = 12$), 4: PBS containing EGFP-EPCs and recombinant human EPO (EPC + EPO, $n = 18$).	Wild- type BALB/c mice	Male	12-14 weeks	ND	Healthy	MI	Permanent LAD ligation	Before the heart was replaced into the intrathoracic space	Intramyocar dial injection	EPC from the bone marrow of EGFP- transgenic BALB/c mice tibias and femurs	UEA-1, ac-LDL, CD34, Flk	5 × 10 ⁴ cells in 15 μL
Hu, C. H. ⁴⁹	2010	1: EPC (n = 16), 2: control (medium, n = 17).	Wistar rat	Male	ND	191±7.5 g	Healthy	AMI	LAD ligation	Immediately after LAD	Intramyocar dial injection	EPC from human umbilical cord blood	CD34, CD133, KDR, Dil-Ac- LDL, UEA-l	$\begin{array}{c} 1\times 10^6\\ \text{cells in}\\ 100\ \mu\text{L} \end{array}$
Iwasaki, H. ⁵⁰	2006	1: low group, 2: mid group, 3: high group CD34+ cells resuspended with PBS, 4: PBS without cells. (n =12/group when the first patient's cells were used; n = 4/group for the second patient's cells)	Athymic nude rat	Femal e	7-8 weeks	130-145 g	Nude	MI	LAD ligation	20 min after MI	Intramyocar dial injection	CD34+ cells from human peripheral blood	CD34, CD133, KDR, CD45, CD31, VE- cadherin, SMA	1×10^{3} or 1×10^{5} or 5×10^{5} cells in 120 µL

Li, H. Q. ⁵¹	2013	1: saline without cells or with non- preconditioned EPC (control group), 2: E2 preconditioned EPC (E2 group), 3: AMD3100 treated EPC (AMD group), or 4: EPC pre-treated with E2 plus AMD3100 (E2+AMD group). (n= 11)	BALB/ C mice	Femal e	6 weeks	ND	Healthy	AMI	LAD ligation	3 days after LAD ligation	Intravenous injection	EPC from the bone marrow of BALB/C mice tibias and femurs	DiI-Ac-LDL, lectin, VEGFR-2, Sca-1	3 × 10 ⁶ cells
Cheng, Y. ⁵²	2013	1: PBS (n=12), 2: EPCs (n=12), 3: PBS + wortmannin (n=6), 4: EPCs + wortmannin (n=6).	BALB/ C mice	Male	12-14 weeks	ND	Healthy	AMI	LAD ligation	After LAD ligation	Intramyocar dial injection	EPC from the bone marrow of Balb/c mice tibias and femurs	DiI-Ac-LDL, UEA-1 lectin, CD309, CD34	$\begin{array}{c} 5\times 10^4 \\ \text{cells in} \\ 15 \ \mu\text{L} \end{array}$
Hamada, H. ⁵³	2006	1: WT E2+ (WT BMT to WT mouse with E2 pellet (n = 12)), 2: WT E2- (WT BMT to WT mouse with placebo pellet (n = 12)), 3: ER α KO E2+ (ER α KO BMT to WT mouse with E2 pellet (n = 8)), 4: ER β KO E2+ (ER β KO BMT to WT mouse with E2 pellet (n = 8)).	C57BL6 /J mice	Femal e	9-10 weeks	ND	Wild- type mice underwe nt Ovariect omy at Day -28, together with splenect omy at day -7. Seven Days later (day 0), animals underwe nt MI surgery.	AMI	Permanent LAD ligation	Immediately after MI surgery	Intravenous injection	EPC from the bone marrow of mouse tibias and femurs	Cell culture only	5×10^5 cells
Botta, R. ⁵⁴	2004	1: CD34+ cells, 2: MNCs, 3: CD34+ KDR+, 4: CD34+ KDR- cells after MI, 5: Sham, 6: PBS	NOD- SCID mice	Male	7-9 weeks	ND	NOD- SCID	MI	LAD ligation	After LAD ligation	Intramyocar dial injection	Human umbilical cord blood cd34+	CD34, HPCA-2, KDR+, KDR-	$ \begin{array}{c} (2 \times 10^5 \\ \text{CD34+} \\ \text{cells or} \\ \text{MNCs; } 2 \\ \times 10^3 \end{array} $

		control. (n = 4- 9/group)									-			CD34+K DR+ or CD34+K DR- cells) in 15 µl
Deutsch, M. A. ⁵⁵	2020	1: ECFCs, 2: saline solution.	(SCID)b eige mice	Male	8-12 weeks	ND	SCID	AMI	LAD ligation	Immediately after LAD ligation	Intramyocar dial injection	Endothelial colony-forming cells (ECFCs) from human peripheral blood	CD34, CD105, CD144, CD45, vWF, VEGF-R2, Flt1, Flt4, Tie-2, CD146	5×10^{3} cells in 15 µL
Moldenhauer, L. M. ⁵⁶	2015	1: PBS (MI), 2: EXnaEFCs (expanded for 6–8 days) in PBS, 3: control (Control rats did not undergo surgery). (n = 3– 6/group).	CBH- Rnu rat	Male	ND	ND	Healthy	AMI	Permanent LAD ligation	After LAD ligation	Transepicar dial injection	Primary HUVECs from human umbilical veins	CD34, CD117, CD133, CD31, CD144, CD146, VEGFR2, CD14, CD38, CD45, IL3RA, Dil-Ac- LDL, UEA-1 lectin	1 × 10 ⁶ cells in 100 μL
Gunetti, M. ⁵⁷	2011	1: sham-operated, 2: PBS 4 h after CAL (CAL+PBS), 3: BMbCD34+ cells 4 h after CAL (CAL+BMbCD34+), 4: BMbCD34+ cells 4 h after CAL, and 5: BMeCD34+ cells 7 days after CAL (CAL+BMbeCD34+). (n = 61)	Non- obese diabetic (NOD)/ SCID mice	Male	ND	20-23 g	NOD/S CID	AMI	Permanent Left coronary artery ligation (CAL)	4 h after the MI	Percutaneou sly injection into LV	CD34+ from healthy donors' bone marrow	CD34, CD14, CD31, CD105, KDR, CD146	0.3×10^6 cells in 100 µL
Saucourt, C. ⁵⁸	2019	1: sham-operated, 2: placebo (PBS/2% HSA alone), 3: bCD34+ SC (basal- CD34+), 4: eCD34+ (expanded cells).	Athymic rat	Male	least 9 weeks	247-339 g	Nude	AMI	Left anterior descending coronary artery ligation (CAL)	1 week after CAL	Intramyocar dial injection	bCD34+ or eCD34+ cells from healthy donors' peripheral blood	CD133, CD34, CD45, CD14, CD56, CD2, CD3, CD19, CD20, CD15	5 × 10 ⁵ cells in 100 μL
Sheng, Z. ⁵⁹	2018	4 groups [1: AMI, 2: EPCs treatment, 3: TWEAK pre-treated EPCs, 4: sham; n=8/group] or 6 groups (1: AMI, 2:	C57Bl/6 mice	Male	10-12 weeks	20-22 g	Healthy	AMI	LAD ligation	15 min after LAD ligation	Intramyocar dial injection	EPC from C57Bl/6 mice tibiofibular bone marrow	CD34, KDR, CD45, CD133, CD146	$\begin{array}{c} 1\times 10^6\\ \text{cells in}\\ 30\ \mu L \end{array}$

		EPC treatment, 3: TWEAK pre-treated EPC group, 4: TWEAK pre-treated Fn14 siRNA EPC, 5: TWEAK pre-treated Bay 11-7082 EPC, 6: sham; n=10/group).												
Sheng, Z. ⁶⁰	2013	1: basal medium without hEPCs (Con group), 2: containing non-PC hEPCs (EPCs group), 3: BK PC hEPCs (BK PC group), 4: BK PC hEPCs pre-treated with HOE140 (BK PC/HOE group), 5: LY294002 (BK PC/LY group), 6: L- NAME (BK PC/LN group). A total of 112 nude mice were used in this experiment. During the operation, 28 mice died. This experiment was divided into 2 subgroups, the day 2 group (n = 50) and the day 10 group (n = 62). Each subgroup had 7 groups; 5-6 live nude mice were used in each group.	BALB/ C nude mice	Male	ND	20-22 g	Nude	AMI	LAD ligation	10 min after LAD ligation	Intramyocar dial injection	EPC from human umbilical cord blood	DiI -Ac-LDL, UEA-1-lectin, CD34, B1R, B2R, CD133, VEGFR2	1 × 10 ⁶ cells in 30 μL
Sheng, Z. L. ⁶¹	2015	1: basal medium without hEPCs (Con group), 2: basal medium containing non-PC hEPCs (EPCs group), 3: bradykinin- preconditioned hEPCs (BK-PC-hEPCs; BK	Nude mice	Male	ND	20-22 g	Nude	AMI	LAD ligation	10 min after LAD ligation	Intramyocar dial injection	EPC from human umbilical cord blood	Dil-Ac-LDL, UEA-1-lectin, CD34, B1R, B2R, CD68, VEGFR2, CD45, CD105	2×10^6 cells in $30 \ \mu L$

		PC group), 4: BK-PC- hEPCs pre-treated with HOE140 (BK PC/HOE group), 5: LY294002 (BK PC/LY group), 6: sham group.												
Shintani, S. ⁶²	2006	1: the combination therapy group (n = 9) Human CD34+ cells and phVEGF2 resuspended with saline, 2: the cell therapy group (n = 8) CD34+ cells and empty plasmid, 3: the gene therapy group (n = 9) CD34- cells and phVEGF2, 4: the control group (n = 8) CD34- cells and empty plasmid.	Athymic nude rat	Femal e	6-8 weeks	ND	Nude	MI	LAD ligation	30 min after induction of MI	Intramyocar dial injection	CD34+ cells from human peripheral blood	CD34	1 × 10 ⁴ cells in 100 ml
Sondergaard, C. S. ⁶³	2009	1: CD34+ cells (n = 5), 2: Transplantation control (medium only (mock), n = 4).	Athymic nude rat	Male	5-10 weeks	ND	Nude	AMI	LAD ligation	After LAD ligation	Intramyocar dial injection	CD34+ cells from human peripheral blood	CD34	2×10^{6} cells in 100 µL
Stein, A. ⁶⁴	2010	1: eEPC (n = 9), 2: eEPC + Epo (n = 9), 3: Epo (n = 8), 4: control (PBS alone, n = 8).	Athymic nude rat	Male	ND	ND	Nude	AMI	LAD ligation for 30 min	After reperfusion was initiated by the release of the ligation	Intramyocar dial injection	eEPCs from human umbilical cord blood	CD34	1 × 10 ⁶ cells in 150 μL
Sun, Z. ⁶⁵	2008	ACPs or culture media into infarcted myocardium (1: M- Cell, $n=9$; 2: M- Control, $n=5$) or into the coronary artery via the aorta (3: C- Cell, $n=9$; 4: C- Control, $n=5$). 2 rats died during the LAD ligation procedure, and 2 rats died shortly	Athymic nude rat	Male	ND	200-250 g	Nude	MI	LAD ligation	6 days after LAD ligation	Intramyocar dial injection and intracoronar y cell implantation	Angiogenic cell precursors (ACPs) from human peripheral blood	CD117, CD31, CD34	1.5×10^6 cells in 50 µL

		after the procedure. 3 rats were excluded from the study because they did not meet the infarct size criteria for inclusion (2 because the scars were too small; 1 because the scar was too large). 2 rats died following intramyocardial media injection, and 1 rat died following intramyocardial cell injection.												
Thal, M. A. ⁶⁶	2012	1: mouse EPCs, 2: CD34+ cells, 3: Saline group (PBS only).	Nude mice	ND	8-10 weeks	ND	Nude	AMI	LAD ligation	Immediately after LAD ligation	Intramyocar dial injection	Lin- Sca1+CD31+ EPCs from femurs, tibiae, and hip-bones bone marrow of C57BL/6J or eGFP transgenic mice human CD34+ cells	CD3e, CD11b, B220, Ter119, Ly6G/C, Sca-1, CD31	$\begin{array}{c} 2.0\times10^5\\ mouse\\ EPCs,\\ 2.5\ or\ 5\\\times10^4\\ CD34+\\ cells\ in\\ 20\mu L \end{array}$
Xin, Z. ⁶⁷	2008	1: CEPC, 2: BM-EPC, 3: control (EBM-2 only). (n = 10/group)	Sprague -Dawley rat	Femal e	ND	250-300 g	Healthy	AMI	Permanent LAD ligation	1 h after LAD ligation	Intramyocar dial injection	Circulating EPC (peripheral blood); and BM-EPCs from SD rats' femurs and tibias	vWF, Dil-Ac- LDL, UEA-1, CD14, CD133	$\begin{array}{c} 1\times10^6\\ \text{cells in}\\ 200\ \mu\text{L} \end{array}$
Xue, Y. ⁶⁸	2020	2: sham, 2: CME, 3: CME+EPC (low), 4: CME+EPC (high) (n = 8/group)	Wistar rat	Male	ND	220-240 g	Healthy	Coronar y artery microe mboliza tion (CME)	A microembolis m suspension was injected into the LV during 10- s occlusion of the ascending aorta	During 10- s occlusion of the ascending aorta	Injected into the LV	EPCs from the bone marrow of rats' femurs and humerus	VEGFR2, CD34	$\begin{array}{c} 2\times10^6\\ \text{or } 2\times\\ 10^5\text{ cells}\\ \text{in } 300\\ \mu\text{L} \end{array}$

Yang, K. ⁶⁹	2020	1: negative control, 2: miR-125b mimic. (n = 6–8/group)	Mice	ND	ND	ND	Healthy	MI	LAD ligation	After LAD ligation	Intramyocar dial injection	EPC from the mouse bone marrow	Cell culture only	$\begin{array}{c} 2\times10^5\\ \text{cells in}\\ 20\ \mu\text{L} \end{array}$
Yao, Y. Y. ⁷⁰	2013	1: sham surgery, 2: medium-treated group, 3: Ad.Null- hEPCs-treated group, 4: Ad.hTK-hEPC- treated group. (n = 12/group)	Nude mice	Male	ND	20-22 g	Nude	AMI	LAD ligation	10 min after LAD ligation	Intramyocar dial injection	EPC from Human umbilical cord blood	Dil-Ac-LDL, UEA-1-lectin, VEGFR2, CD34, BK B2 receptor	5×10^{5} cells in 30 µL
Yoo, C. H. ⁷¹	2013	1: WT, 2: MI, 3: MI + Cell. (n=6/group were used for morphological analysis)	BALB/c AnNCrlj Ori mice	Male	8 weeks	ND	Nude	MI	LAD ligation	After occlusion	Injected around the occluded region	CD34+ EPCs (2F-hEPCs) from human dental pulp- derived iPS cells	CD105, CD31, CD34, calponin, SM22a, vWF, VE-cadherin, elastin, a-SMA	1×10^{6} cells in 20 µL
Yuan, Z. Z. ⁷²	2018	1: saline without cells or with non- preconditioned EPCs (control group), 2: E2- preconditioned EPCs (E2 group), 3: EPCs preconditioned with E2 and MMP (E2 + MMP group), 4: EPCs preconditioned with E2 and AMD (E2 + AMD group), 5: EPCs preconditioned with E2 and MMP plus AMD (E2 + MMP + AMD group).	BALB/ C mice	Femal e	6 weeks	ND	Wild- type mice underwe nt ovariect omy at day - 28.	AMI	LAD ligation	3 days after LAD ligation	Intravenous injection	EPC from the bone marrow of mice tibias and femurs	Dil-Ac-LDL, lectin 1, Sca-1, Flk-1	3 × 10 ⁶ cells
Zhou, W. ⁷³	2021	1: EPC wt, 2: EPC Rab, 3: MI.	Mice	Male	ND	ND	Healthy	MI	LAD ligation	After the MI model was successfully conducted	Intramyocar dial injection	EPCs from mouse bone marrow	Dil-AcLDL, UEA-1, CD34, VEGFR2	$\begin{array}{c} 4\times10^5\\ \text{cells in}\\ 10\ \mu\text{L} \end{array}$
Atluri, P. ⁷⁴	2014	1: control (coronary ligation alone), 2: implant of a fibrin patch without cells (10 mg/mL [FIB 10] or 20 mg/mL [FIB	Wistar rat	Male	Adult	250-300 g	Healthy	AMI	LAD ligation	Following LAD ligation	Intramyocar dial injection +implant	EPC from the bone marrow of syngeneic Wistar rats' long bones	Dil-LDL, VEGFR2, CD34	$\begin{array}{c} 17 \text{ x } 10^6 \\ \text{or } 7 \times \\ 10^6 \\ \text{EPCs/m} \\ \text{L with} \\ \text{fibrin or} \end{array}$

		20]), 3: injection of EPCs (IC, 2 million cells/in 250 mL PBS), or 4: implant of EPC- fibrin hydrogel (a: 10 mg/mL fibrin 7 × 106 EPCs/mL, b: 10 mg/mL fibrin 17 × 106 EPCs/mL, c: 20 mg/mL fibrin 7 × 106 EPCs/mL, d: 20 mg/mL fibrin 17 × 106 EPCs/mL).												2x10 ⁶ EPCs/in 250 mL PBS
Yang, J. ⁷⁵	2011	1: KSL, 2: KL, 3: SL, 4: CD34+ cells, 5: PBS control.	B6;129S Gt [ROSA] 26Sor/J mice	Male	8–12 weeks	ND	Healthy	MI	LAD ligation	3 days after MI	Systemicall y injected	KSL, KL, SL, and CD34+ cells (EPCs) from the bone marrow of mouse hipbones, femurs, tibiae, shoulder bones, ulnas, vertebrae, and sternum	CD34, lineage markers, Sca-1, c- Kit, streptavidin	5 x 10 ⁴ SL, KL, KSL and CD34 cells together with PBS control
Park, J. H. ⁷⁶	2011	1: EPC, 2: PBS, 3: sham.	C57BL/ 6J mice and ubiquito us eGFP- expressi ng transgen ic mice with a C57 backgro und	ND	6-10 weeks	ND	Healthy	AMI	LAD ligation	After induction of MI	Intramyocar dial injection	EPCs from mouse bone marrow	Cell culture only	5 x 10 ⁵ cells in 50 μl
Huang, H. ⁷⁷	2013	1: PBS, 2: EPCs, 3: EPC null, 4: EPCDll- 4+, 5: EPCDll-4 (n = 20/group)	C57BL/ 6 mice	ND	8 weeks	20±2 g	Healthy	MI	LAD ligation	1 week	Intravenous injection in the tail vein	EPC from the bone marrow of C57BL/6 mice tips of the hind legs	KDR, hAC133, hCD31, hCD34	5 x 10 ⁶ /100 μl cells in PBS or 50 μl

Accepted Manuscript (unedited) The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.

														PBS only
Li, X. ⁷⁸	2019	1: miR-326-5p-EPCs, 2: miR-326-5p-EPCs+ Wnt1 agonist, 3: EPCs-NC, 4: PBS/control. (n = 15/group)	C57BL/ 6 mice	Femal e	8-10 weeks	ND	Healthy	AMI	Permanent LAD ligation	Following LAD ligation	Intramyocar dial injection	EPC from the bone marrow of C57BL/6 mice femurs and tibias	CD11b, CD31, CD45, CD133, VE-cadherin, Flk- 1, DiI-ac-LDL	ND
Zhang, B. F. ⁷⁹	2019	1: SO (sham- operated), 2: MI control, 3: MI+EPC, 4: MI+EPC+M, 5: MI+(Fe-EPC), 6: MI+(Fe-EPC) +M; M: magnet. (n=10/group)	Sprague -Dawley rat	Femal e	ND	200-250 g	Healthy	MI	LAD ligation	1 week	Intravenous injection in the tail vein	EPC from the bone marrow of SD rats' long bones	Dil-Ac-LDL, UEA-1, CD133, CD34, VEGFR	5 x 10 ⁶ cells in 100 μl
Xiao, Q. ⁸⁰	2019	1: CON-EPC-Null, control EPCs modified by control adenovirus, 2: DM-EPC-Null, diabetic EPCs modified by control adenovirus, 3: DM-EPC-Shh, diabetic EPCs modified by Shh-overexpressing adenovirus, 4: PBS. (n = 5/group)	C57BL/ 6 mice	Male	6-8 weeks	20±2 g	Diabetic	AMI	LAD ligation	Immediately after LAD ligation	Intramyocar dial injection	EPC from the bone marrow of C57/B6 mice tibias and femurs	Dil-Ac-LDL, UEA-1, CD31, CD34	2 x 10 ² cells
Sun, Y. Y. ⁸¹	2014	1: PBS, 2: DiI- labelled WT, or 3: per2-/- mouse bone- marrow EPCs	C57BL/ 6 mice	Male	8–12 weeks	25-30 g	Healthy	MI	LAD ligation	Immediately after surgery	Intramyocar dial injection	EPC from the bone marrow of WT and per2-/- mice tibias and femurs	Dil-Ac-LDL, UEA-1, CD34, CD45, Flk1	5 x 10 ⁵ cells in 30 μl
Wu, Y. ⁸²	2006	1: DiI-EPCs pre- treated with anti- CD18 (EPCs-CD18 mAb group), 2: control IgG (EPCs- IgG group), 3: equal volume of PBS (PBS group), 4: sham group	Athymic nude mice	Femal e	8-10 weeks	ND	Nude	AMI	Permanent LAD ligation	1 hour after MI	left ventricular intracavity injection	EPC from the bone marrow of Balb/C mice and SD rats tibias and femurs	CD11a, CD11b, CD18, CD31, CD34, c-kit, Tie- 2, VE-cadherin, Flk-1, DiI-Ac- LDL	0.5 x 10 ⁶ cells

		underwent open chest surgery without coronary artery.												
Chang, Z. T. ⁸³	2013	MI: a) EPC treatment (n = 28): 1: EPC, 2: EPCs transfected with T β 4 short hairpin RNA (shRNA), 3: EPCs transfected with scrambled (SC) shRNA, 4: T β 4; b) control (MI, n = 28)/ Ischemia-reperfusion: (n = 40).	Sprague -Dawley rat	Male	7-10 weeks	230-350 g	Healthy	MI, ischemi c reperfus ion	LAD/LAD ligation for 40 min	ND/35 min after MI	Intramyocar dial injection	Peripheral blood EPCs SD rats' peripheral blood	Dil-LDL, lectin, VE-cadherin, KDR, CD34, AC133	5 × 10 ⁶ cells in 150 μL
Hu, C. H. ⁸⁴	2009	1: EPC group (n = 20), 2: control group was injected with equivalent cell-free medium, n = 20), 3: sham group (in the sham group, the LAD was left unligated, n = 15).	Wistar rat	Male	ND	190±8 g	Healthy	AMI	LAD ligation	After LAD ligation	Intramyocar dial injection	EPC from human umbilical cord blood	DiI-Ac-LDL, lectin	1 × 10 ⁶ cells in 100 μL
Mackie, A. R. ⁸⁵	2012	Treatment groups included 1: Saline (n = 16), 2, 25K unmodified CD34 cells (CD34NM) (n = 8), 3: 25K CD34 cells transfected with an empty vector (CD34EV) (n =7), 4: 25K CD34 cells transfected with an Shh-coding vector (CD34Shh) (n = 13), 5: 25K CD34NM and 200ng Shh protein (n=7), 6: 50K CD34NM (n = 9).	Nude/J or NOD- SCID mice	Male	8 weeks	ND	Nude/J or NOD- SCID	AMI	LAD ligation	Following verification of induced ischemia	Intramyocar dial injection	CD34+ cells from human peripheral blood	CD34	2.5×10^4 (25K) cells/mo use, or 5.0×10^4 (50K) in $2 - 10 \ \mu l$

Murasawa, S.I. ⁸⁶	2005	1: intramyocardial (intramuscular) EPC injection, 2: systemic EPC injection, 3: control (PBS injection). (n = 5/group)	Athymic nude rat	ND	8 weeks	135-140 g	Nude	MI	LAD ligation	After operatively induced MI	Intramyocar dial (intramuscul ar) or systemic injection	EPC from human peripheral blood and cultured with H9C2 Cell Line	ND for peripheral blood/ CD31, CD34 for cultured EPC	$\begin{array}{c} 1\times10^6\\ \text{or } 2.5\times\\ 10^5 \text{ cells}\\ \text{in } 25\ \mu\text{L} \end{array}$
Rong, Q. ⁸⁷	2007	1: MI surgical manipulation (n = 3), 2: sham surgery (n = 3) was injected with the same number of nonviral infected EPCs (normal intervened); 3: MI + HBV treated EPC (n=15).	Sprague -Dawley mice	Male	ND	150-250 g	Healthy	MI	LAD ligation	4 h after MI induction	Intravenous injection in the testicle vein	EPC from human umbilical cord blood	CD34, KDR, CD133, DiI-Ac- LDL, vWF, CD34	2.5 x10 ⁶ cells
Toeg, H. D. ⁸⁸	2013	1: PBS only (n = 8), 2: CACs only (n = 10), 3: SIS-ECM only (n = 10), 4: SIS-ECM + CACs (n = 10); small intestine submucosal extracellular matrix (SIS-ECM); circulating angiogenic cells (CACs).	C57BL/ 6J mice	Femal e	9-10 weeks	ND	Healthy	AMI	LAD ligation	7 days after ligation	Echocardiog raphically guided intramyocar dial injection	EPC from the bone marrow of C57BL/6J mice femurs and tibias	Cell culture only	5 x 10 ⁵ cells in 20 μl

Characteristics of studies

All the included studies from 2004 to 2021 with access to full text were selected. The systematic review focused on rodent models of MI consisting of rat (N=37; 55.22%) and mouse (N=30; 44.78%) models of MI (Supplementary Table 2). Data indicated that a greater number of experiments were done on male rats/mice (N=41; 61.19%), while 17 (25.37%) studies were conducted on female models Interestingly, in one study both genders were used. Rodents in 36 studies (53.73%) aged between 4 to 20 weeks. In 8 experiments (11.94%), the term "adult" was used to describe rodent age. In just one experiment (1.49%), "at least 9-week-old" rodents were used for the MI model. Rats and mice subjected to MI models weighed 80-350, and 18-250 grams, respectively. 58.21% of rats and mice were in healthy status (N=39). Nude animals constituted 25.37% (N=17) of the experiments. In 3 studies (4.48%), MI was inducted on diabetic models. Animals with severe combined immunodeficiency including NOD-SCID (N=2; 2.99%), SCID (N=1; 1.49%), and a combination of Nude/J or NOD-SCID (N=1; 1.49%) were employed. Immunocompetent experimental models were 1.49% of collected studies (N=1). In one study (1.49%), the models underwent ovariectomy together with splenectomy; while in one experiment just ovariectomy was conducted (1.49%). Experiments with both wild-type and IL-10 knockout models comprised 1.49% (N=1) of the studies. Protocols consisting direct left anterior descending coronary artery (LAD) ligation (N=64; 95.52%); injection of vitamin D3 in high-fat diet-fed rodents (N = 1; 1.49%), intramyocardial administration of microembolism suspension following the occlusion of the ascending aorta (N=1; 1.49%), and LAD ligation followed by reperfusion besides a rta cross-clamping (N=1; 1.49%) were used to induce experimental MI models. Based on the analysis, MI (N = 63; 94.03%), progressive MI to cardiomyopathy (N = 1; 1.49%), MI with ischemic reperfusion (N=1; 1.49%), coronary artery microembolization (CME) (N = 1; 1.49%), and ICM (ischemic cardiomyopathy model) (N = 1; 1.49%) were pathological conditions in rodent models. In the selected articles, EPCs were collected from different sources as follows; Bone marrow (N = 32; 47.76%), peripheral blood (N = 19; 28.36%), umbilical cord blood (N=11; 16.42%), direct cardiopuncture (N = 1; 1.49%), spleen (N = 1; 1.49%), dental pulp (N=1; 1.49%), and both peripheral blood and bone marrow (N = 1; 1.49%). EPCs were administrated as doses between 2×10^2 and 2×10^7 in most of the experiments (N=59; 88.06%). In contrast to studies using single EPC injection, 8 experiments (11.94%) were conducted based on multiple EPC administrations. Timing of EPC injection varied from immediate to delayed administration (until 4 weeks) following MI induction. Different introduction approaches and terms were found in different studies such as intramyocardial injection (N = 44; 65.67%), intravenous injection (N=9; 13.43%), intramyocardial injection and subsequent treatment with the construct (N=3; 4.48%), simultaneous intramyocardial and intracoronary injections (N=2; 2.99%), injection into the LV (N=2; 2.99%), transpicardial injection (N=1; 1.49%), anterolateral LV surface suture (N=1; 1.49%), implantation (N=1; 1.49%), intracoronary injection (N=1; 1.49%), percutaneously injection into LV (N=1; 1.49%), injection to the border of occluded region (N=1; 1.49%), and intramyocardial (intramuscular) or systemic injection (N=1; 1.49%).

EPC transplantation effect on angiogenesis potential

A random-effects model was applied to find differences in angiogenesis potential in 32 eligible studies (**Figure 3a**; SMD: 2.02, CI 95%: 1.51-2.54, p<0.00001; I2: 82%). The subgroup analysis of EPC injection in different time points (1, 2, 3, 4, 6, and 8) indicated an improved angiogenesis potential after MI induction. Of note, these changes reached statistically significant levels post EPC injection after one week (SMD: 1.29, CI 95%: 0.27-2.31, p=0.01; I2: 0%; N=2), two weeks (SMD: 2.61, CI 95%: 1.95-3.27, p<0.00001; I2: 0%; N=4), four (SMD: 1.72, 1.51-2.54).

CI 95%: 1.19-2.26, p<0.00001; I2: 73%; N=18), and eight weeks (SMD: 5.98, CI 95%: 0.25-11.70, p=0.04; I2: 89%; N=2). The other features were not statistically significant compared to the control group.

EPC transplantation effect on myocardial fibrosis

Data confirmed the reduction of myocardial fibrosis in 28 studies after EPC transplantation compared to the control group (SMD: -1.48; 95% CI – 2.15, -0.81; p < 0.0001; I2: 88%). Subgroup analysis revealed significant differences of post-EPC administration after one week (SMD: -0.97; 95% CI – 1.88, -0.07; p = 0.04; I2: 0%; N=2), two weeks (SMD: – 1.89; 95% CI – 2.93, -0.85; p = 0.0004; I2: 0%; N=2), three weeks (SMD: – 1.73; 95% CI – 2.78, -0.68; p = 0.001; I2: 62%; N=3), and four weeks (SMD: -2.05; 95% CI, – 3.00, -1.10; p < 0.0001; I2: 89%; N=18) (Figure 3b).

EPC transplantation effect on cardiac ejection fraction

Random-effects model for differences in LVEF values is shown in **Figure 3c**. Data showed the efficiency of EPC transplantation in the improvement of LVEF after one week (SMD: 0.70; 95% CI – 0.14, 1.27; p = 0.01; I2: 52%; N=8), two weeks (SMD: 3.98; 95% CI 1.36, 6.61; p = 0.003; I2: 95%; N=6), three weeks (SMD: 1.08; 95% CI 0.60, 1.57; p < 0.0001; I2: 0%; N=2), four weeks (SMD: 2.02; 95% CI 1.18, 2.86; p < 0.00001; I2: 88%; N=17), and eight weeks (SMD: 1.07; 95% CI 0.09, 2.04; p = 0.03; I2: 10%; N=2) compared to the control group. Despite these results, two experiments reported the lack of statistically significant differences in LVEF parameters after 6 weeks post-EPC administration between the control and EPC groups.

EPC transplantation effect on cardiac FS

Data obtained from a random-effects model indicated significant differences in cardiac FS following EPC therapy in rodent models of MI. To be specific, statistically significant differences were found in FS parameter after one week (SMD: 0.65; 95% CI 0.26, 1.03; p = 0.0010; I²: 6%; N=7), two weeks (SMD: 2.65; 95% CI 0.87, 4.43; p = 0.004; I²: 91%; N=6), four weeks (SMD: 1.91; 95% CI 1.18, 2.64; p < 0.00001; I²: 82%; N=13), and eight weeks (SMD: 1.12; 95% CI 0.52, 1.72; p = 0.0002; I²: 0%; N=3) in EPC group as compared with the control group (**Figure 3d**).

Different EPC injection approaches

The regenerative efficacy of the EPC injection route was also assessed in rodent MI models. Intramyocardial route is the commonly used approach for the introduction of EPCs into the ischemic myocardium with the angiogenesis potential (SMD 1.91, 95% CI- 1.39-2.43, P<0.00001, I²: 80%; N=27; **Figure 4a**); reduction of fibrosis (SMD - 1.16, 95% CI- -1.96, -0.36, P = 0.004, I²: 90%; N=25; **Figure 4b**); improving EF (SMD:1.53, 95% CI- 0.92-2.15, P<0.00001, I²: 86%; N=24; **Figure 4c**), and FS values (SMD:1.58, 95% CI- 1.04-2.12, P<0.00001, I²: 80%; N=21; **Figure 4d**).

Various EPC doses

Based on EPC dose, studies were categorized into 5 groups as follows; up to 0.5×10^6 , 0.5 to 1×10^6 , 1 to 2×10^6 , 2 to 5×10^6 , and more than 5×10^6 groups. The weighted applied dose to EPC transplantation is dose 1 (up to 0.5×10^6), which demonstrated significant angiogenesis effects (SMD 7.16, 95% CI- 4.30-10.01, P<0.00001, I²: 92%; N=12; Figure 5a), reduced fibrosis (SMD -10.31, 95% CI- -18.72, -1.90, P=0.02, I²: 98%; N=15; Figure 5b), improved EF (SMD 11.33, 95% CI- 2.44-20.22, P=0.01, I²: 98%; N=11; Figure 5c), and FS (SMD 5.58, 95% CI- 2.80-8.37, P<0.0001, I²: 92%; N=11; Figure 5d) compared to the other doses.

Various EPC sources

Based on our data, it was confirmed that bone marrow EPCs exerted significant angiogenesis effects (SMD 6.88, 95% CI- 4.57-9.19, P<0.00001, I²: 88%; N=16; **Figure 6a**); reduced fibrosis (SMD -15.28, 95% CI- -20.40, - 10.16, P<0.00001, I²: 95%; N=16; **Figure 6b**); improved EF (SMD:10.63, 95% CI- 7.53-13.73, P<0.00001, I²: 86%; N=17; **Figure 6c**), and FS (SMD: 6.93, 95% CI- 4.25-9.61, P<0.00001, I²: 89%; N=15; **Figure 6d**) in comparison with EPC types.

Publication bias

Four funnel plots were developed using RevMan 5.4.1 to assess the publication bias among the selected experiments on each outcome (**Figures 7a-d**). For angiogenesis potential, Begg and Mazumdar's test revealed Kendall's tau of 0.546 (z = 4.395, p = 0.00001), and Egger's regression test indicated a significant intercept of 5.79 (SE = 0.855, p = 0.00000). For anti-fibrosis properties, Begg and Mazumdar's test yielded Kendall's tau of - 0.576 (z = 4.211, p = 0.00003) with Egger's regression of -4.62 (SE = 1.407, p = 0.00300). In terms of EF, Kendall's tau of 0.522 (z = 4.481, p = 0.00001) was obtained by Begg and Mazumdar's test, and a noteworthy intercept of 5.43 (SE = 1.011, p = 0.00001) was evaluated by Egger's regression test. Finally, in the FS parameter, Begg and Mazumdar's test demonstrated Kendall's tau of 0.460 (z = 3.637, p = 0.00028) and an intercept of 4.27 (SE = 1,113, p = 0.00062) after Egger's regression test. These results suggest publication bias based on both the visual inspection of the funnel plot and the statistical tests in all outcomes.

Discussion

MI is a debilitating pathological condition with a high rate of mortality in societies.⁸⁹ Therapeutic strategies targeting the increase of vascularization and blood perfusion are beneficial to alleviate the adverse effects of MI. In this regard, in-time blood vessel formation can significantly reduce scar formation, abnormal LV remodeling, and massive cardiomyocyte damage.⁹⁰ Emerging *in vitro*, preclinical, and clinical data have indicated the potency of various stem cell types, especially EPCs, in the restoration of vascularization into the ischemic sites. It was suggested that both maturation into functional ECs, and the release of several proangiogenesis factors can expedite the process of healing in the ischemic sites.¹³ Of note, *in vitro*, *ex vivo* experiments, preclinical studies, and *in silico* analyses are required to evaluate the efficacy and safety of cells or drug candidates before application in the human counterpart.⁹¹ In this regard, the current systemic review and meta-analysis included preclinical experiments and aimed to explore the effectiveness of EPCs in rodent (rat and mouse) models of MI. Features such as angiogenesis, fibrosis, EF, and SF were monitored in MI animals following the administration of EPCs and compared to the control MI group.

The present data noted that EPC transplantation can influence primary outcomes such as angiogenesis and fibrosis in MI groups receiving only cell-free phosphate-buffered saline (PBS) or culture medium. Along with these changes, EPC administration led to improvements in cardiac function parameters, such as FS, and EF following MI induction. It has been assumed that several underlying molecular mechanisms are stimulated after the injection of EPCs into ischemic tissues.⁹² For example, EPCs are capable of ensuring cardiac tissue regeneration via the reduction of oxidative stress.⁹³ Xue et al. found that moderate-to-high doses of EPCs blunt the oxidative stress (8iso-prostaglandin F2 α), and SOD↑), and endoplasmic reticulum stress (GRP78 and CHOP) in a rat model of acute MI.⁹⁴ Of course, prolonged exposure to insulting conditions contributes to the induction of oxidative stress in EPCs. Under such conditions, the function of EPCs and angiogenesis potential are fundamentally influenced. Hamed and co-workers found that diabetic circulating EPCs produce higher oxygen free radicals and exhibit higher SOD, NADPH oxidase activity with reduced NO bioavailability compared to normal EPCs.⁹⁵ Therefore, attention should be given to the selection of appropriate EPCs to achieve optimal regenerative outcomes under varying pathological conditions.

It is hypothesized that direct physical contact between the EPCs and cardiac cells can stimulate several healing processes related to angiogenesis, ECM remodeling, and ventricular function.¹² Multiple cell death modes such as cardiomyocyte apoptosis, excessive autophagic death, and necrosis are diminished following the administration of EPCs.^{96,97} Besides, EPCs exert anti-fibrotic properties through the modulation of the TGF- β signaling pathway and regulation of Smads.⁹⁸ Of course, the regenerative potential of EPCs is not limited to the above-mentioned mechanisms, and these cells can affect the bioactivity of multiple cardiac cells in a paracrine and juxtacrine manner.99 For instance, the EPC secretome contains various signaling factors affecting the function of ECs after injury. In response to the EPC paracrine activity, the angiogenesis potential of ECs is promoted while simultaneously inflammatory damage is reduced in ECs.¹⁰⁰ One possible explanation for this effect is that the EPC-derived extracellular vesicles harbor high levels of pro-angiogenesis factors, such as VEGF and miR-183, which have the potential to activate the biological activity of ECs at the site of injury.¹⁰¹ More interestingly, the differentiation of cardiac cells increases toward endothelial lineage once certain signaling pathways such as Shh are stimulated.¹² Abd El Aziz and co-workers found that intramyocardial transplantation of 5×10^6 human cord blood EPCs improves cardiac tissue function in a canine model of infarction via localization in the vascular units and direct differentiation into troponin I⁺ cardiomyocytes.¹⁰² The increase of endothelial nitric oxide synthetase and NO inside ECs is also associated with the paracrine activity of EPCs.¹⁰³ Likewise, both superoxide dismutase and catalase stimulation and the expression of Bcl-2 increase EC resistance to oxidative stress juxtaposed to ischemic myocardium.¹² Li et al found that shortly after ischemia induction in mice, donor EPCs can rapidly be recruited into the myocardium and elevate the local NO contents via the production of endothelial (eNOS) and inducible nitric oxide synthetase (iNOS).¹⁰⁴ In line with this, Cristóvão and co-workers indicated lower CD34⁺/KDR⁺ EPC levels in ischemic cardiomyopathy patients compared to healthy counterparts, indicating fast and appropriate recruitment of EPCs in response to hypoxic/ischemic conditions.¹⁰⁵

Data have confirmed that the direct juxtacrine activity of EPCs can promote neointima formation via the regulation of pericyte migration, secretion capacity, and phenotypic switching.¹⁰⁶ Notably, EPCs can be genetically modified before transplantation to increase their regenerative potential.¹⁰⁷ For instance, miR-214 expressing EPCs efficiently can control calcium hemostasis in stressed cardiomyocytes and enhance survival rate.¹² Exosomal miR-1246 and miR-1290 driven EPCs upregulate ELF5 and SP1 in cardiac fibroblasts and increase endothelial differentiation.¹⁰⁸

In addition to reducing fibrosis, the promotion of angiogenesis, activation of local cardiac progenitor cells, and increase in circulating progenitors within the infarcted myocardium collectively accelerate the healing process.¹⁰⁹ Therefore, EPC administration appears to promote cardiac tissues through both endogenous and exogenous mechanisms.¹¹⁰

Recent data affirm that the administration route influences the healing capacity and regenerative outcomes by affecting the on-target delivery, stem cell survival rate, and bioactivities.¹¹¹ According to the search we conducted, the direct intramyocardial injection yields better healing properties compared to the other administration routes. The systemic administration could lead to the sequestration of EPCs in certain tissues such as the liver, spleen, and lungs due to massive vascular beds while direct injection into the target tissues provides a higher delivery rate and retention time.¹¹² Therefore, the homing of systemically administrated EPCs into the myocardium is less due to low retention time and certain anatomical features of cardiac tissue.¹¹³ Like intramyocardial injection, the intracoronary EPC infusion is considered to be widely administered. However, this modality requires higher cell

volume compared to direct intramyocardial injection. It is worth remembering that the intracoronary route can increase the probability of cell clustering, and embolism, resulting in the occlusion of supporting blood vessels into the affected sites.^{114,115} Although intramyocardial injection ascertains higher cell delivery into the ischemic sites, this approach leads to the loss of a fraction of transplanted cells due to mechanical stress in solid organs such as cardiac tissue. Besides, iatrogenic inflammation and secondary tissue injuries can also occur when the cells are directly administrated into the myocardium.¹¹⁶ Like transepicardial and intracoronary routes, the intramyocardial injection essentially requires thoracotomies, which is an invasive surgical approach and cannot be performed when multiple cell doses are required.¹¹⁷ Despite the low targeting efficiency of EPC therapy via the systemic route, this approach is suitable for multiple-dose injection purposes.^{110,117} Using special advanced technologies such as ultrasound-guided percutaneous injection, the high cell doses can be directly delivered into different parts of LV in a relatively non-invasive manner. To standardize this approach with minimum side effects, various studies must be conducted

The statistically significant results of Egger's and Begg's tests suggest the possibility of publication bias, implying that studies with statistically significant results may be more likely to be published than studies with null or negative findings. This could lead to an overestimation of the true effect size. Therefore, the results of this metaanalysis should be interpreted with caution. Future research, including studies with negative or null findings, would be valuable to clarify the true effect of EPCs in the restoration of cardiac function following experimentally induced MI in rodents.

This study has several limitations and future experiments should address them as much as possible. Even though this study made an effort to synthesize the available evidence rigorously, the high heterogeneity observed for most outcomes ($I^2 > 80\%$) suggests considerable variability between the included studies. Despite the conduction of subgroup analyses, it was not feasible to fully explore the potential sources of this heterogeneity due to limitations in the reported data of the original publications. Due to these features, it was not possible to draw firm conclusions about the specific factors influencing the effectiveness of EPC therapy. In addition, a small sample size related to some parameters would make the interpretation problematic. These limitations highlight the necessity of further experiments to address the gaps and flaws. Specifically, future studies should report detailed data in a more standardized and comprehensive manner in terms of EPC source, dosage, administration route, experimental conditions, and relevant outcome measures.

The micro-, and microanatomy structure of cardiac tissue and its kinetics profoundly vary in rodents compared to their human counterparts. It is estimated that rodents have high heart rates and short lifespans. Meanwhile, the expression of genes and factors in cardiac cells can in part but not completely differ as compared to the other mammals.²¹ For instance, alpha isoform is the dominant type of myosin heavy chain in humans and large mammals atrium while this protein type is highly expressed in ventricles of mice and rats.²¹ The prominent difference in cardiac tissue kinetics and parameters can lead to relatively incomparable outcomes in rodents receiving stem cells and progenitors compared to large-size mammal models and humans.¹¹⁸ EPCs display high similarity with other cell lineages such as hematopoietic stem cells, thus the precise characterization, isolation, and purification of EPCs seem problematic. Besides, EPCs constitute 0.01 to 0.0001% of total bone marrow mononuclear cells, and *in vitro* expansion using different growth factors and supporting ECM components are necessary to yield EPCs in high quantities.^{13,119} Regarding the limited number of EPCs in freshly collected samples, serial passages and prolonged culture time can contribute to the loss of EPC phenotype and functionality.¹²⁰ Although cryopreservation in part preserves the phenotype and biological activity, attention should be given to optimizing the cryopreservation protocols using suitable cryoprotectants to minimize the adverse effects of storage

temperature.¹²¹ Based on the recent data, EPC type and maturation stage can influence the angiogenesis outcomes. Sieveking and co-workers found that later outgrowth EPCs can directly participate in the structure of vascular units better than that of early EPCs. It seems that early EPCs can promote the angiogenesis phenomenon indirectly via the release of angiogenesis factors at the site of injury.¹²² The mobilization of EPCs in response to cytokine gradient increases simultaneous maturation and functional activity compared to the resident progenitors inside the bone marrow niche.¹³ The circulating EPCs can lose their stemness features (CD133↓, and CD34↓) accompanied with the expression of certain markers such as CD31, and vWF with the reaching to the injured site.¹³ These data confirm that bone marrow EPCs are putative progenitor cells in the induction of angiogenesis outcomes, especially in tissue with chronic injuries. However, less and excessive stem cells can cause the disruption of the healing process via an imbalance in immune cell activity and normal development of resident cells and transplanted stem cells.¹²³ Taken together, the number and source of EPCs can be effective in the induction of angiogenesis in the ischemic market.

Conclusion

The current systemic review and meta-analysis showed the eligibility of EPCs in the restoration of cardiac function following experimentally induced MI rodents, either rats or mice. The stimulation of angiogenesis and reduction of fibrosis along with the improvement of cardiac functional parameters (EF, and FS) are the main outcomes following EPC transplantation. Taken together, the current data provide new insights into the potential clinical application of EPCs and their regenerative properties in patients with MI.

Acknowledgments

We thank Dr. Solmaz Saghebasl, Miss Saba Habibi, Ms. Narges Mardi, Dr. Fatemeh Sadeghsoltani, and Dr. Afshin Rahbarghazi for helping us with data extraction. The authors declare that artificial intelligence is not used in this study.

Authors' Contribution

Reza Rahbarghazi participated in all stages of the review and supervised the conduct of the study. Samaneh Narimani, Hamid Lotfimehr, Maryam Taghavi Narmi, and Robab Mehdipour collected the data and wrote the manuscript. Hanieh Salehipourmehr performed the statistical analysis, and wrote the relevant sections. All authors read and approved the final manuscript.

Competing Interests

The authors have declared that no competing interests exist.

Ethical Approval

All phases of this study were approved by local ethics committee of Tabriz University of Medical Sciences (ethical code: IR.TBZMED.REC.1400.175; Approval date: 2023-10-16) and NIMAD (National Institute for Medical Research Development) (ethical code: IR.NIMAD.REC.1402.031; Approval date: 2023-12-30) under research proposal entitled "Application of endothelial progenitor cells in the alleviation of cardiac infarction in rodent models".

Funding

Research reported in this publication was supported by the Elite Researcher Grant Committee under award number (IR.NIMAD.REC.1402.031) and grant No. of 4010084 from the National Institute for Medical Research Development (NIMAD), Tehran, Iran, and Tabriz University of Medical Sciences (IR.TBZMED.VCR.REC.1402.198).

References

1. Tsao CW, Aday AW, Almarzooq ZI, Anderson CA, Arora P, Avery CL, et al. Heart disease and stroke statistics— 2023 update: a report from the American Heart Association. *Circulation* 2023;147(8):e93-e621. doi: 10.1161/CIR.000000000001123.

2. Brazile BL, Butler JR, Patnaik SS, Claude A, Prabhu R, Williams LN, et al. Biomechanical properties of acellular scar ECM during the acute to chronic stages of myocardial infarction. *J Mech Behav Biomed Mater* 2021;116:104342. doi: 10.1016/j.jmbbm.2021.104342.

3. Leancă SA, Crișu D, Petriș AO, Afrăsânie I, Genes A, Costache AD, et al. Left Ventricular Remodeling after Myocardial Infarction: From Physiopathology to Treatment. *Life* 2022;12(8):1111. doi: 10.3390/life12081111.

4. Hassanpour P, Sadeghsoltani F, Haiaty S, Zakeri Z, Saghebasl S, Izadpanah M, et al. Mitochondria-loaded alginate-based hydrogel accelerated angiogenesis in a rat model of acute myocardial infarction. *Int J Biol Macromol* 2024;260:129633. doi: https://doi.org/10.1016/j.ijbiomac.2024.129633.

5. Doenst T, Haverich A, Serruys P, Bonow RO, Kappetein P, Falk V, et al. PCI and CABG for treating stable coronary artery disease: JACC review topic of the week. *J Am Coll Cardiol* 2019;73(8):964-76. doi: 10.1016/j.jacc.2018.11.053.

6. Yuan H-L, Chang L, Fan W-W, Liu X, Li Q, Tian C, et al. Application and challenges of stem cells in cardiovascular aging. *Regen Ther* 2024;25:1-9. doi: https://doi.org/10.1016/j.reth.2023.11.009.

7. Kawaguchi N, Nakanishi T. Stem Cell Studies in Cardiovascular Biology and Medicine: A Possible Key Role of Macrophages. *Biology (Basel)* 2022;11(1). doi: 10.3390/biology11010122.

8. Sid-Otmane C, Perrault LP, Ly HQ. Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes. *J Transl Med* 2020;18(1):336. doi: 10.1186/s12967-020-02504-8.

9. Rahbarghazi R, Nassiri SM, Khazraiinia P, Kajbafzadeh A-M, Ahmadi SH, Mohammadi E, et al. Juxtacrine and Paracrine Interactions of Rat Marrow-Derived Mesenchymal Stem Cells, Muscle-Derived Satellite Cells, and Neonatal Cardiomyocytes with Endothelial Cells in Angiogenesis Dynamics. *Stem Cells Dev* 2012;22(6):855-65. doi: 10.1089/scd.2012.0377.

10. Shi H, Zhao Z, Jiang W, Zhu P, Zhou N, Huang X. A Review Into the Insights of the Role of Endothelial Progenitor Cells on Bone Biology. *Front Cell Dev Biol* 2022;10. doi: 10.3389/fcell.2022.878697.

11. Sun K, Zhou Z, Ju X, Zhou Y, Lan J, Chen D, et al. Combined transplantation of mesenchymal stem cells and endothelial progenitor cells for tissue engineering: a systematic review and meta-analysis. *Stem Cell Res Ther* 2016;7(1):151. doi: 10.1186/s13287-016-0390-4.

12. Huang H, Huang W. Regulation of endothelial progenitor cell functions in ischemic heart disease: new therapeutic targets for cardiac remodeling and repair. *Front Cardiovasc Med* 2022;9:896782. doi: 10.3389/fcvm.2022.896782.

13. Rashidi S, Bagherpour G, Abbasi-Malati Z, Khosrowshahi ND, Chegeni SA, Roozbahani G, et al. Endothelial progenitor cells for fabrication of engineered vascular units and angiogenesis induction. *Cell Prolif* 2024;57(9):e13716. doi: https://doi.org/10.1111/cpr.13716.

14. Shi X, Simms KJ, Ewing TJ, Lin Y-P, Chen Y-L, Melvan JN, et al. The bone marrow endothelial progenitor cell response to septic infection. *Front Immunol* 2024;15. doi: 10.3389/fimmu.2024.1368099.

15. Salybekov AA, Kobayashi S, Asahara T. Characterization of endothelial progenitor cell: past, present, and future. *Int J Mol Sci* 2022;23(14):7697. doi: 10.3390/ijms23147697.

16. Liu Z-L, Chen H-H, Zheng L-L, Sun L-P, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. *Signal Transduct Target Ther* 2023;8(1):198. doi: 10.1038/s41392-023-01460-1.

17. Pelliccia F, Pasceri V, Zimarino M, De Luca G, De Caterina R, Mehran R, et al. Endothelial Progenitor Cells in Coronary Atherosclerosis and Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. *Cardiovasc Revasc Med* 2022;42:94-9. doi: https://doi.org/10.1016/j.carrev.2022.02.025

18. García Granado JF, Rodríguez Esparragón FJ, González Martín JM, Cazorla Rivero SE, González Hernández AN. Endothelial and circulating progenitor cells as prognostic biomarkers of stroke: A systematic review and meta-analysis. *Thromb Res* 2025;245:109224. doi: 10.1016/j.thromres.2024.109224

19. Cavalcante SL, Lopes S, Bohn L, Cavero-Redondo I, Álvarez-Bueno C, Viamonte S, et al. Effects of exercise on endothelial progenitor cells in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. *Revista Portuguesa de Cardiologia (English edition)* 2019;38(11):817-27. doi: 10.1016/j.repce.2019.02.017

20. Li Y, Wang Z, Mao M, Zhao M, Xiao X, Sun W, et al. Velvet Antler Mobilizes Endothelial Progenitor Cells to Promote Angiogenesis and Repair Vascular Endothelial Injury in Rats Following Myocardial Infarction. *Front Physiol.* 2019;9. doi: 10.3389/fphys.2018.01940.

21. Shin HS, Shin HH, Shudo Y. Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. *Front Bioeng Biotechnol.* 2021 Apr 29;9:673683. doi: 10.3389/fbioe.2021.673683.

22. Atluri P, Trubelja A, Fairman AS, Hsiao P, MacArthur JW, Cohen JE, et al. Normalization of postinfarct biomechanics using a novel tissue-engineered angiogenic construct. *Circulation* 2013;128(11_suppl_1):S95-S104. doi: 10.1161/CIRCULATIONAHA.112.000368.

23. Burghoff S, Ding Z, Blaszczyk A, Wirrwar A, Buchholz D, Müller H-W, et al. Cross-linking enhances deposition of human endothelial progenitor cells in the rat heart after intracoronary Transplantation. *Cell Transplant* 2010;19(1):113-7. doi: 10.3727/096368909X474834.

24. Chang Z, Yang G, Sheng G, Zhang X. Endothelial progenitor cell (EPC) transplantation improves myocardial infarction via up-regulation of vascular endothelial growth factor and gap junction protein connexin 43 in rats. *Int J Clin Exp Med* 2018;11(3):1805-14.

25. Fang Y, Chen S, Liu Z, Ai W, He X, Wang L, et al. Endothelial stem cells attenuate cardiac apoptosis via downregulating cardiac microRNA-146a in a rat model of coronary heart disease. *Experimental and Therapeutic Medicine* 2018;16(5):4246-52.

26. Gaffey AC, Chen MH, Venkataraman CM, Trubelja A, Rodell CB, Dinh PV, et al. Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischemic myocardium. *J Thorac Cardiovasc Surg* 2015;150(5):1268-77. doi: 10.1016/j.jtcvs.2015.07.035.

27. Gaffey AC, Chen MH, Trubelja A, Venkataraman CM, Chen CW, Chung JJ, et al. Delivery of progenitor cells with injectable shear-thinning hydrogel maintains geometry and normalizes strain to stabilize cardiac function after ischemia. *J Thorac Cardiovasc Surg* 2019;157(4):1479-90. doi: 10.1016/j.jtcvs.2018.07.117.

28. Quan Z, Wang Q-L, Zhou P, Wang G-D, Tan Y-Z, Wang H-J. Thymosin β 4 promotes the survival and angiogenesis of transplanted endothelial progenitor cells in the infarcted myocardium. *Int J Mol Med* 2017;39(6):1347-56. doi: 10.3892/ijmm.2017.2950.

29. Schuh A, Kroh A, Konschalla S, Liehn EA, Sobota RM, Biessen EA, et al. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model. *J Cell Mol Med* 2012;16(10):2311-20. doi: 10.1111/j.1582-4934.2012.01539.x.

30. Schuh A, Liehn EA, Sasse A, Hristov M, Sobota R, Kelm M, et al. Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. *Basic Res Cardiol* 2008;103:69-77. doi: 10.1007/s00395-007-0685-9.

31. Sen S, Merchan J, Dean J, Ii M, Gavin M, Silver M, et al. Autologous transplantation of endothelial progenitor cells genetically modified by adeno-associated viral vector delivering insulin-like growth factor-1 gene after myocardial infarction. *Hum Gene Ther* 2010;21(10):1327-34. doi: 10.1089/hum.2010.006.

32. She Q, Xia S, Deng S-B, Du J-L, Li Y-Q, He L, et al. Angiogenesis in a rat model following myocardial infarction induced by hypoxic regulation of VEGF165 gene-transfected EPCs. *Mol Med Rep* 2012;6(6):1281-7. doi: 10.3892/mmr.2012.1112.

33. Zhao Y, Song J, Bi X, Gao J, Shen Z, Zhu J, et al. Thymosin β4 promotes endothelial progenitor cell angiogenesis via a vascular endothelial growth factor-dependent mechanism. *Mol Med Rep* 2018;18(2):2314-20. doi: 10.3892/mmr.2018.9199

34. Boyle AJ, Schuster M, Witkowski P, Xiang G, Seki T, Way K, et al. Additive effects of endothelial progenitor cells combined with ACE inhibition and β -blockade on left ventricular function following acute myocardial infarction. *J Renin Angiotensin Aldosterone Syst* 2005;6(1):33-7. doi: 10.3317/jraas.2005.004.

35. Chaudeurge A, Wilhelm C, Chen-Tournoux A, Farahmand P, Bellamy V, Autret G, et al. Can magnetic targeting of magnetically labeled circulating cells optimize intramyocardial cell retention? *Cell Transplant* 2012;21(4):679-91. doi: 10.3727/096368911X612440.

36. Demetz G, Oostendorp RA, Boxberg AM, Sitz W, Farrell E, Steppich B, et al. Overexpression of insulin-like growth factor-2 in expanded endothelial progenitor cells improves left ventricular function in experimental myocardial infarction. *J Vasc Res* 2017;54(6):321-8. doi: 10.1159/000479872.

37. Frederick JR, Fitzpatrick III JR, McCormick RC, Harris DA, Kim A-Y, Muenzer JR, et al. Stromal cell-derived factor-1α activation of tissue-engineered endothelial progenitor cell matrix enhances ventricular function after myocardial infarction by inducing neovasculogenesis. *Circulation* 2010;122(11_suppl_1):S107-S17. doi: 10.1161/CIRCULATIONAHA.109.930404.

38. Li H, Liu Q, Wang N, Xu Y, Kang L, Ren Y, et al. Transplantation of endothelial progenitor cells overexpressing miR-126-3p improves heart function in ischemic cardiomyopathy. *Circ J* 2018;82(9):2332-41. doi: 10.1253/circj.CJ-17-1251.

39. Mehmood A, Ali M, Khan SN, Riazuddin S. Diazoxide preconditioning of endothelial progenitor cells improves their ability to repair the infarcted myocardium. *Cell Biol Int* 2015;39(11):1251-63. doi: 10.1002/cbin.10498.

40. Li S-H, Wang D-D, Xu Y-J, Ma G-D, Li X-Y, Liang W-J. Exogenous hTERT gene transfected endothelial progenitor cells from bone marrow promoted angiogenesis in ischemic myocardium of rats. *Int J Clini Exper Med* 2015;8(8):14447.

41. Lian F, Xue S, Gu P, Zhu H. The long-term effect of autologous endothelial progenitor cells from peripheral blood implantation on infarcted myocardial contractile force. *J Int Med Res* 2008;36(1):40-6. doi: 10.1177/147323000803600106.

42. Poh KK, Lee PSS, Djohan AH, Galupo MJ, Songco GG, Yeo TC, et al. Transplantation of endothelial progenitor cells in obese diabetic rats following myocardial infarction: role of thymosin beta-4. *Cells* 2020;9(4):949. doi: 10.3390/cells9040949.

43. Yao Y, Li Y, Ma G, Liu N, Ju S, Jin J, et al. In vivo magnetic resonance imaging of injected endothelial progenitor cells after myocardial infarction in rats. *Mol Imaging Biol* 2011;13:303-13. doi: 10.1007/s11307-010-0359-0.

44. Garikipati VNS, Krishnamurthy P, Verma SK, Khan M, Abramova T, Mackie AR, et al. Negative regulation of miR-375 by interleukin-10 enhances bone marrow-derived progenitor cell-mediated myocardial repair and function after myocardial infarction. *Stem Cells* 2015;33(12):3519-29. doi: 10.1002/stem.2121.

45. Ahmadi A, McNeill B, Vulesevic B, Kordos M, Mesana L, Thorn S, et al. The role of integrin $\alpha 2$ in cell and matrix therapy that improves perfusion, viability and function of infarcted myocardium. *Biomaterials* 2014;35(17):4749-58. doi: 10.1016/j.biomaterials.2014.02.028.

46. Brunt KR, Wu J, Chen Z, Poeckel D, Dercho RA, Melo LG, et al. Ex vivo Akt/HO-1 gene therapy to human endothelial progenitor cells enhances myocardial infarction recovery. *Cell Transplant* 2012;21(7):1443-61. doi: 10.3727/096368912X653002.

47. Chen X, Gu M, Zhao X, Zheng X, Qin Y, You X. Deterioration of cardiac function after acute myocardial infarction is prevented by transplantation of modified endothelial progenitor cells overexpressing endothelial NO synthases. *Cell Physiol Biochem* 2013;31(2-3):355-65. doi: 10.1159/000343373.

48. Cheng Y, Hu R, Lv L, Ling L, Jiang S. Erythropoietin improves the efficiency of endothelial progenitor cell therapy after myocardial infarction in mice: effects on transplanted cell survival and autologous endothelial progenitor cell mobilization. *J Surg Res* 2012;176(1):e47-e55. doi: 10.1016/j.jss.2012.04.047.

49. Hu CH, Li ZM, Du ZM, Zhang AX, Rana JS, Liu DH, et al. Expanded human cord blood-derived endothelial progenitor cells salvage infarcted myocardium in rats with acute myocardial infarction. *Clin Exp Pharmacol Physiol* 2010;37(5-6):551-6. doi: 10.1111/j.1440-1681.2010.05347.x

50. Iwasaki H, Kawamoto A, Ishikawa M, Oyamada A, Nakamori S, Nishimura H, et al. Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 2006;113(10):1311-25. doi: 10.1161/CIRCULATIONAHA.105.541268.

51. Li H, Liu J, Ye X, Zhang X, Wang Z, Chen A, et al. 17β-Estradiol enhances the recruitment of bone marrowderived endothelial progenitor cells into infarcted myocardium by inducing CXCR4 expression. *Int J Cardiol* 2013;162(2):100-6. doi: 10.1016/j.ijcard.2011.05.074.

52. Cheng Y, Jiang S, Hu R, Lv L. Potential mechanism for endothelial progenitor cell therapy in acute myocardial infarction: Activation of VEGF-PI3K/Akte-NOS pathway. *Ann Clin Lab Sci* 2013;43(4):395-401.

53. Hamada H, Kim MK, Iwakura A, Ii M, Thorne T, Qin G, et al. Estrogen receptors α and β mediate contribution of bone marrow–derived endothelial progenitor cells to functional recovery after myocardial infarction. *Circulation* 2006;114(21):2261-70. doi: 10.1161/CIRCULATIONAHA.106.631465.

54. Botta R, Gao E, Stassi G, Bonci D, Pelosi E, Zwas D, et al. Heart infarct in NOD-SCID mice: Therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34+ KDR+ cells. *FASEB Jl* 2004;18(12):1392-4. doi: 10.1096/fj.03-0879fje.

55. Deutsch M-A, Brunner S, Grabmaier U, David R, Ott I, Huber BC. Cardioprotective potential of human endothelial-colony forming cells from diabetic and nondiabetic donors. *Cells* 2020;9(3):588. doi: 10.3390/cells9030588.

56. Moldenhauer LM, Cockshell MP, Frost L, Parham KA, Tvorogov D, Tan LY, et al. Interleukin-3 greatly expands non-adherent endothelial forming cells with pro-angiogenic properties. *Stem Cell Res* 2015;14(3):380-95. doi: 10.1016/j.scr.2015.04.002.

57. Gunetti M, Noghero A, Molla F, Staszewsky LI, de Angelis N, Soldo A, et al. Ex vivo-expanded bone marrow CD34+ for acute myocardial infarction treatment: in vitro and in vivo studies. *Cytotherapy* 2011;13(9):1140-52. doi: 10.3109/14653249.2011.597559.

58. Saucourt C, Vogt S, Merlin A, Valat C, Criquet A, Harmand L, et al. Design and validation of an automated process for the expansion of peripheral blood-derived CD34+ cells for clinical use after myocardial infarction. *Stem Cells Transl Med* 2019;8(8):822-32. doi: 10.1002/sctm.17-0277.

59. Sheng Z, Ju C, Li B, Chen Z, Pan X, Yan G, et al. TWEAK promotes endothelial progenitor cell vasculogenesis to alleviate acute myocardial infarction via the Fn14-NF-κB signaling pathway. *Exp Ther Med* 2018;16(5):4019-29. doi: 10.3892/etm.2018.6703.

60. Sheng Z, Yao Y, Li Y, Yan F, Huang J, Ma G. Bradykinin preconditioning improves therapeutic potential of human endothelial progenitor cells in infarcted myocardium. *PLoS One* 2013;8(12):e81505. doi: 10.1371/journal.pone.0081505.

61. Sheng Z-L, Yao Y-Y, Li Y-F, Fu C, Ma G-S. Transplantation of bradykinin-preconditioned human endothelial progenitor cells improves cardiac function via enhanced Akt/eNOS phosphorylation and angiogenesis. *Am J Transl Res* 2015;7(6):1045.

62. Shintani S, Kusano K, Ii M, Iwakura A, Heyd L, Curry C, et al. Synergistic effect of combined intramyocardial CD34+ cells and VEGF2 gene therapy after MI. *Nat Clin Pract Cardiovasc Med* 2006;3(Suppl 1):S123-S8. doi: 10.1038/ncpcardio0430.

63. Sondergaard CS, Bonde J, Dagnaes-Hansen F, Nielsen JM, Zachar V, Holm M, et al. Minimal engraftment of human CD34+ cells mobilized from healthy donors in the infarcted heart of athymic nude rats. *Stem Cells Dev* 2009;18(6):845-56. doi: 10.1089/scd.2008.0006.

64. Stein A, Knödler M, Makowski M, Kühnel S, Nekolla S, Keithahn A, et al. Local erythropoietin and endothelial progenitor cells improve regional cardiac function in acute myocardial infarction. *BMC Cardiovasc Disord* 2010;10:1-9. doi: 10.1186/1471-2261-10-43.

65. Sun Z, Wu J, Fujii H, Wu J, Li SH, Porozov S, et al. Human angiogenic cell precursors restore function in the infarcted rat heart: a comparison of cell delivery routes. *Eur J Heart Fai* 2008;10(6):525-33. doi: 10.1016/j.ejheart.2008.04.004

66. Thal MA, Krishnamurthy P, Mackie AR, Hoxha E, Lambers E, Verma S, et al. Enhanced angiogenic and cardiomyocyte differentiation capacity of epigenetically reprogrammed mouse and human endothelial progenitor cells augments their efficacy for ischemic myocardial repair. *Circ Res* 2012;111(2):180-90. doi: 10.1161/CIRCRESAHA.112.270462.

67. Xin Z, Meng W, Ya-Ping H, Wei Z. Different biological properties of circulating and bone marrow endothelial progenitor cells in acute myocardial infarction rats. *The Thorac Cardiovasc Surg* 2008;56(08):441-8. doi: 10.1055/s-2008-1038879.

68. Xue Y, Zhou B, Wu J, Miao G, Li K, Li S, et al. Transplantation of endothelial progenitor cells in the treatment of coronary artery microembolism in rats. *Cell Transplant* 2020;29:0963689720912688. doi: 10.1177/0963689720912688.

69. Yang K, Liu X, Lin W, Zhang Y, Peng C. Upregulation of MicroRNA-125b Leads to the Resistance to Inflammatory Injury in Endothelial Progenitor Cells. *Cardiol Res Pract* 2020;2020(1):6210847. doi: 10.1155/2020/6210847.

70. Yao Y, Sheng Z, Li Y, Fu C, Ma G, Liu N, et al. Tissue kallikrein-modified human endothelial progenitor cell implantation improves cardiac function via enhanced activation of akt and increased angiogenesis. *Lab Invest* 2013;93(5):577-91. doi: 10.1038/labinvest.2013.48.

71. Yoo CH, Na H-J, Lee D-S, Heo SC, An Y, Cha J, et al. Endothelial progenitor cells from human dental pulpderived iPS cells as a therapeutic target for ischemic vascular diseases. *Biomaterials* 2013;34(33):8149-60. doi: 10.1016/j.biomaterials.2013.07.001.

72. Yuan Yuan Z, Kang L, Wang Z, Chen A, Zhao Q, Li H. 17β-estradiol promotes recovery after myocardial infarction by enhancing homing and angiogenic capacity of bone marrow-derived endothelial progenitor cells through ERα-SDF-1/CXCR4 crosstalking. *Acta Biochim Biophys Sin* 2018;50(12):1247-56. doi: 10.1093/abbs/gmy127.

73. Zhou W, Zheng X, Cheng C, Guo G, Zhong Y, Liu W, et al. Rab27a deletion impairs the therapeutic potential of endothelial progenitor cells for myocardial infarction. *Mol Cell Biochem* 2021;476:797-807. doi: 10.1007/s11010-020-03945-x.

74. Atluri Atluri P, Miller JS, Emery RJ, Hung G, Trubelja A, Cohen JE, et al. Tissue-engineered, hydrogel-based endothelial progenitor cell therapy robustly revascularizes ischemic myocardium and preserves ventricular function. *J Thorac Cardiovasc Surg* 2014;148(3):1090-8. doi: 10.1016/j.jtcvs.2014.06.038.

75. Yang J, Ii M, Kamei N, Alev C, Kwon S-M, Kawamoto A, et al. CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow. *PLoS One* 2011;6(5):e20219. doi: 10.1371/journal.pone.0020219.

76. Park J-H, Yoon JY, Ko SM, Jin SA, Kim JH, Cho C-H, et al. Endothelial progenitor cell transplantation decreases lymphangiogenesis and adverse myocardial remodeling in a mouse model of acute myocardial infarction. *Exp Mol Med* 2011;43(8):479-85. doi: 10.3858/emm.2011.43.8.054.

77. Huang H, Huang F, Huang J-P. Transplantation of bone marrow-derived endothelial progenitor cells overexpressing Delta-like-4 enhances functional neovascularization in ischemic myocardium. *Mol Med Rep* 2013;8(5):1556-62. doi: 10.3892/mmr.2013.1657.

78. Li X, Xue X, Sun Y, Chen L, Zhao T, Yang W, et al. MicroRNA-326-5p enhances therapeutic potential of endothelial progenitor cells for myocardial infarction. *Stem Cell Res Ther* 2019;10:1-12. doi: 10.1186/s13287-019-1413-8.

79. Zhang Bf, Jiang H, Chen J, Hu Q, Yang S, Liu Xp. Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction. *J Cell Physiol* 2019;234(10):18544-59. doi: 10.1002/jcp.28492.

80. Xiao Q, Zhao XY, Jiang RC, Chen XH, Zhu X, Chen KF, et al. Increased expression of Sonic hedgehog restores diabetic endothelial progenitor cells and improves cardiac repair after acute myocardial infarction in diabetic mice. *Int J Mol Med* 2019;44(3):1091-105. doi: 10.3892/ijmm.2019.4277.

81. Sun YY, Bai WW, Wang B, Lu XT, Xing YF, Cheng W, et al. Period 2 is essential to maintain early endothelial progenitor cell function in vitro and angiogenesis after myocardial infarction in mice. *J Cellular Mol Med* 2014;18(5):907-18. doi: 10.1111/jcmm.12241.

82. Wu Y, Ip JE, Huang J, Zhang L, Matsushita K, Liew C-C, et al. Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. *Circ Res* 2006;99(3):315-22. doi: 10.1161/01.RES.0000235986.35957.a3.

83. Chang Z-T, Hong L, Wang H, Lai H-L, Li L-F, Yin Q-L. Application of peripheral-blood-derived endothelial progenitor cell for treating ischemia-reperfusion injury and infarction: a preclinical study in rat models. *J Cardiothorac Surg* 2013;8:1-10. doi: 10.1186/1749-8090-8-33.

84. Hu C-h, Li Z-m, Du Z-m, Zhang A-x, Yang D-y, Wu G-f. Human umbilical cord-derived endothelial progenitor cells promote growth cytokines-mediated neorevascularization in rat myocardial infarction. *Chin Med J* 2009;122(05):548-55.

120. Mackie AR, Klyachko E, Thorne T, Schultz KM, Millay M, Ito A, et al. Sonic hedgehog–modified human CD34+ cells preserve cardiac function after acute myocardial infarction. *Circ Res* 2012;111(3):312-21. doi: 10.1161/CIRCRESAHA.112.266015.

86. Murasawa S, Kawamoto A, Horii M, Nakamori S, Asahara T. Niche-dependent translineage commitment of endothelial progenitor cells, not cell fusion in general, into myocardial lineage cells. *Arterioscler Thromb Vasc Biol* 2005;25(7):1388-94. doi: 10.1161/01.ATV.0000168409.69960.e9.

87. Rong Q, Huang J, Su E, Li J, Li J, Zhang L, et al. Infection of hepatitis B virus in extrahepatic endothelial tissues mediated by endothelial progenitor cells. *Virol J* 2007;4:1-14. doi: 10.1186/1743-422X-4-36.

Toeg HD, Tiwari-Pandey R, Seymour R, Ahmadi A, Crowe S, Vulesevic B, et al. Injectable small intestine submucosal extracellular matrix in an acute myocardial infarction model. *The Ann Thorac Surg* 2013;96(5):1686-94. doi: 10.1016/j.athoracsur.2013.06.063.

89. Salari N, Morddarvanjoghi F, Abdolmaleki A, Rasoulpoor S, Khaleghi AA, Hezarkhani LA, et al. The global prevalence of myocardial infarction: a systematic review and meta-analysis. *BMC Cardiovasc Disord* 2023;23(1):206. doi: 10.1186/s12872-023-03231-w

90. Li J, Zhao Y, Zhu W. Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review). *Exp Ther Med* 2022;23(1):64. doi: 10.3892/etm.2021.10986

91. Huang W, Percie du Sert N, Vollert J, Rice ASC. General Principles of Preclinical Study Design. *Handb Exp Pharmacol* 2020;257:55-69. doi: 10.1007/164_2019_277

92. Li J, Ma Y, Miao X-H, Guo J-D, Li D-W. Neovascularization and tissue regeneration by endothelial progenitor cells in ischemic stroke. *Neurol Sci.* 2021;42(9):3585-3593. doi: 10.1007/s10072-021-05428-3.

93. Shen X, Wang M, Bi X, Zhang J, Wen S, Fu G, et al. Resveratrol prevents endothelial progenitor cells from senescence and reduces the oxidative reaction via PPAR- γ /HO-1 pathways. *Mol Med Rep* 2016;14(6):5528-34. doi: 10.3892/mmr.2016.5929.

94. Xue M, Liu M, Zhu X, Yang L, Miao Y, Shi D, et al. Effective Components of Panax quinquefolius and Corydalis tuber Protect Myocardium through Attenuating Oxidative Stress and Endoplasmic Reticulum Stress. *Evid Based Complement Alternat Med* 2013;2013(1):482318. doi: 10.1155/2013/482318.

95. Hamed S, Brenner B, Aharon A, Daoud D, Roguin A. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus. *Cardiovasc Diabetol* 2009;8:56. doi: 10.1186/1475-2840-8-56.

96. Kim SM, Vetrivel P, Ha SE, Kim HH, Kim J-A, Kim GS. Apigetrin induces extrinsic apoptosis, autophagy and G2/M phase cell cycle arrest through PI3K/AKT/mTOR pathway in AGS human gastric cancer cell. *J Nutr Biochem* 2020;83:108427. doi: 10.1016/j.jnutbio.2020.108427.

97. Deng X, Zhao W, Song L, Ying W, Guo X. Pro-apoptotic effect of TRAIL-transfected endothelial progenitor cells on glioma cells. *Oncol Lett* 2018;15(4):5004-12. doi: 10.3892/ol.2018.7977.

98. Liang Q, Pan F, Qiu H, Zhou X, Cai J, Luo R, et al. CLC-3 regulates TGF-β/smad signaling pathway to inhibit the process of fibrosis in hypertrophic scar. *Heliyon* 2024;10(3). doi: 10.1016/j.heliyon.2024.e24984.

99. Emontzpohl C, Simons D, Kraemer S, Goetzenich A, Marx G, Bernhagen J, et al. Isolation of endothelial progenitor cells from healthy volunteers and their migratory potential influenced by serum samples after cardiac surgery. *J vis Exp* 2017(120): 55192. doi: 10.3791/55192.

100. Ma X, Wang J, Li J, Ma C, Chen S, Lei W, et al. Loading MiR-210 in endothelial progenitor cells derived exosomes boosts their beneficial effects on hypoxia/reoxygeneation-injured human endothelial cells via protecting mitochondrial function. Cell Pysiol Biochem 2018;46(2):664-75. doi: 10.1159/000488635.

101. Ngo N-H, Chang Y-H, Vuong C-K, Yamashita T, Obata-Yasuoka M, Hamada H, et al. Transformed extracellular vesicles with high angiogenic ability as therapeutics of distal ischemic tissues. *Front Cell Dev Biol.* 2022;10:869850. doi:10.3389/fcell.2022.869850.

102. Abd El Aziz MT, Abd El Nabi EA, Abd El Hamid M, Sabry D, Atta HM, Rahed LA, et al. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development. *J Adv Res* 2015;6(2):133-44. doi: 10.1016/j.jare.2013.12.006

103. Chen Z, Haus JM, Chen L, Wu SC, Urao N, Koh TJ, et al. CCL28-induced CCR10/eNOS interaction in angiogenesis and skin wound healing. FASEB J 2020;34(4):5838. doi: 10.1096/fj.201902060R.

104. Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, et al. Endothelial Progenitor Cells Are Rapidly Recruited to Myocardium and Mediate Protective Effect of Ischemic Preconditioning via "Imported" Nitric Oxide Synthase Activity. *Circulation* 2005;111(9):1114-20. doi: 10.1161/01.CIR.0000157144.24888.7E

105. Cristóvão G, Milner J, Sousa P, Ventura M, Cristóvão J, Elvas L, et al. Improvement in circulating endothelial progenitor cells pool after cardiac resynchronization therapy: increasing the list of benefits. *Stem Cell Res Ther* 2020;11(1):194. doi: 10.1186/s13287-020-01713-8.

106. Mause SF, Ritzel E, Deck A, Vogt F, Liehn EA. Endothelial progenitor cells modulate the phenotype of smooth muscle cells and increase their neointimal accumulation following vascular injury. Thromb Haemost 2022;122(03):456-69. doi: 10.1055/s-0041-1731663.

107. Yan F, Li J, Zhang W. Transplantation of endothelial progenitor cells: Summary and prospect. *Acta Histochem* 2023;125(1):151990. doi: 10.1016/j.acthis.2022.151990.

108. Huang Y, Chen L, Feng Z, Chen W, Yan S, Yang R, et al. EPC-Derived Exosomal miR-1246 and miR-1290 Regulate Phenotypic Changes of Fibroblasts to Endothelial Cells to Exert Protective Effects on Myocardial Infarction by Targeting ELF5 and SP1. *Front Cell Dev Biol* 2021;9:647763. doi: 10.3389/fcell.2021.647763

109. Hong X, Luo AC, Doulamis I, Oh N, Im GB, Lin CY, et al. Photopolymerizable Hydrogel for Enhanced Intramyocardial Vascular Progenitor Cell Delivery and Post-Myocardial Infarction Healing. *Adv Healthc Mater* 2023;12(29):2301581. doi: 10.1002/adhm.202301581.

110. Sun R, Wang X, Nie Y, Hu A, Liu H, Zhang K, et al. Targeted trapping of endogenous endothelial progenitor cells for myocardial ischemic injury repair through neutrophil-mediated SPIO nanoparticle-conjugated CD34 antibody delivery and imaging. *Acta Biomaterialia* 2022;146:421-33. doi: 10.1016/j.actbio.2022.05.003.

111. Zhou T, Yuan Z, Weng J, Pei D, Du X, He C, et al. Challenges and advances in clinical applications of mesenchymal stromal cells. *J Hematol Oncol* 2021;14(1):24. doi: 10.1186/s13045-021-01037-x

112. Srinivasan RC, Kannisto K, Strom SC, Gramignoli R. Evaluation of different routes of administration and biodistribution of human amnion epithelial cells in mice. *Cytotherapy* 2019;21(1):113-24. doi: 10.1016/j.jcyt.2018.10.007.

113. Liu Z, Mikrani R, Zubair HM, Taleb A, Naveed M, Baig MMFA, et al. Systemic and local delivery of mesenchymal stem cells for heart renovation: Challenges and innovations. *Eur J Pharmacol* 2020;876:173049. doi: 10.1016/j.ejphar.2020.173049.

114. Vekstein AM, Wendell DC, DeLuca S, Yan R, Chen Y, Bishawi M, et al. Targeted delivery for cardiac regeneration: comparison of intra-coronary infusion and intra-myocardial injection in porcine hearts. *Front Cardiovasc Med* 2022;9:833335. doi: 10.3389/fcvm.2022.833335.

115. Gathier WA, van Ginkel DJ, van der Naald M, van Slochteren FJ, Doevendans PA, Chamuleau SA. Retrograde coronary venous infusion as a delivery strategy in regenerative cardiac therapy: an overview of preclinical and clinical data. *J Cardiovasc Transl Res* 2018;11:173-81. doi: 10.1007/s12265-018-9785-1.

116. Xu CM, Sabe SA, Brinck-Teixeira R, Sabra M, Sellke FW, Abid MR. Visualization of cardiac uptake of bone marrow mesenchymal stem cell-derived extracellular vesicles after intramyocardial or intravenous injection in murine myocardial infarction. *Physiol Rep* 2023;11(6):e15568. doi: 10.14814/phy2.15568.

117. Li J, Hu S, Zhu D, Huang K, Mei X, López de Juan Abad B, et al. All roads lead to Rome (the heart): cell retention and outcomes from various delivery routes of cell therapy products to the heart. *J Am Heart Assoc* 2021;10(8):e020402. doi: 10.1161/JAHA.120.020402.

118. Romagnuolo R, Masoudpour H, Porta-Sánchez A, Qiang B, Barry J, Laskary A, et al. Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. *Stem Cell Rep* 2019;12(5):967-81. doi: 10.1016/j.stemcr.2019.04.005.

119. Jiménez-Beltrán MA, Gómez-Calderón AJ, Quintanar-Zúñiga RE, Santillán-Cortez D, Téllez-González MA, Suárez-Cuenca JA, et al. Electrospinning-Generated Nanofiber Scaffolds Suitable for Integration of Primary Human Circulating Endothelial Progenitor Cells. *Polymers (Basel)*. 2022; 14(12). doi: 10.3390/polym14122448 120. Gong X, Li B, Yang Y, Huang Y, Sun Y, Liu M, et al. Bone marrow derived endothelial progenitor cells retain their phenotype and functions after a limited number of culture passages and cryopreservation. *Cytotechnology* 2019;71(1):1-14. doi: 10.1007/s10616-018-0234-4

121. Wang J, Li R. Effects, methods and limits of the cryopreservation on mesenchymal stem cells. *Stem Cell Res Ther* 2024;15(1):337. doi: 10.1186/s13287-024-03954-3

122. Sieveking DP, Buckle A, Celermajer DS, Ng MKC. Strikingly Different Angiogenic Properties of Endothelial Progenitor Cell Subpopulations: Insights From a Novel Human Angiogenesis Assay. *J Am Coll Cardiol* 2008;51(6):660-8. doi: 10.1016/j.jacc.2007.09.059

123. Guillamat-Prats R. The Role of MSC in Wound Healing, Scarring and Regeneration. *Cells* 2021;10(7). doi: 10.3390/cells10071729

Figures:

Figure 1. PRISMA diagram of the review process for the meta-analysis

Figure 2. Percentage of selected experiments for each item in the modified version of the CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies) quality checklist.

Study Quality indices (%)

Accepted Manuscript (unedited)

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.

Figure 3. Angiogenesis improvement based on the time of results assessment (a). Fibrosis improvement based on the time of results assessment (b). Ejection fraction improvement based on the time of results assessment (c). Fractional shortening improvement based on the time of results assessment (d).

Accepted Manuscript (unedited) The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.

а							b
đ	Study or Subgroup 5.1.1 Intramyocardial	Experimental Mean SD	Control Total Mean SD	Total Weight	Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference IV, Random, \$5% Cl	Experimental Control Std. Mean Difference Std. Mean Difference Std. Mean Difference Study of Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
	Anneal, A. 2014 Anneal, A. 2014 Boul, K. P. 2012 Gene, X. 2013 Gene, X. 2013 Gene, Y. 2013 Gene, Y. 2013 Gene, Y. 2013 Gene, X. 2015 Gene, X. 2015 Gene, X. 2015 Gene, X. 2015 Gene, X. 2015 Gene, X. 2015 Boue, X. 2016 Boue, X. 2015 Boue, X. 2016 Boue, X. 2017 Boue, X. 2016 Boue, X. 2016 Boue, X. 2016 Boue, X. 2016 Boue, X. 2017 Boue, X. 2016 Boue, X. 2017 Boue, X. 2016 Boue, X. 2017 Boue, X. 2016 Boue, X.	$\begin{array}{c} 6.16 & 1.42 \\ 2.27 & 11.02 \\ 16.27 & 0.48 \\ 17.3 & 2.73 \\ 12.3 & 2.74 \\ 12.3 & 2.74 \\ 22.3 & 2.36 \\ 22.35 & 1.75 \\ 5.5 & 6.3 \\ 10.4 & 8.45 \\ 10.4 & 8$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 15% 9 35% 15 27% 10 3.1% 4 2.5% 10 3.1% 12 3.6% 12 3.6% 12 3.6% 12 3.6% 12 3.6% 12 3.6% 12 3.6% 12 2.5% 12 2.5% 12 2.5% 12 2.5% 12 2.5% 12 2.5% 12 3.6% 12 3.5% 12 3.5%13 3.5% 12 3.5% 12 3.5% 12 3.5%13 3.5% 12 3.5% 12 3.5%13.	$\begin{array}{c} 1, D \ge 1, Z \ge 0, \\ 1, 2 = 0, 1, 0, 2, 4, 2 \\ 3, 1 = 0, 1, 0, 2, 4, 2 \\ 3, 1 = 0, 1, 0, 2, 4, 2 \\ 3, 1 = 0, 2, 4, 2 \\ 3, 1 = 0, 2, 4, 2 \\ 4, 2 \\ 4, 2 \\ 4, 2 \\ 4, 2 \\ 4, 2 \\ 4, 2 \\ 4, 2 \\ 4, 3 \\ 4, 4 \\ 4, 2 \\ 4, 4 \\ 4, 2 \\ 4, 4 \\ 4, 2 \\ 4, 4 $		Anexal, A. 2014 44.04 10.01 16 22.13 7.2 15 40% 2.0113.5.358] Burk, R. 2014 16.4 3.25 6 31.95 7 39% -0.3514.40.73] Burk, R. 2014 16.44 3.25 6 33.95 -7 39% -0.2514.40.73] Burk, R. 2013 31.04 6.07 12 3.84 -1.16 Ohm, X. 2013 31.04 6.07 12 15.7 3.84 -1.16 Ohm, X. 2013 31.04 6.07 12 16.7 14 15.7 3.84 Ohm, X. 2013 31.04 6.07 12 16.7 12 2.77.8 Ohme, X. 2015 12 10.6 10.5 10.7 Pauch, M. A. 2020 50.3 2.01 10 2.55 12 10.7
	Boyle, A. J. 2005 Huang, H. 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 5.1.3 Transeptcardial Moltenbauer L M. 2015	5.55 1.74 23.1 4.8 Ch ² = 0.05, df = 1 .38 (P < 0.00001) 77.78 37.78	5 2.04 0.83 20 13.2 2.4 25 (P = 0.83); P = 0%	5 2.6% 20 3.6% 25 8.2%	2.33 [0.53, 4.14] 2.66 [1.70, 3.41] 2.62 [1.74, 3.29]	Ŧ	Test for overall effice: Z = 2.86 (F = 0.004) 6.12 Intervenues 5.2 June 2.0212 0 15.9 0 10 32.05 0 10 404 estimable 2.2 mog. B = 2019 11.78 - 2.44 10 25.51 1.85 10 3.4% - 4.65 (4.46 - 2.82) Suncted (ID'S C) 20 28 3.4% - 4.65 (4.46 - 2.82) Hemogrammity: Not spectrade
	Subtotal (95% CI) Heterogeneity: Not applical Test for overall effect: Z = 1 5.1.4 Percutaneously inje Guneti, M. 2011 Subtotal (85% CI)	sia .92 (P = 0.05) ction into LV 1,447 142.81	4 11 1,517 211.87 11	4 2.5% 10 3.8% 10 3.6%	-0.38 (-1.24, 0.49) -0.38 (-1.24, 0.49) -0.38 (-1.24, 0.49)	•	Test for owned where: Z = 4.88 (P < 0.00001) 6.1.4 Perculaneously injection into LV Guneti, M, NOTI 0.055 7/153 12 4.645 19.3 11 4.0% 0.06 (-0.78, 0.88) Guneti, M, NOTI 0.055 7/15 12 11 4.0% 0.06 (-0.78, 0.88) Hereangenously list applicable Percursion of the second of the net of the second
	Test for overall effect: Z = 0 5.1.5 intraceronary Schuh, A. 2012 Sun, Z. 2008 Subtotal (95% CI) Hoterogeneity: Tau* = 1.51 Test for the state of th	185 (P = 0.39) 744 22 9.13 0.87 Chi ^a = 3.76, df = 1	8 609 38 9 4.87 1.16 17 (P = 0.05); P = 74%	10 3.3% 10 2.7% 20 8.0%	1.91 [0.75, 3.08] 3.94 [2.27, 5.61] 2.83 [0.86, 4.81]	-	6.1.5 microsonawy 6wi, Z. 2008 21:47 4.44 9 27.59 7.64 5 3.9% -1.02 [-2.20, 0.16] Substat (95% C)
	5.1.6 Systemically Subtotal (95% CI) Heterogeneity: Not applical Test for overall effect: Not a	xie spjicable	8	8	Not astimable		6.1.6 Systemically Satocal (95% Cl) 0 0 Not estimable Heterogramsy: Not applicable Test for overall effect. Not applicable
	Total (95% CI)		305	306 100.0%	1.92 [1.44, 2.40]	•	Total (95% Cl) 283 259 100.0% -1.21 [-1.55, -0.48] ♥ Heteroconnelis: Tauli = 3 29: Chill = 269 80. df = 27 (P ≤ 0.00011): H = 90%
	Hotorogonoity: Tau* = 1.45 Test for overall effect; Z = 1 Test for subproup difference	Chi* = 163.86, df .87 (P < 0.00001) es: Chi* = 28.21, d	= 32 (P < 0.00001); I ^a = = 4 (P < 0.0001), I ^a = 8	80% 5.8%	-	-10 -5 0 5 10 Favours (control) Favours (experimental)	Test for overall effect: Z = 3.25 (P = 0.001) Test for overall effect:
с	Hoterogeneity: Tau* = 1.45 Test for overall effect: Z = 1 Test for subgroup difference	: Chi* = 163.86, df .87 (P < 0.00001) es: Chi ² = 28.21, d	= 32 (P < 0.00001); P = = 4 (P < 0.0001), P = 8	80%	-	-10 -5 0 5 10 Fevous (contro) Fevous (experimental)	Test for ownall effect Z = 3.26 (P = 0.001) -00 -00 10 20 Test for subaruo differences: Chrl = 21.79, dr = 3 (P < 0.0001), P = 86.2% Parcours [control] Parcours [control]
c	Hoterogeneity: Tauf = 1.45 Test for overall effect: Z = 1 Test for subgroup differenc Study or Subgroup	Chi ² = 163.86, df (P < 0.00001) e: Chi ² = 28.21, df Experimenta Mean SD 1	s 32 (P < 0.00001); P = = 4 (P < 0.0001); P = 8 I Control Total Mean SD T	so% i5.8% S iotal Weight	id. Mean Difference IV, Random, \$5% Cl	-id -5 0 5 10 Favours (control) Favours (seperimental) Stat. Mean Difference IV, Random, 95% Ci	Test for owaid effect 2: 3.25 (P = 0.001) -00 0 10 20 Test for owaid effect 2: 3.25 (P = 0.001) -20 Favoural [control] Pavoural [control] C Experimental Control Std. Maan Differences Std. Maan Differences Study or Subgroup Mean SD. Total Mean SD. Total Weight V, Random, 95% Cl
C	Hear-operatory: Tard + 142 Blady CP Subgroup 21.1 Territor addresses difference 21.1 Diritorial addresses difference 21.1 Diritorial addresses 21.1 Dir	Core - 10.338, c) Experimental Wean 50 1 37.4 10.32 39.5 20.88 42.19 3.85 42.19 3.85 42.19 3.85 42.19 3.85 42.3 3.85 52.285 1.25 60.6 5.5 51.54 8.46 42.3 30.52 47.5 4.85 51.54 8.46 43.05 1.62 50.65 5.5 51.54 8.46 43.05 1.62 50.65 5.5 51.64 5.5 51.65 5.5 51.55 5.5 51.55 5.5 51.55 5.5 51.55 5.5 51.55 5.55 5.55 5.55 5.55 5.55 5.55 5.5	aze P = 0.00001; p = 1 -4 (P = 0.0001; p = 1 0.0001; p = 1 -4 (P = 0.0001; p = 1 0.0001; p = 1 -20 36 (3.1) 6 -20 36 (3.1) 6 -307 44 (3.42, 3.27) 23 (3.1) -23 35 (3.1) 6 -5 157, 7.377 15 (2.4) -6 5.17, 3.77 17 (1.2) -7 2.53.57 2.30 -8 3.6, 7 3.6 -8 5.17, 4.3 5.17, 4.3 -7 2.53.57 2.30 -8 5.17, 4.3 7.42 -6 5.17, 4.3 7.43 -6 2.73 0.27 -6 2.73 0.27 -10 2.27 0.14 -10 2.27 0.41 -10 2.27 0.41 -2.28 4.41 4.42 -2.41 -4.42 -4.42	Sorte S ctat Weight 29 4.4% 10 3.5% 15 3.6% 28 2.7% 10 4.0% 10 4.0% 10 4.0% 10 4.0% 6 1.5% 6 3.6% 3 3.6% 6 3.6% 3 3.6% 6 3.6% 3 4.1% 5 3.6% 5 3.2% 6 3.6% 5 3.2% 6 3.6% 3 4.0% 5 3.0% 6 3.0% 6 3.0% 6 3.0% 6 3.0% 6 3.0% 5 3.0% 5 3.0% 5 3.0% 5 3.0% 5 3.0%	kd. Mean Difference M. Random, 955 Cl -0.05 (2.05, 0.46) 0.001 (-10.11, 0.01) 1.83 (0.03, 2.84) 0.031 (0.04, 1.44) 0.031 (0.04, 1.44) 0.031 (0.04, 1.44) 0.031 (0.04, 1.44) 0.021 (0.04, 0.01) 2.11 (1.06, 3.14) 1.09 (0.04, 0.01) 2.11 (1.06, 3.14) 1.09 (0.04, 0.01) 2.11 (1.06, 3.14) 1.09 (0.04, 0.01) 1.09 (0.04, 0.01) 1.09 (0.04, 0.01) 1.09 (0.04, 0.01) 1.09 (0.04, 0.01) 1.09 (0.04, 0.01) 1.09 (0.04, 0.01) 1.03 (0.04, 0.04) 1.03 (0.04, 0.04	-10 - 5 - 0 France proved proceeding (specimental) Stil. Mann Difference (y, Random 595 C) 	Tuet for usual uffice: 2-5 25 0P = 0.001) Tuet for usual uffice: 2-5 25 0P = 0.001) Tue for usual uffice: 2-5 25 0P = 0.001) <thttp:></thttp:> Tue for usual uffice: 2-5 25
C	Hear-goards, Tau' + 143 The for eaderson difference Study or Subgroup 7.1. Inframycearfall Adaut, P. 2014 Adaut, P. 2014 Adaut, P. 2014 Adaut, P. 2014 Adaut, P. 2014 Adaut, P. 2014 Compare, Z. 1. 2014 Compare, Z. 1. 2015 Gaffly, A. C. 2015 Sheng, Z. 2013 Sheng, Z. 2018 Sheng, Z. 201	Departments Begentments Begentm	aze (P = 0.0001); P = 4 aze (P = 0.0001); P = 6 value (B) (B) 20 (S) (S) (S) 20 (S) (S) (S) (S) 20 (S) (S) (S) (S) (S) 20 (S) (S) (S) (S) (S) (S) (S) 20 (S) (S)	stars	14. Maan Difference N. Random, 35% CI 0.05 (206, 0.46) 0.001 (101, 101) 1.630 (10.8, 7.28) 1.037 (208, 1.28) 1.037 (208, 1.29) 1.037 (208, 1.29) 1.037 (208, 1.29) 1.037 (208, 1.29) 1.042 (10.4, 1.48) 1.091 (208, 1.29) 1.091 (10 5 0 10 Ferrora (preventing) Std. Mann Difference IV, Random, 895 Cl 	Bit for using life. Control Std. Mac Difference
C	Hear-operatory: Turk - 143 Biology or Subgroup TA-1 Information Stream TA-1 Information TA-1 Information TA-1 Information Stream	Core = 0.03.6, ef ar: Core = 28.21, e Experimenta Mean 50 1 37.4 10.32 39.8 29.88 25.19 3.85 25.19 3.85 25.19 3.85 25.19 3.85 25.19 3.85 25.43 3.85 30.43 4.85 30.43 4.85 30.43 3.455 30.43 3.455 30.44 5.45 4.37 (P = 0.03, df = 0.457 2.55 30.55	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eox 	 Kd. Mean Difference M. Random, 955 Cl. - 0.05 (1.06), 0.46 (1.06), 0.45 (1.07), 0.00 (1.00), 1.00), 1.00, 1.00, 1.00, 0.00,	-10 <u>3</u> <u>0</u> <u>0</u> France [parter] France [parter and [The for used where 2 - 3 as p = 0 cont 20 cont 0 cont <t< td=""></t<>
C	Hear-grants, Tarl + 143 Bhady ar Subgroue Tarl for analysis and the second structure T 2.1 Intramyocardial Anned, A. 2014 Anned, A. 2014 Anned, A. 2014 Brut, K. R. 2012 Chang, Z. T. 2013 Deduch, M. A. 2020 Genty, A. C. 2019 Genty, A. 2010 Genty, A. 2010 Seng, Z. 2013 Seng, Z. 2015 Seng, Z.	Core = 0.338, cf. core = 0.338, cf. Experimental State Book = 0.2014 State = 0.2014 Stat	-40° - 0.00001; P = - -40° - 0.00001; P = 0 -40° - 0.0001; P = 0 -40° - 0.0001; P = 0 -10° - 0.0001; P = 0	eon 	 Maan Difference M. Bandom, 55% CI -0.05 (J.06), 0.46 -0.05 (J.06), 0.47 1.03 (J.03), 2.88 1.03 (J.03), 1.20 1.03 (J.03), 1.20 1.04 (J.03), 1.20 1.04 (J.03), 1.20 1.05 (J.03), 1.20 1.06 (J.03), 1.20 1.06 (J.03), 1.20 1.07 (J.03), 1.20 1.07 (J.03), 1.20 1.08 (J.03), 1.20 1.08 (J.03), 1.20 1.09 (J.03), 2.21 1.21 (J.03), 1.20 1.21 (J.03), 1.20 1.23 (J.03), 2.21 1.23 (J.03), 2.21 1.24 (J.03), 2.21 1.25 (J.04), 1.21 0.44 (J.04), 1.81 0.44 (J.04), 0.83 1.43 (J.04), 0.83 1.43 (J.04), 0.83 1.44 (J.44), 0.83 1.45 (J.44), 0.83 1.45 (J.44), 0.83 1.45 (J.44), 0.83 1.45 (J.44), 0.83 	-10 S 0 V France proved Prevent (preventitie) Siti. Man Difference W, Random 895 Cl	20 0.0 0.0 20 The for usbars of file and colspan="2" (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c

Figure 4. Angiogenesis improvement based on injection method (a). Fibrosis improvement based on injection method (b). Ejection fraction improvement based on injection method (c). Fractional shortening improvement based on injection method (d).

Figure 5. Angiogenesis improvement based on EPC dose (a). Fibrosis improvement based on EPC dose (b). Ejection fraction improvement based on EPC dose (c). Fractional shortening improvement based on EPC dose (d).

Accepted Manuscript (unedited) The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.

a	b
Experimental Control Mean Difference Mean Difference Mean Difference Study or Subgroup Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI	Experimental Control Nean Difference Mean Difference Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, S5% CI IV, Random, S5% CI
B.1.1 B.1.1 <td< td=""><td>Nun. 1 bolom Raintow Nun. 1 bolom Raintow Almad, A. 2014 1125 222 15 233 72 15 4.15 1.105 [4.88, 7.27] Almad, P. 2014 8.2 7.35 6 13 4.55 7 34% 4.400 [7.007, 740] D'ben, X. 2013 316 6.47 15 315 6.417 5.218 2.00 [6.77, 244] D'beng, Y. 2012 22.66 4.09 6.433 5.18 6 3.95 3.237, [5.186, 1.570] Gamingu, K. 2015 27 7.8 10 356 8.28 3.295 4.600 [4.568, 1.570] Gamingu, M. 2015 147 15.85 16 6.115 7.274 11.274</td></td<>	Nun. 1 bolom Raintow Nun. 1 bolom Raintow Almad, A. 2014 1125 222 15 233 72 15 4.15 1.105 [4.88, 7.27] Almad, P. 2014 8.2 7.35 6 13 4.55 7 34% 4.400 [7.007, 740] D'ben, X. 2013 316 6.47 15 315 6.417 5.218 2.00 [6.77, 244] D'beng, Y. 2012 22.66 4.09 6.433 5.18 6 3.95 3.237, [5.186, 1.570] Gamingu, K. 2015 27 7.8 10 356 8.28 3.295 4.600 [4.568, 1.570] Gamingu, M. 2015 147 15.85 16 6.115 7.274 11.274
Depter A. 2005 ESG 174 5 240 0.85 6 4.8% 3.22 (145, 521) Charg, X. 2, 2015 1.58 7.44 1.28 1.27 5.76 1.28 1.41 1.28 1.21 1.27 7.76 1.24 1.0 1.74 7.00 (55, 68, 68, 76) - <td>2010, W. 2011 1981 7.6 9.811 1.516 2.939 -16.81/2.508.11.10.01 Buildood (PS, Cu) 16.1 129 5.7.87.41.23/2.508.11.10.01 119 5.7.87.41.23/2.508.11.10.01 Hemography: Tay 5.6.1 7.6.0.00001) 129 5.7.87.41.23/2.508.11.10.01 10.1.2 pariphenal docd 5.7.6 15.6.1 1.5.6.1 1.6.1.10 Bunt, K. R. 2012 37.25 4 4.65.5.55 15 4.116 4.202.11.10.10 Bunt, K. R. 2012 37.25 4 4.65.5.55 15 4.116 4.202.11.10.10 </td>	2010, W. 2011 1981 7.6 9.811 1.516 2.939 -16.81/2.508.11.10.01 Buildood (PS, Cu) 16.1 129 5.7.87.41.23/2.508.11.10.01 119 5.7.87.41.23/2.508.11.10.01 Hemography: Tay 5.6.1 7.6.0.00001) 129 5.7.87.41.23/2.508.11.10.01 10.1.2 pariphenal docd 5.7.6 15.6.1 1.5.6.1 1.6.1.10 Bunt, K. R. 2012 37.25 4 4.65.5.55 15 4.116 4.202.11.10.10 Bunt, K. R. 2012 37.25 4 4.65.5.55 15 4.116 4.202.11.10.10
Moleconnex, L M 2015 7778 41944 10 4 6.3% 56.34 (20.04, 56.64) Senag, Z.L. 2016 10.268 6.55 50 27.65 6.1% 52.84 (21.0, 10.764) Silva, A, 2016 3.6 1.2 9 1.83 0.5% 5 5.76 5.04 52.84 (21.0, 10.764) Silva, A, 2016 3.6 1.2 9 1.83 0.5% 5 1.0% 1.0% (21.0, 10.764) Silva, A, 2016 3.63 1.2.2 1.2.4.6 4 1.0% 3.83 1.0.4.8, 100 Hearcognouth, Tau ² 2.1.5% -0.01() P = 05% Test for count dired (21.2.5%) -0.01() P = 05%	Haterogeneity: Tax' = 153.26; Cui* = 153.31; df = 5 (P < 0.00001); P = 87%. Test for overall effect. Z = 0.96 (P = 0.32) 10.1.3 umbilical corel blood Botha, R 2004 16.44 3.26 6 53.55 6.28 8 4.0%, -15.12 [-20.19, -10.05]
8.1.4 ard/dro-bunchurv PAC, K.K. 200 102.78 23.81 6 9.7.22 20.83 6 6 8.75 5.56 [+18.83, 30.72]	Hu, C, H, 2010 753 383 10 1022 55 10 41% -228 [444, 188] - Sheng 2, 2013 354 77 6 4425 641 6 396 -736 [443, 643] - Sheng 2, L, 2015 3665 638 5 4921 1146 5 34% -108 [4258, 227] - Shen, A, 2010 18 6 9 20 1151 8 376 - 2001:107.6371 Subhoal (8% C) 8 9 20 1151 7 18.1% -727 [4132, 422] ◆
Schuk, A, 2012 1,142 53.6 6 520 72.3 10 0.1% 622.00 [663.80, 680.20] 9 Hearsgnointy, Not applicable 10 0.1% 622.00 [663.80, 680.20] 9 Hearsgnointy, Not applicable 10 0.1% 622.00 [663.80, 680.20] 9	• Testorgometry: Test - 33.45; (Dr = 10.22; (Dr = 10.22; P = 7.05) Test for rowsal effect: Z = 2.55 (P = 0.02;) Total 1955 C II 254 240 1950.055, -11.41 (156.45, 45.37) ◆
Total (BS47) 218 384 199.9% 7.34 (S47, 19.06) I Hexesgoardy, Tarl Levesgoardy, Tarl	Helengenely, Tar 157 /B, Co ²⁺ 807 /31, df = 25 (P < 0.00001); (P = 87%,
C	d
Experimental Control Mean Difference Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI 11.1.1 Bona marrow	Experimental Control Mean Difference Mean Difference Mean Difference Item SD Total Weight IV, Random, 59% CI IV, Random, 59% CI 12.11 Bone marrow
Ammadi, A. 2014 374 40.22 28 13.13 28 3.8% -0.60.14.68,54.84 Antur, P. 2014 38.8 38.8 58.7 4.90 10.76 201.555,53.578 Gatily, A.C. 2015. 87.3 10.7 10 42.1 6.55 8 3.7% 15.20.752,22.88 Gatily, A.C. 2015. 87.3 10.7 10 42.1 6.55 10.77 77.77 41.20.7152,22.88 Gatily, A.C. 2015. 87.3 10.7 10 42.1 6.55 3.7% 15.20.752,22.88 Gatily, A.C. 2015. 87.3 18.21 15.27 77.7% 4.10.14.57.752,21.64 Gatily, A.C. 2015 34.88 12.17 73.7% 4.10.14.57.752,21.64	Almadi, A. 2014 37.4 10.32 29 38 13.13 29 3.6% 4.60 [4.68,5.46] Ohen, X. 2013 28.29 4.31 8.22.42 2.59 7 4.7% 3.87 [0.22, 7.42] Ohen, Y. 2012 25.52 21.6 25.26.17.4 5.65 5.65 5.65 5.65 Ohen, Y. 2012 27.53 5.88 12.2 4.7% 3.80 [0.38, 5.00] " Galley, A. C219 37.8 15.8 11.2 2.002 2.29 12 4.7% 3.80 [0.38, 5.00] " Galley, A. C219 37.8 15.8 10.5 9.18 10 2.9% 3.001, 3.01, 3.70] " Galley, A. C219 3.46 8.20 9.86 17 3.9% 5.60 [1.60, 1.01] " Humg, H. 2011 14.8 3.46 8.22 2.04 4.55 5.20 [1.65, 0.11] " Humg, H. 2011 2.84 8.22 2.04 4.55 5.20 [1.65, 0.11] " " Gaune, Z. 2017 <t< td=""></t<>
creme to r-carine constraint f = 10 4.17 5.26 (1.3, 14.43) Subidadi (95 Ct) 143.11 15.25 8.16 14.18 3.05 2.00 (10.63, 35.4) Subidadi (95 Ct) 147 177 55.05% 8.63 (7.53, 13.73) Hearsgometry: 147 177 55.05% 16.83 (7.53, 13.73) Test for ownall effect: 2 < 6.27 (12 < 50 < 0.00001); t ⁰ = 86% 150.10% 150.10%	Yan, Y. 2011 68.7 71.56 5 4.11 18.4 6 0.6% 27.60 5.4 6.0 7.7 Zhang, B, F. 2019 27.45 5.71 10 22 2.57 10 4.5% 5.43 15.5 9.31 Zhow, W. (221) 20.54 7.14 8 5 6.3 3.5% 12.01 5.77 16.66 1 5.3% 12.04 7.14 8.85 16.85 8.35 4.25% 5.861 1 1.5% 1.666 1 1.5% 1.55 1.666 1 1.5% 8.35 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% 8.85 4.25% <t< td=""></t<>
Community Constraint	Yan, Y. 2011 88.7 77.89 5 4.11 18.4 5 0.6%, 22.70 4.5%, 45.00.65 Zhong, N. 2021 20.44 7.44 8 5.5 6.43 5.31 5.301.55 5.31 Subdoid (5%, C) 151 160 8.25% 12.00 (5.37, 16.86) Heterogramby, Tai-2 1.85; CM= - 128.40, cf = 14 (P < 0.0000); P = 60%
Community Control Display 1 Display 2 Display 2 <thdisplay 2<="" th=""></thdisplay>	Yan, Y. 2011 88.7 77.89 5 4.1 18.44 5 0.6% 27.60 4.6.00 Zhong, N. 2021 22.54 7.44 8 8.5 6.43 3.3% 12.20 13.6% Starbold (5% C) 151 100 81.5% 5.80 15.6 3.3% 12.20 13.7 160 81.5% Heterogramicy: Tax ² = 25.6% 17.6% 100 81.5% 5.80 16.6 8.55 12.6% Bond, K. R. 2012 25.19 3.55 4.13.42 3.27 15 4.6% 5.77 (15.6, 9.8) Drang, K. R. 2012 25.19 3.55 4.13.42 3.27 15 4.6% 5.77 (15.6, 9.8) Brut, K. 2002 25.5 11.4 12.25 5.42 13.1% 14.67 Namaski, H. 2006 27.7 27.1 12.2 1.6% 1.5% 1.7% Sonde-pare, C. S. 2009 27.55 11.4 2.55.42 12.31% 1.64.61 Sonde-pare, C. S. 2009 27.55 14.6 2.6% 1.7% 3.50 Hoteopare, C. S. 2009 27.55 14.6 2.7 1.7% 3.50 Jande (5%), O 61 62.6 2.4% 5.17 1.66.1 <t< td=""></t<>
Comp. C. r. Avir 20.0 4.2 10.0 9.27 10.4 9.26 10.3 14.3 14.3 14.3 15.27 15.00 14.01 15.27 15.00 <t< td=""><td>Yan, Y. 2011 87 77.89 5 4.11 18.44 5 0.6% 27.69 5.40 5.60 15.77 Zhong, W. 2021 20.54 7.44 8 851 6.43 3.3% 12.00 15.77 16.89 17.85 Subcold (95% C) 191 100 41.84 8.57 16.89 1.85 6.83 1.85 6.85 1.85 6.85 1.85 6.85 1.85 6.85 1.85 6.85 1.85 6.85 1.85 6.85 1.85 6.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85</td></t<>	Yan, Y. 2011 87 77.89 5 4.11 18.44 5 0.6% 27.69 5.40 5.60 15.77 Zhong, W. 2021 20.54 7.44 8 851 6.43 3.3% 12.00 15.77 16.89 17.85 Subcold (95% C) 191 100 41.84 8.57 16.89 1.85 6.83 1.85 6.85 1.85 6.85 1.85 6.85 1.85 6.85 1.85 6.85 1.85 6.85 1.85 6.85 1.85 6.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85

Figure 6. Angiogenesis improvement based on EPC source (a). Fibrosis improvement based on EPC source (b). Ejection fraction improvement based on EPC source (c). Fractional shortening improvement based on EPC source (d).

Figure 7. Funnel plot of standard error by the standard difference. Angiogenesis (a); Fibrosis (b); Ejection fraction (c); and Fractional shortening (d)