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Purpose: Myocardial infarction (Ml), the leading cause of human mortality, is
induced by a sudden interruption of blood supply. Among various stem cell types,
endothelial progenitor cells (EPCs) are novel and valid cell sources for the
restoration of vascularization in the ischemic tissue. The present study aimed to
evaluate the regenerative properties of EPCs in rodent models of MI.

Methods: A comprehensive systematic search was implemented in Cochrane
Library, Embase, PubMed, Scopus, and Web of Science databases without
language limitation in Sep 2024. Of the 67 papers pooled, 42 met the inclusion
criteria and were subjected to multiple analyses.

Results: Compared to the MI group, the overall effect size was confirmed in the
groups receiving EPC with enhanced angiogenesis (SMD: 2.02, Cl 95%: 1.51-2.54,
p<0.00001; 12: 82%), reduced fibrosis (SMD: -1.48; 95% CI—2.15, -0.81;
p <0.0001; 12: 88%), improved ejection fraction (EF; SMD: 1.72; 95% CI—1.21,
2.23; p<0.00001; 12: 87%), and fractional shortening (FS; SMD: 1.58; 95%
CI—1.13, 2.03; p<0.00001; 12: 82%). Data confirmed significant improvements
in the cardiac tissue parameters after intramyocardial injection of EPCs.
Conclusion: These data showed that EPC transplantation is an alternative therapy
to ameliorate ischemic myocardium in rodents via the stimulation of angiogenesis,
reduction of fibrosis, and improvement of fractional shortening and ejection
fraction.
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Introduction

Ischemic heart disease (IHD) is a global leading cause of human mortality and disability in the clinical setting.!
Typically, MI occurs following partial or complete occlusion of a coronary artery leading to massive
cardiomyocyte damage, inflammation, and subsequent fibrotic changes.? Notably, the contraction of fibroblasts
and collagen fibers at the healing site can contribute to the thinning of the left ventricle (LV). Over time, the
reduction of ejection fraction (EF) and lethal arrhythmias in an ischemic heart can be life-threatening.? Currently,
percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) are clinical modalities for
the restoration of blood and reduction of cardiomyocyte injury.* Unfortunately, these approaches are not fully
effective, and the development and application of de novo therapeutic strategies are highly recommended.’

In recent decades, the discovery and application of stem cells in various pathological conditions have
revolutionized regenerative medicine.® It has been shown that stem cells can promote the healing of ischemic
myocardium via the release of cytokines, growth factors, and direct differentiation into cardiomyocytes.®’
Besides, these cells can accelerate the regeneration of injured myocardium via juxtacrine interaction and
production of pro-angiogenesis factors.®’

According to recent data, it has been confirmed that EPCs are valid cell sources for restoring dysfunctional
endothelium via various reparative functions, especially promoting angiogenesis and vasculogenesis.'? In this
regard, EPCs alone or in combination with other stem cells or mature cells have been used in different studies to
accelerate regenerative outcomes and circumvent limitations associated with the administration of single stem cell
type alone.!’"!? Proteomic analyses have proved the existence of common specific surface molecules such as
CD133, CD34, vascular endothelial growth factor-2 (VEGFR-2), Tie-2, and Sca-1 between EPCs and
hematopoietic stem cells.'3 Following various pathologies and hypoxic conditions, EPCs are recruited from the
bone marrow niche, the primary storage site in adults, to the circulation system.'# Circulating EPCs migrate toward
the injury sites in a cytokine gradient manner where they gradually lose their stemness features (CD133], and
CD34)) and mature into endothelial cells (ECs; CD311 and vWF1).!® Besides differentiation capacity, EPCs
release several proangiogenesis factors (IGF-1, VEGF, HGF, FGF-2, etc.) to expedite the formation of new blood
vessels in the hypoxic areas.!® Data have indicated that the injection of EPCs in several animal models of MI can
improve the healing of myocardium through the stimulation of angiogenesis, regulation of inflammation, and
control of extracellular matrix (ECM) remodeling.'?

In the present systematic review, the application of EPCs in the rodent model of MI and their potential in the
restoration of injured myocardium mainly via angiogenesis was explored. To the best of our knowledge, there are
few reports related to systematic review and metanalysis of EPCs in humans and different animal models of MI.
Most of the studies have investigated the diagnostic properties of EPCs under certain pathological conditions such
as ischemic diseases in humans or there are several reposts related to separate applications of EPCs in certain MI
models in animals.!”!° Although the reparative properties of EPCs have been proved in different MI animal
models, it is imperative that data from various experiments with similar objectives be combined and assessed to
minimize the possible bias and make logic in the interpretation of the obtained data.?® In the last decades, rodents
have been widely used for different experiments related to the MI model due to inherent advantages like small
body mass and easy handling pre- and post-MI induction with minimal space and resources. Besides, researchers
can have access to various rodents with similar genetic characteristics which facilitates high repeatability.?! It
seems that data from this study can provide invaluable data about the eligibility of EPC application in the

alleviation of MI in the clinical setting.
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Material and methods
The current systematic review and meta-analysis were conducted based on the PRISMA 2020 statement guideline.

The used protocol was registered in the PROSPERO database (CRD42024571517).

Search strategy

A comprehensive systematic search was implemented in Cochrane Library, Embase, PubMed, Scopus, and Web
of Science databases without the limitations of language and date in Sep 2024. After the completion of the
systematic search, collected articles, experiments, and contacted authors were carefully monitored and validated
for subsequent evaluations. The abstracts from the international congresses were also monitored. The strategy

used in this study is shown in Supplementary Table 1.

Study design considerations

All preclinical studies associated with the application of EPCs in rodent models of MI, including mice and rats
were reviewed. Rodents with experimentally induced MI in any age in both genders were included. EPCs
transplantation in human counterparts, and other species (i.e., rabbits, porcine, canines, etc.), and in vitro
experiments were excluded from the present analysis. Data related to the administration of EPCs alone, but not in
combination with other stem cell types, were collected. Also, studies related to the use of EPC exosomes in rodent
models of MI were not included. Articles with no access to their full texts were not considered. In Table 1,
inclusion and exclusion criteria are outlined.

The primary outcome indicators were “angiogenesis”, and “infarct size”. The secondary outcome indicators were
“LVEF”, and “fractional shortening (FS)”. For the meta-analysis, the data containing at least one of the outcomes
measured between 1- and 8 weeks post-EPC transplantation were used. If studies contained more than one set of
data for primary or secondary outcome analysis, the selection was done based on the more relevant and common

data.

Table 1. Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria
e  Preclinical studies about e Not an animal study
EPCs as therapy on rodent e  Other animal study rather than rodents
models (mice and rats), with e Not a myocardial infarction model
cardiac infarction in any age e  Clinical studies on humans
or gender e In vitro studies
e Endothelial progenitor cells e Other types of stem cells
° Smdi?s iqcluding the ) e  Studies with CD133+ cells transplantation
combination therapy with e Studies including combination therapy with EPC and other
EPC such as scaffold, types of stem cells
miRNA, growth factors, and e Not transplantation of EPC and just mobilization
other type of stem cells investigation
* Studies Wlth CD34+ cells e  EPCs-derived exosome transplantation
transplantation e Other study type
e  All experimental studies e Invitro studics
(preclinical) e Studies without any access to the full text, or studies in the
other languages, and retracted studies
Study selection

Once the databases were searched for the relevant papers, all collected citations were uploaded to EndNote 18

software with duplicate studies being deleted. Two separate reviewers blindly screened the titles and abstracts to
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ensure the eligibility of the studies in terms of the inclusion and exclusion criteria. Any discrepancy was re-

checked again by a third blind reviewer.

Data collection

The collected data from multiple search databases were organized using PRISMA guidelines. For this purpose,
articles were entered into an Excel spreadsheet. The process was continued by an independent review of the
selected abstracts by the same reviewers. Any disagreements were critically assessed until a precise decision was

made and the opinion of a third reviewer was obtained if it was required.

Evaluation of methodological quality
Using the modified CAMARADES checklist, two independent reviewers monitored the methodological validity
of the quantitative publications selected for retrieval before their inclusion in the systematic review. Again, any

disagreements were resolved through consultation with a third reviewer.

Statistical analysis

The results of the selected data were analyzed using RevMan 5.4.1. Data are presented as mean + SD with a 95%
confidence interval (CI). Statistical heterogeneity was analyzed using the 12 value and the chi-square test. In this
study, p<0.05 and 12>50% were considered statistical heterogeneity. Fixed and mixed models were used for low
and high heterogeneity in the parameters analysis. The subgroup analysis was performed if needed. Publication
bias was assessed using funnel plots and more formally with both Begg and Mazumdar's rank correlation test
(Kendall's tau) and Egger's regression test. Begg's test assesses the correlation between the effect estimates and
their variances, while Egger's test examines the relationship between the effect estimates and their standard errors.

A p-value of less than 0.05 was indicative of statistically significant publication bias.

Results

Description of studies and risk of bias

The flow chart for data selection and handling is presented in Figure 1. Here, a modified CAMARADES quality
checklist was used to assess the collected experiments. Of all peer-reviewed articles, 67 declared compliances
with animal welfare regulations. It is worth mentioning that random allocation to different groups was detected in
28 studies and 42 experiments expressed a conflict-of-interest statement. Furthermore, 6 articles had blinded
induction of MI in the rodent models and 30 studies benefitted from both animal exclusion criteria and blind
outcome assessment based on our evaluation. In the selected articles, no study declared the methodology related

to sample size calculation (Figure 2). All articles were included for quality synthesis (Table 2).
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Table 2. Characteristics of included and excluded studies

Author (s)

Atluri, P.22

Burghoff, S.%

Chang, 2.2

Fang, Y.2

Year

2013

2010

2018

2018

Study group

1: control (coronary
ligation alone, n =
14), 2: implant of
decellularized ECM
(n =13), 3: implant of
ECM seeded with
EPCs (n =12), 4:
implant of the
engineered construct
(n=9).

1: Controls (n = 3), 2:
Control/+
phytohemagglutinin
(n=3),3: Ml (n=3),
4.

MI/+phytohemaggluti
nin (n = 2).

1: healthy control, 2:
sham-operated (only
strung without the
ligation of the artery;
PBS injection), 3:
model (subjected to
LAD ligation and
PBS injection), 4:
EPC group (injection
of
immunofluorescence-
confirmed EPC in the
MI). (n = 10/group)
1: experimental
(ESCs injection)
(n=10), 2: negative
control groups (PBS
only) (n=10).

Species = Sex

Wistar Male
rat
Wistar Male
rat

Male
Sprague
-Dawley
rat

Femal
Sprague e
-Dawley
rat
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Age Weight = status

(weeks)

Adult 250-300 = Healthy
g

ND 3509 Healthy

6 weeks = 300-350 = Healthy
g

6-8 200-220 = Healthy

weeks g

Type of
Disease

Ml

Ml

AMI

AMI

Intervention

LAD ligation

LAD ligation
for2h

LAD ligation

Rats were
injected with
vitamin D3

once every 30

days (2x106
U/kg) and

The time
between injury
induction and
the start of
medication
After LAD
ligation

4 days after
LAD ligation

2-3 min surgery
completion

Following
anaesthetizing

Administra
tion route

Implanted

Intracoronar
y -
transplantati
on

Intramyocar
dial
injection

Intramyocar
dial
injection

Cell type

EPC from the
bone marrow of
Wistar rats' long
bones

EPCs from
human
peripheral blood

EPC from rats'
peripheral blood

Autologous
ESCs

Markers for cell
characterization

CD34, VEGFR2,
DiL-Ac-LDL,
isolectin,
Aminoactinomyci
nD

BS-1, DiL-
AcLDL, vVWF,
CD31, CD144,
CD3, CD34

CD133, Flk-1

ND

EPC
count

5x 108
cells/cm
2

1x 108
hEPCs in
500 pl

200 pL
of 5 x
105/l
EPCs

1x10*
ESCsin
100 i



Gaffey, A.
C. 26

Gaffey, A.
C. 27

Quan, Z.%8

2015

2019

2017

1: control (LAD
coronary artery
ligation with the
injection of PBS), 2:
EPCs alone, 3: STG
alone, 4: STG-EPC
construct. (n=41)

1: control (LAD
ligation with injection
of PBS, n = 10), 2:
EPCs alone (n =9),3:
blank STG (n =9), 4:
STG + EPC construct
(n=11).

1: control (injection of
PBS), 2: EPC
(injection of PBS
containing EPCs), 3:
TR4-EPC
(administration of
EPCs pre-treated with
TB4. (n = 8/group)
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Wistar Male = Adult
rat

Wistar Male Adult
rat

Sprague = Femal = Adult
-Dawley e

rat
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250-300
g

250-300
g

200+20
g

Healthy

Healthy

Healthy

Ml

AMI

Ml

received a
high-fat diet
containing 2%
cholesterol,
3% lard oil,
0.5% sodium
cholate, 0.2%
propylthioura
cil and 94.3%
basic diet
supplemented
with vitamin
D3 (1.25x106
U/kg) to
establish acute
myocardial
infarction.
LAD ligation
with suture

LAD ligation

Permanent
LAD ligation

After LAD
ligation

After LAD
ligation

After the
establishment of
MI

Intramyocar
dial
injection of
EPCs alone/
Treatment
with the
STG-EPC
construct
Intramyocar
dial
injection of
EPCs alone/
treatment
with the
STG-EPC
construct
Intramyocar
dial
injection

EPC from the
bone marrow of
Wistar rats' long
bones

EPC from the
bone marrow of
Wistar rats' long
bones

EPC from the
bone marrow of
Sprague-
Dawley rat’s
femurs and
tibias

DiL-LDL,
VEGFR2, CD34

DiL-LDL,
VEGFR2, CD35

CD34, CD133,
VEGFR2

7 x 105
cellsin
100 pl

7 x 10°
cellsin
100 pl

2 x 108
EPCs in
100 pl



Schuh, A.2°

Schuh, A3

Sen, S.3t

She, Q.32

Zhao, Y.33

2012

2008

2010

2012

2018

1: injection of SDF-1a
infected EPCs (n = 8)
intramyocardial or
intracoronary,
respectively (n = 8),
2: injection of non-
transduced EPCs
(intramyocardial (n =
8) and intracoronary
(n = 8)), 3: medium as
control group (n =
10).

1: BrdU-labelled
EPCs (n =12), 2:
SDF-1a (n=8), 3:
EPCs+SDF-1a (n =
8), 4: (placebo
control) only culture
medium (n = 12).

1: EPCs transduced
by AAV-IGF-1, 2: or
AAV-lacZ.

1: Dil-ac-LDL
fluorescence-labeled
p6HRE-CMV-
VEGF165-transfected
EPCs, 2: pPCMV-
VEGF165-transfected
EPCs, 3: EPCs, 4:
normal saline, 5:
sham surgery
(control). (n =
10/group)

1: sham (surgery
without LAD
ligation), 2: EPC
(EPC re-suspended in
EGM-2), 3: TR4-EPC
(TP4 pre-treated
human EPCs), 4:
control blank EGM-2
without cells. (n = 40)
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Sprague = Femal
-Dawley e
rat

Sprague = Femal
-Dawley | e
rat

Sprague = Male
-Dawley

rat

Sprague = Male
-Dawley

rat

Sprague = Male
-Dawley

rat
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Adult

Adult

7-8
weeks

Adult

8 weeks

200-250
g

200-250
g

ND

180-230
g

200-250
g

Healthy

Healthy

Healthy

Healthy

Healthy

Ml

AMI

Ml

AMI

Ml

LAD ligation
for 90 min

LAD ligation

LAD ligation

Permanent
LAD ligation

LAD ligation

90 min after Intramyoca

LAD rdial and
intracoronar
y

4 weeks after Intramyocar

LAD ligation dial
injection

Immediately Intramyocar

after LAD dial

ligation injection

After the Tail vein

establishment of = injection

Ml

After LAD Intramyocar

ligation dial
injection

EPC from
Sprague-
Dawley rats'
spleen

EPC from
human
peripheral blood

Autologous
EPC from
peripheral blood
EPC from the
bone marrow of
Sprague-
Dawley rats’
femurs

EPC from
human
peripheral blood

PECAML1, VWF 1x 108
EPCs in
100 i
Dil-Ac-LDL, 1x 108
VEGFR?2, lectin, EPCs in
VWF 100 pl
Cell cultureonly 1 x10*
cellsin
20 pl
CD34, CD133, 2 x 107
VEGFR2, Dil-ac- = cells/ml
LDL
VE-cadherin, 1x 108
KDR, CD34, in 150 pl
AC133, Dil-LDL,
lectin



Boyle, A. J.3

Chaudeurge,
A.35

Demetz, G.3¢

Frederick, J.
R.37

Li, H.%8

2005

2012

2017

2010

2018
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Male 10
weeks

Rowett

(mu/mu)
athymic
nude rat

1: (MI, n=5) no
treatment, 2:
(ACE/BB, n=5)
quinapril and
metoprolol in
drinking water, 3:
(EPCs, n=5) human
CD34+ cells, 4:
(ACE/BB + EPCs,
n=5) quinapril,
metoprolol, and
EPCs.

1: iron-loaded EPCs, Wistar Femal = ND
and magnetic rat e

guidance (n = 14), 2:
iron-loaded EPCs,
without magnetic
guidance (n = 10), 3:
culture medium alone
(n=7).

1: IGF-2-transfected
EPC-derived cells, 2:
vector-only-
transduced EPCs, 3:
Control (PBS only).
1: control (n =22),2: | Lewis
ECM alone (ECM, n rat
=13), 3: ECM
stimulated with SDF
(ECM+SDF, n = 11),
4: ECM seeded with
cells but not activated
with SDF
(ECM+EPC, n = 15),
5: ECM seeded with
EPCs and activated
with SDF (EPCM,
n=21).

1: control (n = 22), 2:
blank vector (n = 24),
3: miR-126-3p
transfection (n = 20).

Male 6- 8

weeks

Athymic
nude rat

Male ND

Nude rat | ND ND
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ND Nude

250 ¢g Immuno
compete
nt

ND Nude

250-300 = Healthy

g

200-250 = Nude

g

AMI

Ml

AMI

Ml and
progress
ion to
cardiom

yopathy

ICM
(Ischem
ic
Cardio
myopat

LAD ligation

LAD ligation
for 30 min,
followed by
20 min of
reperfusion +
aorta cross-
clamping

LAD ligation
for 30 min

LAD ligation

LAD ligation

2 days after
LAD ligation

20 min after
LAD ligation

30 min after

LAD ligation

Following LAD
ligation

4 weeks after
LAD ligation

Intravenous
injection

Intramyocar
dial
injection

Intramyocar
dial
injection

Sutured to
the
anterolateral
LV

Intramyocar
dial
injection

CD34+ cells
from human
peripheral blood

EPC from
human
umbilical cord
blood

EPC from
human
umbilical cord
blood

EPC from
Lewis rats' bone
marrow

EPC from
human
peripheral blood

CD34

CD31, CD144,
VEGFR2, vWF

CD34

Dil-Ac-LDL, I-
isolectin B4, CD3,
7AAD, CD45,
VEGFR2, CXCR4

Ac-LDL, CD34,
CD133

2 x1068
cells

5x10°

1x108
cellsin
100 uL

ND

3 x 1068
EPCs



Mehmood,
A.39

Li, S. H.4

Lian, F.4

Poh, K. K.42

Yao, Y.4

Garikipati, V.
N.44

Ahmadi, A.%®
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2015

2015

2008

2020

2011

2015

2014

1: serum-free medium
injected, 2: untreated
EPCs transplanted, 3:
DZ treated EPCs (DZ
EPCs) transplanted. (n
= 6 survived rats in
each group)

1: Control (PBS
injection), 2: EPCs, 3:
transfection group
(hTERT-EPCs).

1: the implantation (n
= 60) received Dil-
labelled EPCs, 2: the
control (n = 60)
received IMDM.

1: TB4-treated EPCs
(n=7), 2: non-Tp4
treated EPCs (n = 6),
3: medium alone
injected (n = 6).

a) Ml (n=60): 1:
SP10O-labeled EPCs,
2: unlabeled EPCs, 3:
PBS, b) sham Ml
group (n=10).

1: GFP+ WT-
BMPAC (n =22), 2:
IL-10 KO-BMPAC (n
=12) BMPAC with or
without miR-375
knockdown.

1: GFP+ CACs, 2:
collagen matrix only,
3: GFP+

CACs + collagen

Accepted Manuscript (unedited)

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.

Wistar
rat

Sprague
-Dawley
rat

Sprague
-Dawley
rat

Zucker
diabetic
fatty rat

Sprague
-Dawley
rat

Wild-
type and
IL-10
knockou
t mice
of
C57BL/
6J
backgro
und
C57BL6
/J mice

Male

Male
and
Femal

Male

ND

ND

Male

Femal
e

ND

4 weeks

8-10
weeks

20

weeks

ND

8 weeks

9 weeks

200-250
g

80-100
g

300-350
g

ND

250+30
g

ND

Healthy

Healthy

Healthy

Diabetic

Healthy

Wild-
type and
IL-10
knockou
t

Healthy

Mode)
Ml

Ml

AMI

AMI

AMI

AMI

Ml

Permanent
LAD ligation

LAD ligation
forlh

LAD ligation

Permanent
LAD ligation

LAD ligation

LAD ligation

LAD ligation

Immediately
after LAD
ligation

ND

After LAD
ligation

10 min after Ml

After LAD
ligation

Immediately
after LAD
ligation

1 week after Ml

Intramyocar
dial
injection

Intramyocar
dial
injection

Intramyocar
dial
injection

Intramyocar
dial
injection

Intramyocar
dial
injection

Intramyocar
dial
injection

Ultrasound-
guided
closed-chest
procedure

EPC from bone
marrow

EPC from the
bone marrow of
SD rats Femur,
humerus, tibias
Autologous
EPC from rats'
peripheral blood

EPC from blood
collected from
cardio-puncture
of Zucker
diabetic fatty
rats

EPC from
Sprague—
Dawley rats
tibias and
femurs

EPC from wild-
type and I1L-10
knockout mice
of C57BL/6J
background
bone marrow

Circulating
angiogenic cells
(CACs) from
eGFP mice

CD34, VEGFR2,
eNOS, VWF, VE-
cadherin

CD31, CD34,
CD133, VWF,
FLK-1

CD31, CD34,
VWEF, FLK-1, Ac-
LDL

CD34, KDR

KDR/FIk-1,
eNOS, CD31,
UEA-1-lectin, Ac-
LDL-Dil, CD34

Cell culture only

CD34, CD133, c-
kit, CXCR4

108
EPCsin
70 ul

ND

2 x 105
EPCs

1x 108
in 200
ns

1x10°
EPCs

1x10°
cellsin
15 puL

5x10°
cellsin
50 uL



Brunt, K. R.6

Chen, X.47

Cheng, Y.*8

Hu, C. H.4®

Iwasaki, H.%°

2012

2013

2012

2010

2006

matrix, 4: PBS
(Sigma) as control.

1: medium, 2: EPC, 3:
Akt EPCs, 4: HO-1
EPC, 5: Akt/HO-1
EPCs.

1: sham (n = 15), 2:
medium (n = 15), 3:
lenti-eNOS (n = 15),
4: control EPCs (n =
15), 5: eNOS-EPCs (n
=15).

1: PBS (vehicle, n =
12), 2: PBS
containing EGFP-
EPCs (EPC, n = 18),
3: PBS containing
recombinant human

EPO (EPO, n = 12), 4:

PBS containing
EGFP-EPCs and
recombinant human
EPO (EPC + EPO, n
=18).

1: EPC (n = 16), 2:
control (medium, n =
17).

1: low group, 2: mid
group, 3: high group
CD34+ cells
resuspended with
PBS, 4: PBS without
cells. (n =12/group
when the first
patient’s cells were
used; n = 4/group for
the second patient’s
cells)
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Nude Femal | ND
mice e

C57BL/ | Male 6-10
6 mice weeks
Wild- Male 12-14
type weeks
BALB/c

mice

Wistar Male ND
rat

Athymic | Femal @ 7-8
nuderat e weeks
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18-20 g

ND

ND

191+7.5
g

130-145
g

Nude

Healthy

Healthy

Healthy

Nude

Ml Permanent
LAD ligation
AMI LAD ligation
Mi Permanent
LAD ligation
AMI LAD ligation
Ml LAD ligation

At the time of
occlusion

1 h after Ml

Before the heart
was replaced
into the
intrathoracic
space

Immediately
after LAD

20 min after Ml

intramyocar
dial
injection
Intramyocar
dial
injection

Intramyocar
dial
injection

Intramyocar
dial
injection

Intramyocar
dial
injection

Intramyocar
dial
injection

(C57BL/6-Tg
(CAG-EGFP))
bone marrow
Late outgrowth
EPCs from
human
peripheral blood
EPC from
C57BL/6 mice
bone marrow

EPC from the
bone marrow of
EGFP-
transgenic
BALB/c mice
tibias and
femurs

EPC from
human
umbilical cord
blood

CD34+ cells
from human
peripheral blood

Cell culture only

CD34, CD133,
KDR, CD45

UEA-1, ac-LDL,
CD34, Flk

CD34, CD133,
KDR, Dil-Ac-
LDL, UEA-I

CD34, CD133,
KDR, CD45,
CD31, VE-
cadherin, SMA

5x10%in
15 uL

1 x 105
cellsin
20 uL

5x 10*
cellsin
15 uL

1x 108
cellsin
100 uL

1x 108
orlx
10°0r5
x 10°
cellsin
120 uL



Li, H. Q.5

Cheng, Y .52

Hamada, H.53

Botta, R.5

2013

2013

2006

2004
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1: saline without cells 6 weeks
or with non-
preconditioned EPC
(control group), 2: E2
preconditioned EPC
(E2 group), 3:
AMD3100 treated
EPC (AMD group), or
4: EPC pre-treated
with E2 plus
AMD3100 (E2+AMD
group). (n=11)

1: PBS (n=12), 2:
EPCs (n=12), 3: PBS
+ wortmannin (n=6),
4: EPCs +
wortmannin (n=6).

1: WT E2+ (WT
BMT to WT mouse
with E2 pellet (n =
12)), 2: WT E2- (WT
BMT to WT mouse
with placebo pellet (n
=12)), 3: ERoKO
E2+ (ERaKO BMT to
WT mouse with E2
pellet (n = 8)), 4:
ERBKO E2+ (ERBKO
BMT to WT mouse
with E2 pellet (n =
8)).

BALB/ Femal
C mice e

BALB/
C mice

Male 12-14

weeks

C57BL6 @ Femal
/J mice e

9-10
weeks

Male 7-9
weeks

1: CD34+ cells, 2:
MNCs, 3: CD34+
KDR+, 4: CD34+
KDR- cells after Ml,
5: Sham, 6: PBS

NOD-
SCID
mice
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ND Healthy = AMI LAD ligation

ND Healthy = AMI LAD ligation

ND Wild-
type
mice
underwe
nt
Ovariect
omy at
Day -28,
together
with
splenect
omy at
day -7.
Seven
Days
later
(day 0),
animals
underwe
nt Ml
surgery.

ND NOD- MI
SCID

AMI Permanent

LAD ligation

LAD ligation

3 days after
LAD ligation

After LAD
ligation

Immediately
after MI surgery

After LAD
ligation

Intravenous =~ EPC from the
injection bone marrow of
BALB/C mice
tibias and
femurs
Intramyocar = EPC from the
dial bone marrow of
injection Balb/c mice
tibias and
femurs
Intravenous =~ EPC from the
injection bone marrow of
mouse tibias
and femurs
Intramyocar = Human
dial umbilical cord
injection blood cd34+

Dil-Ac-LDL,

lectin, VEGFR-2,

Sca-1

Dil-Ac-LDL,
UEA-1 lectin,
CD309, CD34

Cell culture only

CD34, HPCA-2,
KDR+, KDR-

3 x 108
cells

5x 104
cellsin
15 uL

5x10°
cells

(2 x10°
CD34+
cells or
MNCs; 2
x 103
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control. (n =4-
9/group)

Deutsch, M. 2020 1: ECFCs, 2: saline (SCID)b | Male 8-12
A5 solution. eige weeks
mice
Moldenhauer, = 2015 1: PBS (MI), 2: CBH- Male ND
L. M.5® EXnaEFCs (expanded = Rnu rat
for 6-8 days) in PBS,
3: control (Control
rats did not undergo
surgery). (n = 3—
6/group).
Gunetti, M.>7 2011 1: sham-operated, 2: Non- Male ND
PBS 4 h after CAL obese
(CAL+PBS), 3: diabetic
BMbCD34+ cells4h | (NOD)/
after CAL SCID
(CAL+BMbCD34+),  mice
4: BMbCD34+ cells 4
h after CAL, and 5:
BMeCD34+ cells 7
days after CAL
(CAL+BMbeCD34+).
(n=61)
Saucourt, C.5% | 2019 1: sham-operated, 2: Athymic = Male least 9
placebo (PBS/2% rat weeks
HSA alone), 3:
bCD34+ SC (basal-
CD34+), 4: eCD34+
(expanded cells).
Sheng, Z.5° 2018 4 groups [1: AMI, 2: C57BI/6 = Male 10-12
EPCs treatment, 3: mice weeks

TWEAK pre-treated
EPCs, 4: sham;
n=8/group] or 6
groups (1: AMI, 2:
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ND SCID

ND Healthy

20-23g  NOD/s
CID

247-339  Nude

g

20-22g  Healthy

AMI

AMI

AMI

AMI

AMI

LAD ligation

Permanent
LAD ligation

Permanent
Left coronary
artery ligation
(CAL)

Left anterior
descending
coronary
artery ligation
(CAL)

LAD ligation

Immediately
after LAD
ligation

After LAD
ligation

4 h after the Ml

1 week after
CAL

15 min after
LAD ligation

Intramyocar
dial
injection

Transepicar
dial
injection

Percutaneou
sly injection
into LV

Intramyocar
dial
injection

Intramyocar
dial
injection

Endothelial
colony-forming
cells (ECFCs)
from human
peripheral blood
Primary
HUVECs from
human
umbilical veins

CD34+ from
healthy donors’
bone marrow

bCD34+ or
eCD34+ cells
from healthy
donors’
peripheral blood

EPC from
C57BI/6 mice
tibiofibular
bone marrow

CD34, CD105,
CD144, CD45,
VWF, VEGF-R2,
Flt1, Flt4, Tie-2,
CD146

CD34, CD117,
CD133, CD31,
CD144, CD146,
VEGFR2, CD14,
CD38, CD45,
IL3RA, Dil-Ac-
LDL, UEA-I
lectin

CD34, CD14,
CD31, CD105,
KDR, CD146

CD133, CD34,
CD45, CD14,
CD56, CD2, CD3,
CD19, CD20,
CD15

CD34, KDR,
CD45, CD133,
CD146

CD34+K
DR+ or
CD34+K
DR-
cells) in
15 ul

5x 10°
cellsin
15 uL

1x108
cellsin
100 uL

0.3 x 108
cellsin
100 uL

5x10°
cellsin
100 uL

1x 108
cellsin
30 uL



Sheng, Z.%0

Sheng, Z. L.5!
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2013

2015

EPC treatment, 3:
TWEAK pre-treated
EPC group, 4:
TWEAK pre-treated
Fnl4 siRNA EPC, 5:
TWEAK pre-treated
Bay 11-7082 EPC, 6:
sham; n=10/group).
1: basal medium
without hEPCs (Con
group), 2: containing
non-PC hEPCs (EPCs
group), 3: BK PC
hEPCs (BK PC
group), 4: BK PC
hEPCs pre-treated
with HOE140 (BK
PC/HOE group), 5:
LY294002 (BK
PC/LY group), 6: L-
NAME (BK PC/LN
group). A total of 112
nude mice were used
in this experiment.
During the operation,
28 mice died. This
experiment was
divided into 2
subgroups, the day 2
group (n = 50) and the
day 10 group (n = 62).
Each subgroup had 7
groups; 5-6 live nude
mice were used in
each group.

1: basal medium
without hEPCs (Con
group), 2: basal
medium containing
non-PC hEPCs (EPCs
group), 3: bradykinin-
preconditioned hEPCs
(BK-PC-hEPCs; BK
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BALB/
C nude
mice

Nude
mice

Male

Male

ND

ND

20-22 g

20-22 g

Nude

Nude

AMI

AMI

LAD ligation

LAD ligation

10 min after
LAD ligation

10 min after
LAD ligation

Intramyocar
dial
injection

Intramyocar
dial
injection

EPC from
human
umbilical cord
blood

EPC from
human
umbilical cord
blood

Dil -Ac-LDL,
UEA-1-lectin,
CD34, B1R, B2R,
CD133, VEGFR2

Dil-Ac-LDL,
UEA-1-lectin,
CD34, B1R, B2R,
CD68, VEGFR2,
CD45, CD105

1x 108
cellsin
30 uL

2 x 108
cellsin
30 L



Shintani, S.62

Sondergaard,
C. 3.63

Stein, A.%4

Sun, Z.%5

2006

2009

2010

2008
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PC group), 4: BK-PC-
hEPCs pre-treated
with HOE140 (BK
PC/HOE group), 5:

LY294002 (BK

PC/LY group), 6:

sham group.

1: the combination Athymic = Femal @ 6-8
therapy group (n=9)  nuderat e weeks

Human CD34+ cells
and phVEGF2
resuspended with
saline, 2: the cell
therapy group (n = 8)
CD34+ cells and
empty plasmid, 3: the
gene therapy group (n
=9) CD34- cells and
pPhVEGF2, 4: the
control group (n = 8)
CD34- cells and
empty plasmid.

1: CD34+ cells (n =
5), 2: Transplantation
control (medium only
(mock), n = 4).
1:eEPC (n=9), 2:
eEPC + Epo (n=9),
3:Epo (n=8), 4:
control (PBS alone, n
=38).

ACPs or culture
media into infarcted
myocardium (1: M-
Cell, n=9; 2: M-
Control, n=5) or into
the coronary artery
via the aorta (3: C-
Cell,n=9; 4: C-
Control, n=5). 2 rats
died during the LAD
ligation procedure,
and 2 rats died shortly

Athymic = Male | 5-10
nude rat weeks

Athymic =~ Male ND
nude rat

Athymic = Male ND
nude rat
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ND

ND

ND

200-250
g

Nude

Nude

Nude

Nude

Ml

AMI

AMI

Ml

LAD ligation

LAD ligation

LAD ligation
for 30 min

LAD ligation

30 min after
induction of Ml

After LAD
ligation

After
reperfusion was
initiated by the
release of the
ligation

6 days after
LAD ligation

Intramyocar
dial
injection

Intramyocar
dial
injection

Intramyocar
dial
injection

Intramyocar
dial
injection
and
intracoronar
y cell
implantation

CD34+ cells
from human
peripheral blood

CD34

CD34+ cells
from human
peripheral blood

CD34

eEPCs from
human
umbilical cord
blood

CD34

Angiogenic cell
precursors
(ACPs) from
human
peripheral blood

CD117, CD31,
CD34

1x104
cellsin
100 ml

2 x 108
cellsin
100 puL

1x 108
cellsin
150 L

1.5 x 108
cellsin
50 uL



Thal, M. A%

Xin, 2.7

Xue, Y.58

after the procedure. 3
rats were excluded
from the study
because they did not
meet the infarct size
criteria for inclusion
(2 because the scars
were too small; 1
because the scar was
too large). 2 rats died
following
intramyocardial media
injection, and 1 rat
died following
intramyocardial cell
injection.

1: mouse EPCs, 2:
CD34+ cells, 3:
Saline group (PBS

only).

2012

2008 1: CEPC, 2: BM-EPC,
3: control (EBM-2

only). (n = 10/group)

2020 2: sham, 2: CME, 3:
CME+EPC (low), 4:
CME+EPC (high) (n

= 8/group)
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Nude ND
mice

Sprague = Femal
-Dawley e

rat

Wistar Male
rat
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8-10
weeks

ND

ND

ND Nude AMI LAD ligation
250-300 = Healthy = AMI Permanent
g LAD ligation
220-240 = Healthy = Coronar = A
g y artery  microembolis
microe m suspension
mboliza = was injected
tion into the LV
(CME) during 10- s
occlusion of
the ascending
aorta

Immediately
after LAD
ligation

1 h after LAD
ligation

During 10- s
occlusion of the
ascending aorta

Intramyocar
dial
injection

Intramyocar
dial
injection

Injected into
the LV

Lin-
Scal+CD31+
EPCs from
femurs, tibiae,
and hip-bones
bone marrow of
C57BL/6J or
eGFP transgenic
mice human
CD34+ cells
Circulating EPC
(peripheral
blood); and
BM-EPCs from
SD rats' femurs
and tibias

EPCs from the
bone marrow of
rats' femurs and
humerus

CD3e, CD11b,
B220, Ter119,

Ly6G/C, Sca-1,
CD31

VvWEF, Dil-Ac-
LDL, UEA-1,
CD14, CD133

VEGFR2, CD34

2.0 x10°
mouse
EPCs,
250r5
x 104
CD34+
cellsin
20uL

1x 108
cellsin
200 uL

2 x 108
or2x
105 cells
in 300
ns
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Yang, K.% 2020 1: negative control, 2: =~ Mice ND ND ND

miR-125b mimic. (n =
6-8/group)

Healthy =~ Ml

Nude Male ND Nude AMI

mice

Yao, Y. Y.0 2013 1: sham surgery, 2:
medium-treated
group, 3: Ad.Null-
hEPCs-treated group,
4: Ad.hTK-hEPC-
treated group. (n =
12/group)

1: WT, 2: MI, 3: MI +
Cell. (n=6/group were
used for
morphological

analysis)

20-22 g

BALB/c = Male 8weeks ND Nude Mi

AnNCirlj
Ori mice

Yoo, C. H."? 2013

BALB/ | Femal | 6weeks ND Wild- AMI
C mice e type
preconditioned EPCs mice

(control group), 2: underwe

E2- preconditioned nt

EPCs (E2 group), 3: ovariect

EPCs preconditioned omy at

with E2 and MMP day - 28.

(E2 + MMP group), 4:
EPCs preconditioned
with E2 and AMD
(E2 + AMD group), 5:
EPCs preconditioned
with E2 and MMP
plus AMD (E2 +
MMP + AMD group).
1: EPC wt, 2: EPC
Rab, 3: Ml.

1: saline without cells
or with non-

Yuan, Z. Z.7? 2018

Zhou, W.73 2021 Mice Male ND ND Healthy = Ml

Atluri, .7 2014 1: control (coronary Wistar Male Adult 250-300 AMI
ligation alone), 2: rat g

implant of a fibrin

patch without cells

(10 mg/mL [FIB 10]

or 20 mg/mL [FIB

Healthy
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LAD ligation

LAD ligation

LAD ligation

LAD ligation

LAD ligation

LAD ligation

After LAD
ligation

10 min after
LAD ligation

After occlusion

3 days after
LAD ligation

After the Ml
model was
successfully
conducted
Following LAD
ligation

Intramyocar
dial
injection

Intramyocar
dial
injection

Injected
around the
occluded
region

Intravenous
injection

Intramyocar
dial
injection

Intramyocar
dial
injection
+implant

EPC from the
mouse bone
marrow

EPC from
Human
umbilical cord
blood

CD34+ EPCs
(2F-hEPCs)
from human
dental pulp-
derived iPS
cells

EPC from the
bone marrow of
mice tibias and
femurs

EPCs from
mouse bone
marrow

EPC from the
bone marrow of
syngeneic
Wistar rats' long
bones

Cell culture only

Dil-Ac-LDL,
UEA-1-lectin,
VEGFR2, CD34,
BK B2 receptor

CD105, CD31,
CD34, calponin,
SM22a, VWF,
VE-cadherin,
elastin, a-SMA

Dil-Ac-LDL,
lectin 1, Sca-1,
Flk-1

Dil-AcLDL,
UEA-1, CD34,
VEGFR2

Dil-LDL,
VEGFR2, CD34

2 x 10°
cellsin
20 uL

5x10°
cellsin
30 uL

1x108
cellsin
20 pL

3 x 108
cells

4 % 10°
cellsin
10 uL

17 x 108
or7x
1068
EPCs/m
L with
fibrin or



Yang, J.”® 2011

Park, J. H.7 2011

Huang, H.”” 2013
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20]), 3: injection of

EPCs (IC, 2 million

cells/in 250 mL PBS),

or 4: implant of EPC-

fibrin hydrogel (a: 10

mg/ mL fibrin 7 x 106

EPCs/mL, b: 10

mg/mL fibrin 17 x

106 EPCs/mL, c: 20

mg/mL fibrin 7 x 106

EPCs/mL, d: 20

mg/mL fibrin 17 x

106 EPCs/mL).

1: KSL, 2: KL, 3: SL, @ B6;129S

4: CD34+ cells, 5: Gt

PBS control. [ROSA]
26Sor/J
mice

1: EPC, 2: PBS, 3:
sham.

C57BL/
6J mice
and
ubiquito
us
eGFP-
expressi
ng
transgen
ic mice
with a
C57
backgro
und
C57BL/
6 mice

1: PBS, 2: EPCs, 3:
EPC null, 4: EPCDII-
4+, 5: EPCDII-4-. (n =
20/group)
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Male

ND

ND

8-12 ND Healthy
weeks
6-10 ND Healthy
weeks
8weeks 20+2g Healthy

Ml

AMI

Mi

LAD ligation

LAD ligation

LAD ligation

3 days after Ml

After induction

of Ml

1 week

Systemicall
y injected

Intramyocar
dial
injection

Intravenous
injection

in the tail
vein

KSL, KL, SL,
and CD34+
cells (EPCs)
from the bone
marrow of
mouse
hipbones,
femurs, tibiae,
shoulder bones,
ulnas, vertebrae,
and sternum

CD34, lineage
markers, Sca-1, c-
Kit, streptavidin

EPCs from Cell culture only
mouse bone

marrow

EPC from the KDR, hAC133,

bone marrow of = hCD31, hCD34
C57BL/6 mice
tips of the hind

legs

2x108
EPCslin
250 mL
PBS

5x 10*
SL, KL,
KSL and
CD34
cells
together
with
PBS
control

5x10°
cellsin
50 ul

5x

10%/100
ul cells
in PBS
or 50 pl



Li, X.™

Zhang, B. F.™

Xiao, Q.80

Sun, Y.Y.8!

Wu, Y.82

2019

2019

2019

2014

2006

1: miR-326-5p-EPCs,
2: miR-326-5p-EPCs+
Whnt1 agonist, 3:
EPCs-NC, 4:
PBS/control. (n =
15/group)

1: SO (sham-
operated), 2: Ml
control, 3: MI+EPC,
4: MI+EPC+M, 5:
MI+(Fe-EPC), 6:
MI+(Fe-EPC) +M; M:
magnet. (n=10/group)
1: CON-EPC-Null,
control EPCs
modified by control
adenovirus, 2:
DM-EPC-Null,
diabetic EPCs
modified by control
adenovirus, 3:
DM-EPC-Shh,
diabetic EPCs
modified by
Shh-overexpressing
adenovirus, 4: PBS. (n
= 5/group)

1: PBS, 2: Dil-
labelled WT, or 3:
per2-/- mouse bone-
marrow EPCs

1: Dil-EPCs pre-
treated with anti-
CD18 (EPCs-CD18
mAb group), 2:
control 1gG (EPCs-
1gG group), 3: equal
volume of PBS (PBS
group), 4: sham group
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C57BL/ | Femal
6 mice e
Sprague = Femal
-Dawley e

rat

C57BL/ | Male
6 mice

C57BL/ | Male
6 mice

Athymic = Femal
nude e
mice
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8-10
weeks

ND

6-8
weeks

8-12
weeks

8-10
weeks

ND

200-250
g

25-30 g

ND

Healthy

Healthy

Diabetic

Healthy

Nude

AMI Permanent
LAD ligation
Ml LAD ligation
AMI LAD ligation
Ml LAD ligation
AMI Permanent
LAD ligation

Following LAD
ligation

1 week

Immediately
after LAD
ligation

Immediately
after surgery

1 hour after Ml

Intramyocar
dial
injection

Intravenous
injection

in the tail
vein

Intramyocar
dial
injection

Intramyocar
dial
injection

left
ventricular
intracavity
injection

EPC from the
bone marrow of
C57BL/6 mice
femurs and
tibias

EPC from the
bone marrow of
SD rats' long
bones

EPC from the
bone marrow of
C57/B6 mice
tibias and
femurs

EPC from the
bone marrow of
WT and per2-/-
mice tibias and
femurs

EPC from the
bone marrow of
Balb/C mice
and SD rats
tibias and
femurs

CD11b, CD31,
CD45, CD133,

VE-cadherin, Flk-

1, Dil-ac-LDL

Dil-Ac-LDL,
UEA-1, CD133,
CD34, VEGFR

Dil-Ac-LDL,
UEA-1, CD31,
CD34

Dil-Ac-LDL,
UEA-1, CD34,
CD45, FIk1

CD11a, CD11b,
CD18, CD31,
CD34, c-kit, Tie-
2, VE-cadherin,
Flk-1, Dil-Ac-
LDL

PBS
only

ND

5x 108
cellsin
100 pl

2 x 102
cells

5x10°
cellsin
30 ul

0.5 x 108
cells



Chang, Z. T .8

Hu, C. H.%4

Mackie, A.
R.85

2013

2009

2012

underwent open chest
surgery without
coronary artery.

MI: a) EPC treatment
(n=28): 1: EPC, 2:
EPCs transfected with
T4 short hairpin
RNA (shRNA), 3:
EPCs transfected with
scrambled (SC)
shRNA, 4: Tp4; b)
control (MI, n =28)/
Ischemia-reperfusion:
(n = 40).

1: EPC group (n =
20), 2: control group
(control group was
injected with
equivalent cell-free
medium, n = 20), 3:
sham group (in the
sham group, the LAD
was left unligated, n =
15).

Treatment groups
included 1: Saline (n
=16), 2, 25K
unmodified CD34
cells (CD34NM) (n =
8), 3: 25K CD34 cells
transfected with an
empty vector
(CD34EV) (n =7), 4:
25K CD34 cells
transfected with an
Shh-coding vector
(CD34shh) (n =13),
5: 25K CD34NM and
200ng Shh protein
(n=7), 6: 50K
CD34NM (n = 9).
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Male 7-10 230-350

weeks g

Sprague
-Dawley
rat

Wistar Male ND

rat

19048 g

Nude/J Male 8 weeks « ND
or
NOD-
SCID

mice
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Healthy

Healthy

Nude/J
or
NOD-
SCID

M,
ischemi
c
reperfus
ion

AMI

AMI

LAD/LAD
ligation for 40
min

LAD ligation

LAD ligation

ND/35 min after
Ml

After LAD
ligation

Following
verification of
induced
ischemia

Intramyocar
dial
injection

Intramyocar
dial
injection

Intramyocar
dial
injection

Peripheral blood
EPCs SD rats'
peripheral blood

EPC from
human
umbilical cord
blood

CD34+ cells
from human
peripheral blood

Dil-LDL, lectin,
VE-cadherin,
KDR, CD34,
AC133

Dil-Ac-LDL,
lectin

CD34

5x 108
cellsin
150 uLL

1 x 1068
cellsin
100 uL

2.5 x10*
(25K)

cells/mo
use, or

5.0 x 104
(50K) in
2-10pl



Murasawa,
S .86

Rong, Q.87

Toeg, H. D.88
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2005

2007

2013

1: intramyocardial
(intramuscular) EPC
injection, 2: systemic
EPC injection, 3:
control (PBS
injection). (n =
5/group)

1: Ml surgical
manipulation (n = 3),
2: sham surgery (n =
3) was injected with
the same number of
nonviral infected
EPCs (normal
intervened); 3: MI +
HBV treated EPC
(n=15).

1: PBS only (n = 8),
2: CACsonly (n=
10), 3: SIS-ECM only
(n=10), 4: SIS-ECM
+ CACs (n =10);
small intestine
submucosal
extracellular matrix
(SIS-ECM);
circulating angiogenic
cells (CACs).
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Athymic
nude rat

Sprague
-Dawley
mice

C57BL/
6J mice

ND

Male
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Characteristics of studies

All the included studies from 2004 to 2021 with access to full text were selected. The systematic review focused
on rodent models of MI consisting of rat (N=37; 55.22%) and mouse (N=30; 44.78%) models of MI
(Supplementary Table 2). Data indicated that a greater number of experiments were done on male rats/mice
(N=41; 61.19%), while 17 (25.37%) studies were conducted on female models Interestingly, in one study both
genders were used. Rodents in 36 studies (53.73%) aged between 4 to 20 weeks. In 8 experiments (11.94%), the
term “adult” was used to describe rodent age. In just one experiment (1.49%), "at least 9-week-old" rodents were
used for the MI model. Rats and mice subjected to MI models weighed 80-350, and 18-250 grams, respectively.
58.21% of rats and mice were in healthy status (N=39). Nude animals constituted 25.37% (N=17) of the
experiments. In 3 studies (4.48%), MI was inducted on diabetic models. Animals with severe combined
immunodeficiency including NOD-SCID (N=2; 2.99%), SCID (N=1; 1.49%), and a combination of Nude/J or
NOD-SCID (N=1; 1.49%) were employed. Immunocompetent experimental models were 1.49% of collected
studies (N=1). In one study (1.49%), the models underwent ovariectomy together with splenectomy; while in one
experiment just ovariectomy was conducted (1.49%). Experiments with both wild-type and IL-10 knockout
models comprised 1.49% (N=1) of the studies. Protocols consisting direct left anterior descending coronary artery
(LAD) ligation (N=64; 95.52%); injection of vitamin D3 in high-fat diet-fed rodents (N = 1; 1.49%),
intramyocardial administration of microembolism suspension following the occlusion of the ascending aorta
(N=1; 1.49%), and LAD ligation followed by reperfusion besides aorta cross-clamping (N=1; 1.49%) were used
to induce experimental MI models. Based on the analysis, MI (N = 63; 94.03%), progressive MI to
cardiomyopathy (N = 1; 1.49%), MI with ischemic reperfusion (N=1; 1.49%), coronary artery microembolization
(CME) (N = 1; 1.49%), and ICM (ischemic cardiomyopathy model) (N = 1; 1.49%) were pathological conditions
in rodent models. In the selected articles, EPCs were collected from different sources as follows; Bone marrow
(N = 32; 47.76%), peripheral blood (N = 19; 28.36%), umbilical cord blood (N=11; 16.42%), direct cardio-
puncture (N = 1; 1.49%), spleen (N = 1; 1.49%), dental pulp (N=1; 1.49%), and both peripheral blood and bone
marrow (N = 1; 1.49%). EPCs were administrated as doses between 2 x 102 and 2 x 107 in most of the experiments
(N=59; 88.06%). In contrast to studies using single EPC injection, 8 experiments (11.94%) were conducted based
on multiple EPC administrations. Timing of EPC injection varied from immediate to delayed administration (until
4 weeks) following MI induction. Different introduction approaches and terms were found in different studies
such as intramyocardial injection (N = 44; 65.67%), intravenous injection (N=9; 13.43%), intramyocardial
injection and subsequent treatment with the construct (N=3; 4.48%), simultaneous intramyocardial and
intracoronary injections (N=2; 2.99%), injection into the LV (N=2; 2.99%), transepicardial injection (N=1;
1.49%), anterolateral LV surface suture (N=1; 1.49%), implantation (N=1; 1.49%), intracoronary injection (N=1;
1.49%), percutaneously injection into LV (N=1; 1.49%), injection to the border of occluded region (N=1; 1.49%),

and intramyocardial (intramuscular) or systemic injection (N=1; 1.49%)).

EPC transplantation effect on angiogenesis potential

A random-effects model was applied to find differences in angiogenesis potential in 32 eligible studies (Figure
3a; SMD: 2.02, CI 95%: 1.51-2.54, p<0.00001; I2: 82%). The subgroup analysis of EPC injection in different
time points (1, 2, 3, 4, 6, and 8) indicated an improved angiogenesis potential after MI induction. Of note, these
changes reached statistically significant levels post EPC injection after one week (SMD: 1.29, CI 95%: 0.27-2.31,
p=0.01; 12: 0%; N=2), two weeks (SMD: 2.61, CI 95%: 1.95-3.27, p<0.00001; 12: 0%; N=4), four (SMD: 1.72,
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CI 95%: 1.19-2.26, p<0.00001; 12: 73%; N=18), and eight weeks (SMD: 5.98, CI 95%: 0.25-11.70, p=0.04; 12:

89%; N=2). The other features were not statistically significant compared to the control group.

EPC transplantation effect on myocardial fibrosis

Data confirmed the reduction of myocardial fibrosis in 28 studies after EPC transplantation compared to the
control group (SMD: -1.48; 95% CI—2.15, -0.81; p<0.0001; 12: 88%). Subgroup analysis revealed significant
differences of post-EPC administration after one week (SMD: -0.97; 95% CI — 1.88, -0.07; p=0.04; 12: 0%; N=2),
two weeks (SMD: — 1.89; 95% CI —2.93, -0.85; p=0.0004; 12: 0%; N=2), three weeks (SMD: — 1.73; 95% CI
—2.78,-0.68; p=0.001; I2: 62%; N=3), and four weeks (SMD: -2.05; 95% CI, — 3.00, -1.10; p <0.0001; 12: 89%;
N=18) (Figure 3b).

EPC transplantation effect on cardiac ejection fraction

Random-effects model for differences in LVEF values is shown in Figure 3c. Data showed the efficiency of EPC
transplantation in the improvement of LVEF after one week (SMD: 0.70; 95% CI —0.14, 1.27; p=0.01; 12: 52%;
N=8), two weeks (SMD: 3.98; 95% CI 1.36, 6.61; p=0.003; 12: 95%; N=6), three weeks (SMD: 1.08; 95% CI
0.60, 1.57; p<0.0001; I12: 0%; N=2), four weeks (SMD: 2.02; 95% CI 1.18, 2.86; p <0.00001; 12: 88%; N=17),
and eight weeks (SMD: 1.07; 95% CI 0.09, 2.04; p=10.03; I2: 10%; N=2) compared to the control group. Despite
these results, two experiments reported the lack of statistically significant differences in LVEF parameters after 6

weeks post-EPC administration between the control and EPC groups.

EPC transplantation effect on cardiac FS

Data obtained from a random-effects model indicated significant differences in cardiac FS following EPC therapy
in rodent models of MI. To be specific, statistically significant differences were found in FS parameter after one
week (SMD: 0.65; 95% CI 0.26, 1.03; p=0.0010; 1% 6%; N=7), two weeks (SMD: 2.65; 95% CI 0.87,
4.43; p=0.004; I>: 91%; N=6), four weeks (SMD: 1.91; 95% CI 1.18, 2.64; p<0.00001; I>: 82%; N=13), and
eight weeks (SMD: 1.12; 95% C1 0.52, 1.72; p=0.0002; 12: 0%; N=3) in EPC group as compared with the control
group (Figure 3d).

Different EPC injection approaches

The regenerative efficacy of the EPC injection route was also assessed in rodent MI models. Intramyocardial route
is the commonly used approach for the introduction of EPCs into the ischemic myocardium with the angiogenesis
potential (SMD 1.91, 95% CI- 1.39-2.43, P<0.00001, I>: 80%; N=27; Figure 4a); reduction of fibrosis (SMD -
1.16, 95% CI- -1.96, -0.36, P =0.004, 1%: 90%; N=25; Figure 4b); improving EF (SMD:1.53, 95% CI- 0.92-2.15,
P<0.00001, I?: 86%; N=24; Figure 4¢), and FS values (SMD:1.58, 95% CI- 1.04-2.12, P<0.00001, 1: 80%; N=21;
Figure 4d).

Various EPC doses

Based on EPC dose, studies were categorized into 5 groups as follows; up to 0.5 x 105, 0.5 to 1 x 10°, 1 to 2 x
105, 2 to 5 x 10, and more than 5 x 10° groups. The weighted applied dose to EPC transplantation is dose 1 (up
to 0.5 x 10%), which demonstrated significant angiogenesis effects (SMD 7.16, 95% CI- 4.30-10.01, P<0.00001,
I?: 92%; N=12; Figure 5a), reduced fibrosis (SMD -10.31, 95% CI- -18.72, -1.90, P=0.02, I>: 98%; N=15; Figure
5b), improved EF (SMD 11.33, 95% CI- 2.44-20.22, P=0.01, I>: 98%; N=11; Figure 5¢), and FS (SMD 5.58,
95% CI- 2.80-8.37, P<0.0001, I%: 92%; N=11; Figure 5d) compared to the other doses.
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Various EPC sources

Based on our data, it was confirmed that bone marrow EPCs exerted significant angiogenesis effects (SMD 6.88,
95% CI- 4.57-9.19, P<0.00001, I>: 88%; N=16; Figure 6a); reduced fibrosis (SMD -15.28, 95% CI- -20.40, -
10.16, P<0.00001, I%: 95%; N=16; Figure 6b); improved EF (SMD:10.63, 95% CI- 7.53-13.73, P<0.00001, 1%
86%; N=17; Figure 6¢), and FS (SMD: 6.93, 95% CI- 4.25-9.61, P<0.00001, I%: 89%; N=15; Figure 6d) in
comparison with EPC types.

Publication bias

Four funnel plots were developed using RevMan 5.4.1 to assess the publication bias among the selected
experiments on each outcome (Figures 7a-d). For angiogenesis potential, Begg and Mazumdar's test revealed
Kendall's tau of 0.546 (z = 4.395, p = 0.00001), and Egger's regression test indicated a significant intercept of
5.79 (SE = 0.855, p = 0.00000). For anti-fibrosis properties, Begg and Mazumdar's test yielded Kendall's tau of -
0.576 (z=4.211, p=0.00003) with Egger's regression of -4.62 (SE = 1.407, p=0.00300). In terms of EF, Kendall's
tau of 0.522 (z =4.481, p = 0.00001) was obtained by Begg and Mazumdar's test, and a noteworthy intercept of
5.43 (SE = 1.011, p = 0.00001) was evaluated by Egger's regression test. Finally, in the FS parameter, Begg and
Mazumdar's test demonstrated Kendall's tau of 0.460 (z = 3.637, p = 0.00028) and an intercept of 4.27 (SE =
1,113, p = 0.00062) after Egger's regression test. These results suggest publication bias based on both the visual

inspection of the funnel plot and the statistical tests in all outcomes.

Discussion

MI is a debilitating pathological condition with a high rate of mortality in societies.® Therapeutic strategies
targeting the increase of vascularization and blood perfusion are beneficial to alleviate the adverse effects of MI.
In this regard, in-time blood vessel formation can significantly reduce scar formation, abnormal LV remodeling,
and massive cardiomyocyte damage.’® Emerging in vitro, preclinical, and clinical data have indicated the potency
of various stem cell types, especially EPCs, in the restoration of vascularization into the ischemic sites. It was
suggested that both maturation into functional ECs, and the release of several proangiogenesis factors can expedite
the process of healing in the ischemic sites.!3 Of note, in vitro, ex vivo experiments, preclinical studies, and in
silico analyses are required to evaluate the efficacy and safety of cells or drug candidates before application in the
human counterpart.”’ In this regard, the current systemic review and meta-analysis included preclinical
experiments and aimed to explore the effectiveness of EPCs in rodent (rat and mouse) models of MI. Features
such as angiogenesis, fibrosis, EF, and SF were monitored in MI animals following the administration of EPCs
and compared to the control MI group.

The present data noted that EPC transplantation can influence primary outcomes such as angiogenesis and fibrosis
in MI groups receiving only cell-free phosphate-buffered saline (PBS) or culture medium. Along with these
changes, EPC administration led to improvements in cardiac function parameters, such as FS, and EF following
MI induction. It has been assumed that several underlying molecular mechanisms are stimulated after the injection
of EPCs into ischemic tissues.? For example, EPCs are capable of ensuring cardiac tissue regeneration via the
reduction of oxidative stress.”® Xue et al. found that moderate-to-high doses of EPCs blunt the oxidative stress (8-
iso-prostaglandin F2a |, and SOD1), and endoplasmic reticulum stress (GRP78 and CHOP) in a rat model of acute
MIL.** Of course, prolonged exposure to insulting conditions contributes to the induction of oxidative stress in
EPCs. Under such conditions, the function of EPCs and angiogenesis potential are fundamentally influenced.
Hamed and co-workers found that diabetic circulating EPCs produce higher oxygen free radicals and exhibit

higher SOD, NADPH oxidase activity with reduced NO bioavailability compared to normal EPCs.* Therefore,
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attention should be given to the selection of appropriate EPCs to achieve optimal regenerative outcomes under
varying pathological conditions.

It is hypothesized that direct physical contact between the EPCs and cardiac cells can stimulate several healing
processes related to angiogenesis, ECM remodeling, and ventricular function.!'? Multiple cell death modes such
as cardiomyocyte apoptosis, excessive autophagic death, and necrosis are diminished following the administration
of EPCs.?%%7 Besides, EPCs exert anti-fibrotic properties through the modulation of the TGF- signaling pathway
and regulation of Smads.’® Of course, the regenerative potential of EPCs is not limited to the above-mentioned
mechanisms, and these cells can affect the bioactivity of multiple cardiac cells in a paracrine and juxtacrine
manner.”® For instance, the EPC secretome contains various signaling factors affecting the function of ECs after
injury. In response to the EPC paracrine activity, the angiogenesis potential of ECs is promoted while

simultaneously inflammatory damage is reduced in ECs.!%

One possible explanation for this effect is that the
EPC-derived extracellular vesicles harbor high levels of pro-angiogenesis factors, such as VEGF and miR-183,
which have the potential to activate the biological activity of ECs at the site of injury.'’! More interestingly, the
differentiation of cardiac cells increases toward endothelial lineage once certain signaling pathways such as Shh
are stimulated.'> Abd El Aziz and co-workers found that intramyocardial transplantation of 5 x 10° human cord
blood EPCs improves cardiac tissue function in a canine model of infarction via localization in the vascular units
and direct differentiation into troponin I* cardiomyocytes.!?? The increase of endothelial nitric oxide synthetase
and NO inside ECs is also associated with the paracrine activity of EPCs.!% Likewise, both superoxide dismutase
and catalase stimulation and the expression of Bcl-2 increase EC resistance to oxidative stress juxtaposed to
ischemic myocardium.!? Li et al found that shortly after ischemia induction in mice, donor EPCs can rapidly be
recruited into the myocardium and elevate the local NO contents via the production of endothelial (eNOS) and
inducible nitric oxide synthetase (iNOS).!®* In line with this, Cristévdo and co-workers indicated lower
CD34"/KDR" EPC levels in ischemic cardiomyopathy patients compared to healthy counterparts, indicating fast
and appropriate recruitment of EPCs in response to hypoxic/ischemic conditions.!%

Data have confirmed that the direct juxtacrine activity of EPCs can promote neointima formation via the regulation
of pericyte migration, secretion capacity, and phenotypic switching.'° Notably, EPCs can be genetically modified
before transplantation to increase their regenerative potential.'”” For instance, miR-214 expressing EPCs
efficiently can control calcium hemostasis in stressed cardiomyocytes and enhance survival rate.'? Exosomal miR-
1246 and miR-1290 driven EPCs upregulate ELFS5 and SP1 in cardiac fibroblasts and increase endothelial
differentiation.'%®

In addition to reducing fibrosis, the promotion of angiogenesis, activation of local cardiac progenitor cells, and
increase in circulating progenitors within the infarcted myocardium collectively accelerate the healing process.'%
Therefore, EPC administration appears to promote cardiac tissues through both endogenous and exogenous
mechanisms.!!°

Recent data affirm that the administration route influences the healing capacity and regenerative outcomes by
affecting the on-target delivery, stem cell survival rate, and bioactivities.!'' According to the search we conducted,
the direct intramyocardial injection yields better healing properties compared to the other administration routes.
The systemic administration could lead to the sequestration of EPCs in certain tissues such as the liver, spleen,
and lungs due to massive vascular beds while direct injection into the target tissues provides a higher delivery rate
and retention time.''? Therefore, the homing of systemically administrated EPCs into the myocardium is less due

to low retention time and certain anatomical features of cardiac tissue.!'* Like intramyocardial injection, the

intracoronary EPC infusion is considered to be widely administered. However, this modality requires higher cell
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volume compared to direct intramyocardial injection. It is worth remembering that the intracoronary route can
increase the probability of cell clustering, and embolism, resulting in the occlusion of supporting blood vessels
into the affected sites.!'*!!5 Although intramyocardial injection ascertains higher cell delivery into the ischemic
sites, this approach leads to the loss of a fraction of transplanted cells due to mechanical stress in solid organs
such as cardiac tissue. Besides, iatrogenic inflammation and secondary tissue injuries can also occur when the
cells are directly administrated into the myocardium.''® Like transepicardial and intracoronary routes, the
intramyocardial injection essentially requires thoracotomies, which is an invasive surgical approach and cannot
be performed when multiple cell doses are required.!!” Despite the low targeting efficiency of EPC therapy via
the systemic route, this approach is suitable for multiple-dose injection purposes.!!'®!!” Using special advanced
technologies such as ultrasound-guided percutaneous injection, the high cell doses can be directly delivered into
different parts of LV in a relatively non-invasive manner. To standardize this approach with minimum side effects,
various studies must be conducted

The statistically significant results of Egger's and Begg's tests suggest the possibility of publication bias, implying
that studies with statistically significant results may be more likely to be published than studies with null or
negative findings. This could lead to an overestimation of the true effect size. Therefore, the results of this meta-
analysis should be interpreted with caution. Future research, including studies with negative or null findings,
would be valuable to clarify the true effect of EPCs in the restoration of cardiac function following experimentally
induced MI in rodents.

This study has several limitations and future experiments should address them as much as possible. Even though
this study made an effort to synthesize the available evidence rigorously, the high heterogeneity observed for most
outcomes (I > 80%) suggests considerable variability between the included studies. Despite the conduction of
subgroup analyses, it was not feasible to fully explore the potential sources of this heterogeneity due to limitations
in the reported data of the original publications. Due to these features, it was not possible to draw firm conclusions
about the specific factors influencing the effectiveness of EPC therapy. In addition, a small sample size related to
some parameters would make the interpretation problematic. These limitations highlight the necessity of further
experiments to address the gaps and flaws. Specifically, future studies should report detailed data in a more
standardized and comprehensive manner in terms of EPC source, dosage, administration route, experimental
conditions, and relevant outcome measures.

The micro-, and microanatomy structure of cardiac tissue and its kinetics profoundly vary in rodents compared to
their human counterparts. It is estimated that rodents have high heart rates and short lifespans. Meanwhile, the
expression of genes and factors in cardiac cells can in part but not completely differ as compared to the other
mammals.?! For instance, alpha isoform is the dominant type of myosin heavy chain in humans and large mammals
atrium while this protein type is highly expressed in ventricles of mice and rats.?! The prominent difference in
cardiac tissue kinetics and parameters can lead to relatively incomparable outcomes in rodents receiving stem
cells and progenitors compared to large-size mammal models and humans.!'® EPCs display high similarity with
other cell lineages such as hematopoietic stem cells, thus the precise characterization, isolation, and purification
of EPCs seem problematic. Besides, EPCs constitute 0.01 to 0.0001% of total bone marrow mononuclear cells,
and in vitro expansion using different growth factors and supporting ECM components are necessary to yield
EPCs in high quantities.!*>!"” Regarding the limited number of EPCs in freshly collected samples, serial passages
and prolonged culture time can contribute to the loss of EPC phenotype and functionality.'?® Although
cryopreservation in part preserves the phenotype and biological activity, attention should be given to optimizing

the cryopreservation protocols using suitable cryoprotectants to minimize the adverse effects of storage
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temperature. !

Based on the recent data, EPC type and maturation stage can influence the angiogenesis outcomes.
Sieveking and co-workers found that later outgrowth EPCs can directly participate in the structure of vascular
units better than that of early EPCs. It seems that early EPCs can promote the angiogenesis phenomenon indirectly
via the release of angiogenesis factors at the site of injury.!?? The mobilization of EPCs in response to cytokine
gradient increases simultaneous maturation and functional activity compared to the resident progenitors inside the
bone marrow niche.'? The circulating EPCs can lose their stemness features (CD133 ], and CD34 ) accompanied
with the expression of certain markers such as CD31, and vWF with the reaching to the injured site.'* These data
confirm that bone marrow EPCs are putative progenitor cells in the induction of angiogenesis in the ischemic
regions. Besides cell source, the number of graft stem cells can predetermine the angiogenesis outcomes,
especially in tissue with chronic injuries. However, less and excessive stem cells can cause the disruption of the
healing process via an imbalance in immune cell activity and normal development of resident cells and
transplanted stem cells.'?® Taken together, the number and source of EPCs can be effective in the induction of

angiogenesis in the ischemic myocardium.

Conclusion

The current systemic review and meta-analysis showed the eligibility of EPCs in the restoration of cardiac function
following experimentally induced MI rodents, either rats or mice. The stimulation of angiogenesis and reduction
of fibrosis along with the improvement of cardiac functional parameters (EF, and FS) are the main outcomes
following EPC transplantation. Taken together, the current data provide new insights into the potential clinical

application of EPCs and their regenerative properties in patients with MI.
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Figure 3. Angiogenesis improvement based on the time of results assessment (a). Fibrosis improvement based on

the time of results assessment (b). Ejection fraction improvement based on the time of results assessment (c).

Fractional shortening improvement based on the time of results assessment (d).
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Figure 4. Angiogenesis improvement based on injection method (a). Fibrosis improvement based on injection

method (b). Ejection fraction improvement based on injection method (c). Fractional shortening improvement

based on injection method (d).
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Figure 5. Angiogenesis improvement based on EPC dose (a). Fibrosis improvement based on EPC dose (b).

Ejection fraction improvement based on EPC dose (c¢). Fractional shortening improvement based on EPC dose
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Figure 6. Angiogenesis improvement based on EPC source (a). Fibrosis improvement based on EPC source (b).

Ejection fraction improvement based on EPC source (c). Fractional shortening improvement based on EPC source

().
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Figure 7. Funnel plot of standard error by the standard difference. Angiogenesis (a); Fibrosis (b); Ejection fraction



