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ARTICLE INFO ABSTRACT

Keywords: Purpose: Luteolin (Lu) and its glycosylated derivative, luteolin-7-O-glucoside

Skullcap (LuG), are the main bioactive flavonoids reported in the Scutellaria genus. Still, in

Radiolabeled flavonoids vivo biodistribution and cytotoxic effects on cancer cells remain unrevealed. This

SPECT imaging study investigated the biodistribution and cytotoxic effects of Lu and LuG on

MTT assay cancer cell lines, particularly hepatic carcinoma (HepG2).

Flow cytometry Methods: Lu and LuG were isolated from S. pinnatifida extracts, and the structures

Cell cycle arrest were confirmed by *H-NMR spectroscopy. Radiolabeling was performed to assess
their biodistribution in Wistar-Albino rats using SPECT imaging and organ

Avrticle History: radioactivity was measured. Organs were harvested and radioactivity quantified to

Submitted: August 03, 2025 determine tissue accumulation. Cytotoxicity was evaluated via MTT assay on

Revised: September 10, 2025  normal (HUVEC) and cancer (HepG2, SW480) cell lines. Flow cytometry analyzed

Accepted: September 25, 2025 apoptosis/necrosis and cell cycle arrest after treatment.

ePublished: October 21, 2025 Results: LuG exhibited preferential accumulation in the liver (~28.7%) and
significant cytotoxicity on HepG2 cells. Flow cytometry indicated non-apoptotic
cell death and G1/S phase cell cycle arrest in HepG2 cells treated with LuG,
whereas Lu showed less accumulation and cytotoxicity. Biodistribution data
revealed lower accumulation in other organs, and LuG had negligible toxicity on
non-hepatic cells (HUVEC, SW480). Overall biodistribution analysis revealed
lower off-target accumulation, further supporting the hepatic selectivity of LuG.
Conclusion: This study provides the first integrated evidence of the liver-targeted
biodistribution and selective anticancer effects of LuG. These findings demonstrate
LuG as a candidate therapeutic for hepatocellular carcinoma. These results
emphasize the importance of pharmacological evaluation of flavonoid glycosides
and support preclinical development of LuG as a targeted anticancer agent.

“Corresponding Author
Zahra Tofighi, E-mail: ztofighi@tums.ac.ir. ORCID: 0000-0001-8909-6595



Accepted Manuscript (unedited)

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.

Introduction

Cancer arises from genetic and environmental factors leading to abnormal, uncontrolled cell growth. Numerous
plants have demonstrated anticancer and antitumor effects, and studies have shown that phenolic compounds,
especially flavonoids such as luteolin and its glycosylated derivatives, play a vital role in combating cancerous
cells.?? luteolin and its derivatives have been found in many plants, including Apiaceae family (Apium graveolens
L., Daucus carota L.), Lamiaceae family (Scutellaria spp.), and other families.* The Scutellaria genus, a source
of luteolin, is distributed worldwide, except in Antarctica.> Among the approximately 350 species of Scutellaria,
about 22 taxa are represented in Iran, with 10 of these species native to the Iranian Plateau in the Irano-Turanian
region.® Luteolin (3',4,5,7-tetrahydroxy flavone) is a member of the flavonoid super-group and belongs to the
flavone class. Research has demonstrated that luteolin and its glycosylated variant possess a wide range of effects,
including antioxidant, anti-inflammatory, antimicrobial, anti-diabetic, anti-hyperlipidemic, anticancer, and
chemosensitizing properties.” Previous studies showed that luteolin has anti-proliferative effects on various
cancerous cell lines such as human prostate cancer (PC-3 cells), human non-small cell lung cancer (A549 cells),
breast cancer (MCF-7 and MDA-MB-231 cells), human colon cancer (SW620 and HT-29 cells), and liver cancer
(HepG2 cells), and can induce apoptosis pathway in these cell lines.®° Previous findings demonstrated that the
ICso of Luteolin (aglycone) was greater than that of the glycoside form of luteolin in specific cancer cell lines,
such as breast cancer. Conversely, in other cancer cell lines, the ICsp of the glycoside form of luteolin is higher
than that of the aglycone form.1® Several in vivo studies provide valuable insights into the actual biodistribution
of flavonoids. It was observed that Tangeretin accumulates primarily in the kidneys, lungs, and liver, with lower
levels found in the spleen and heart.'! B-ring unsubstituted flavones such as baicalein, wogonin, and oroxylin A,
were distributed in the liver and kidney, with moderate levels in the prostate and low levels in the lungs and
pancreas.*? However, a significant limitation is the lack of detailed data on flavonoid tissue distribution in humans.
Moreover, in vivo studies assessing accumulation, metabolism, and retention in human tissues are exceedingly
rare, despite their importance for understanding biological activity. This article investigates a hypothesis
proposing a relationship between the bioaccumulation of luteolin and its glycoside form and their anti-proliferative
effects. This study aims to compare the biodistribution of these forms of luteolin (aglycone and glycone) and their

cytotoxic effects on the same organ in which they exhibit the highest accumulation.
2. Materials and Methods
2.1. Plant sample

In 2020, Scutellaria pinnatifida was collected from Alamut road, Qazvin province, Iran. The identification of S.
pinnatifida was conducted by botanist Dr. Y. Ajani, and the voucher specimen was registered with the 7040-TEH

code in the Herbarium of the Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
2.1. Isolated Luteolin and Luteolin-7-O-glucoside

According to a 2023 study by Pirali et al., Luteolin (Lu) and luteolin-7-O-glucoside (LuG) were isolated. The
harvested plant was dried out of direct sun exposure at 25°C. A total of 230 g of powdered plant material was
extracted with 80% methanol using the maceration method. After 48 h, the extract was filtered, concentrated, and
this process was repeated three times. The weight of dry extract was about 30 g, resulting in a yield of about 13%.

Approximately 10 g of dried extract was separated into phenolic and non-phenolic fractions using Diaion HP-20
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resin. Three grams of the phenolic fraction were loaded onto a reversed-phase silica gel column and eluted with a
gradient of water to methanol (8:2) to 100% methanol. Subsequently, the achieved sub-fractions were loaded onto
Sephadex LH-20, and after several steps, luteolin and luteolin-7-O-glucoside were successfully isolated. The 1H-

NMR spectrum confirmed the structure of these isolated compounds.*
2.2. 9"T¢ Radio-labeling of Luteolin and luteolin-7-O-glucoside

Five milligrams of tin chloride (SnCl,) was dissolved in 1 mL of hydrochloric acid 10% and diluted with 3 mL of
distilled water, and the pH was adjusted to 7. Then, 1 mg of Lu and LuG and about 4 mCi of fresh pertechnetate
(*®*™TcOy) in 2 mL of NaCl were added to the complex. Afterward, it was incubated at room temperature for 20

minutes.
2.3. Radiochemical Purity

Radiochemical purity (RCP) was analyzed using Whatman grade No. 2 qualitative filter paper as the stationary
phase and a methanol: normal saline (1:1) mixture as the mobile phase. The impurity of the radiochemical was
evaluated by spotting six puL of the prepared complex at the bottom of a Whatman paper. The strips were divided
into two parts, and the radioactivity of each part was determined using a gamma counter. When the mobile phase
was acetone: methanol, the **™Tc0, -radiolabeled complex remains at the origin spot and *°™Tc03 moved by the
mobile phase. When the mobile phase was methanol: normal saline, °**™Tc0, remain at the original spot and
9mTc0;  with radiolabeled complex was moved by mobile phase. Then, the percentage of **™Tc0O, was

calculated, and the following formula assessed the RCPs:

. . . 99m _ 99m
Radiochemical purity = 100- ¥, count C  TcO3+  TcO,)

2.4. Biodistribution studies

An intraperitoneal injection of a ketamine and xylazine mixture anesthetized the Wistar-Albino rats. About 1.4
mCi of flavonoid-°*™Tc complex (**™Tc-Lu and *°™Tc-LuG) was injected through the tail vein. The imaging
was performed using SPECT (Single-Photon Emission Computed Tomography) at 0, 5, 15, 30, 60, and 90 min.
Then, the animals were sacrificed in accordance with all ethical considerations, and each organ was carefully
separated. The percentage of radioactivity in each organ was calculated by dividing the activity counted by the
dose calibrator by the total radioactivity. This method ensured accurate assessment of the biodistribution of the

radiolabeled compounds within the various organs.

- A t of radioactivit ted i h
Organ accumulation of ™ Te-Lu/*°™Te-LuG (%) = (- Y O R0 o 100

Amount of radioactivity counted in whole body

2.5. MTT Assay
2.5.1. Cell Culture

According to the biodistribution results of Lu and LuG in the previous step, three cell lines were selected for
further analysis. HUVEC cell line (an endothelial cell that was isolated from the umbilical cord vein) as a normal
cell, SW480 as a colorectal cancer cell line, and HepG2 as a hepatocellular carcinoma cell line were obtained
from the cell bank of Roshd Azma Company. They were cultured in Dulbecco's Modified Eagle Medium (DMEM)
supplemented with FBS 10% (Fetal Bovine Serum) and Pen/Sterp 10* U/mL (Penicillin- Streptomycin) at 37°C
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and 5% carbon dioxide (COz). Then, 10° cells/mL were seeded in 96-well cell culture plates and incubated for 24
h.

2.5.2. Cell Viability Assay

After 24 h, the cell lines were treated with Lu and LuG (5, 10, 25, 50, 75, 100, 200 pg/mL). The cytotoxicity
effect of Lu and LuG was measured using the MTT (3-[4,5-dimethylthiazol-2-yl]- 2,5-diphenyltetrazolium
bromide) assay for 24 h. Next, 20 uL of MTT solution (5 mg/mL) was added to each well, and the complexes
were incubated at 37°C for 4 hours. Afterward, the culture medium was removed and replaced with DMSO 200
pL). The absorbance of each well was determined at 570 nm using an ELISA reader, and the cell viability
percentage was calculated relative to the control group.

The examination of cell viability percentage was repeated after 48 and 72 h for samples that exhibited higher

cytotoxicity in their respective cancer cell lines.
2.6. Flow Cytometry

According to the results of the previous steps, LUuG was selected for flow cytometry testing on the HepG2 cancer
cell line. FITC (fluorescin isothiocyanate) Annexin V, as a calcium-dependent membrane-binding protein, was
bound to phosphatidylserine (PS), and Propidium lodide (P1), as a fluorescent intercalating agent, was intercalated
to DNA, which demonstrated the quantity of apoptosis and necrosis in cancer cells by FACScan flow cytometer.
HepG2 cells were treated with LuG (5, 30, 50 pg/mL) for 48 h and then washed with PBS. Next, 300 uL of
binding buffer was added to 1x108 cells and incubated for 15 min at 25°C in away from the light with 4 pL of
FITC Annexin V and 2 puL of PI. To investigate apoptotic or necrotic pathways, data were analyzed by FlowJo
software. Data analysis revealed the differentiation between early apoptotic (Annexin V+/PI-), late apoptotic or
necrotic (Annexin V+/Pl+), and necrotic cells (Annexin V-/PI+). Additionally, cells without any treatment
(negative control) and those treated with LuG (positive control) were designated as "Auto" and "Unstained",

respectively.

2.6.1 Cell Cycle Arrest

HepG2 cells were seeded in 6-well plates and treated with various concentrations of Luteolin-7-O-glucoside for
24 h. After treatment, the cells were fixed in a solution of ethanol: water (7:3) at -20 °C. Then, ethanol-fixed cells
were washed with PBS and incubated with RNase A (100 pL) for 30 min. Following the RNase treatment, the
cells were incubated in a P1/Triton X-100 solution for an additional 30 minutes. The samples were analyzed using
a flow cytometer (FACSCalibur), and the data were assessed with FlowJo version 10. Finally, the GO/G1 phase
(2N DNA content), S phase (intermediate DNA content), and G2/M phase (4N DNA content) were calculated.*?

3. Results and Discussion
3.1. Identification of Isolated Compounds

Two isolated compounds, through several chromatography steps, were identified, and the structures of Luteolin
and Luteolin-7-O-glucoside were confirmed (Figure 1) using *H-NMR spectra (500 MHz, DMSO-d6), as shown
in Table 1.

4 | Advanced Pharmaceutical Bulletin 2025



Accepted Manuscript (unedited)

The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.

Table 1. *H-NMR data of Luteolin and Luteolin-7-O-glucoside

'H-NMR spectra
Carbon No. Luteolin Luteolin-7-O-glucoside
1 - -
2 - -
3 6.60 (1H, s) 6.74 (1H, s)
4 - -
5 - -
6 6.13 (1H, d, J=2 Hz) 6.45 (1H, d, J=2 Hz)
7 - -
8 6.39 (1H, d, J=2 Hz) 6.80 (1H, d, J=2 Hz)
9 - -
10 - -
1’ - -
2! 7.36 (1H, d, J=2 Hz) 7.43 (2H, dd, J=8, 2 Hz)
3 - -
4 - -
5' 6.82 (1H, d, J=8 Hz) 6.90 (2H, d, J=8 Hz)
6 7.40 (1H, dd, J=8, 2 Hz) 7.43 (2H, dd, J=8, 2 Hz)
1” 5.19 (1H, d, J=7.5 Hz)
2" to 6" 3.5-4.5 (hydrogens of glucose)

3.2. In-vivo Biodistribution Study

99MTe_Lu and “*™Te-LuG were injected into rats, and whole-body SPECT images were acquired at various times
(0, 5, 15, 30, 60, and 90 min) post-injection. These imaging sessions allowed for the visualization and assessment
of the biodistribution and pharmacokinetics of the radiolabeled compounds over time, as illustrated in Figure 2.
The percentage of biodistribution of **™Tc-Lu and **™Tc-LuG in each organ were summarized in Table 2. Higher
accumulation of LuG in the liver than the aglycone form may be due to its different uptake mechanism. An
experiment was conducted to elucidate carrier-mediated transports, such as SGLT1/GLUT1, Which Participate in
the uptake and distinct absorption pathways for glycosides versus aglycones of flavonoids in Caco?2 cells.** Also,
Hepatic uptake transporters like organic anion-transporting polypeptides (OATP1B1/1B3) preferentially accept
certain glycosides. Flavonoid glycosides are better substrates for OATPs than aglycone flavonoids, promoting
hepatic accumulation. Experimental studies show flavonoids interact with OATP1B1 and related uptake

transporters.’®

Table 2. The percentage **™Tc-Lu and **™Tc-LuG accumulation for each organ in animals

Organ 99M¢-Lubiodistribution 99Me-LuG biodistribution
(%) (%)
Liver 23.0 28.7
Stomach 13.4 28.7
Intestine 6.4 6.9
Bladder 24 6.0
Lung 0.5 56
Kidney 0.6 17
Spleen 0.1 05
Testis 0.1 01
Blood 0.0 01
Heart 0.0 0.2
Brain 0.0 0.0
Bone 0.0 00
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3.3. Cell Viability

The effect of luteolin and luteolin-7-O-glucoside at various concentrations on the viability of HUVEC, SW480,

and HepG2 cells after 24 h, as assessed by the MTT assay, is illustrated in Figure 3.

The results of the MTT assay indicated that luteolin-7-O-glucoside exhibited the highest cytotoxic effect on the
HepG2 cancer cell line compared to the other cancer cell lines assessed. To further investigate, the cytotoxicity
effect of this flavonoid was evaluated on HepG2 cells at 48 and 72 h. The findings regarding cell viability are

demonstrated in Figure 4.
3.4. Flow cytometry data

Figure 5 shows the results of flow cytometry tests. The data indicate that most HepG2 cells remained in the normal
phase across all treatment concentrations of luteolin-7-O-glucoside (5, 30, 50 ug/ mL) in treatment groups (d, e,
f) compared to Annexin group (a) and Pl group (c). Furthermore, the treatment groups exhibited a cell cycle
distribution similar to that of the auto group (b) and the unstained group without LuG (g). Based on the flow
cytometry results, it can be concluded that the cytotoxicity of luteolin-7-O-glucoside on HepG2 cells did not
involve necrotic or apoptotic pathways. The cell cycle test was then performed. In contrast to previous studies,
luteolin-7-O-glucoside (LuG) in this study induced a non-apoptotic form of cell death. This suggested
involvement of alternative regulated cell death pathways, such as ROS-mediated autophagy or proliferative arrest.
Flavonoids often activate this pathway by modulating signaling cascades such as AMPK, mTOR, PI3K/Akt,
Beclin-1, and LC3, resulting in increased autophagosome formation and degradation of cellular component.6. For
example, Kaempferol promotes autophagic cell death in HCC lines (including HepG2) via AMPK activation,
ULK1 phosphorylation, mTORC1 inhibition, increased Beclin-1, LC3-1I, and decreased p62 levels.Y
Furthermore, Oxeiptosis is a form of programmed, non-inflammatory, caspase-independent cell death activated
under high oxidative stress. It involves the KEAP1/PGAMS/AIFM1 signaling axis, where elevated ROS
disassemble the KEAP1-PGAMS5 complex, leading PGAMDS to dephosphorylate AIFM1. AIFM1 then remains
mitochondrial. Auriculasin (a member of isoflavanoids has been reported in Maclura pomifera) induces
oxeiptosis, apoptosis, and ferroptosis depending on context, enhancing effectiveness against cancer cells.'. Also,
in 2022, Yang et al. demonstrated quercetin, as a member of the flavonoid group, has been implicated in inducing

non-apoptotic modes including mitotic catastrophe, senescence, and ferroptosis in various cancer models.*°
3.5. Cell cycle analysis

As illustrated in Figure 6, the analysis of the cell cycle revealed that the 2N DNA content (G0/G1 phase) slightly
increased by approximately 5%. In contrast, no significant changes were observed in the S phase, which represents
the synthesizing DNA phase. However, a decrease of about 7% was noted in the 4N DNA content (G2/M phase),
indicating that fewer cells were progressing to mitosis. Following incubation, the cells were harvested, fixed, and
stained with propidium iodide. The stained cells were then analyzed using flow cytometry to assess their
distribution across the different phases of the cell cycle. This analysis provided insights into the effects of luteolin-

7-O-glucoside on cell cycle progression in HepG2 cells.
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Luteolin, with a flavonoid structure, and its derivatives have been shown to have anticancer effects in various
cancer cell lines.2%2 luteolin was synthesized through a double bond addition between carbon-2 and carbon-3 in
the C-ring of eriodictyol, and hydroxyl group addition to apigenin by the flavonoid-3'-hydroxylase enzyme is
another metabolic pathway for the synthesis of luteolin.?? Luteolin, when administered orally, is absorbed in the
small intestine and subsequently metabolized in the liver through glucuronidation and sulfation pathways.
Ultimately, it is excreted from the body via feces and urine.?® This pattern confirmed the pharmacokinetics of
luteolin, showing that the aglycone form of flavonoids accumulates in the liver and gastrointestinal tissue.?
Additionally, EI-Sharawy et al. reported that 99mTc-luteolin was eliminated via the kidney and fecal routes in
mice.?” The radiolabeling of luteolin and its derivative results showed that these compounds avoided first-pass
metabolism and were metabolized directly in the liver, where they first accumulated. As time passed, the
percentage of accumulation in the liver tissue decreased, while this accumulation increased in other organs, such
as the stomach, intestine, kidney, and bladder. Due to the presence of glucose in luteolin-7-O-glucoside and the
higher hydrophilicity of this compound, the elimination phase of the glucoside form of luteolin appeared more
rapidly than that of its aglycone form. Lin et al. demonstrated that Luteolin-7-O-glucoside is hydrolyzed to luteolin
in the gastrointestinal tract.?® However, ®™Tc-Lu was initially distributed throughout the body (due to the absence

of sugar in its structure) and then accumulated in the liver and other targeted organs.

Due to their high accumulation, the HepG2 and SW480 cancer cell lines were chosen for further study. However,
no inhibitory effects were observed on the SW480 cell line. In fact, other studies have indicated that luteolin can
inhibit the proliferation and migration of colon cancer cells, potentially through the IL-6/STAT3 signaling
pathway.?® Additionally, Lu and LuG did not demonstrate any cytotoxicity on normal cells (HUVEC cell line).
Witkowska-Banaszczak et al. reported that luteolin-7-O-glucoside has a dose-dependent effect on the viability of
the HepG2 cell line.®® The aglycone form of luteolin was found to be less effective against HepG2 cells compared
to the glycone form, which may be due to differences in cellular uptake and metabolism. However, other studies
have demonstrated that both luteolin and its derivatives can suppress cancer cell growth without adversely
affecting normal cells. For instance, Chen et al. reported no cytotoxicity of luteolin-7-O-glucoside (LuG) on
normal Huh7 liver cells.3! Many studies have indicated that the anticancer effects of luteolin are mediated via
apoptosis. Lee et al. demonstrated that luteolin triggers classical mitochondrial apoptosis in HepG2 (Bax/Bak
translocation, cytochrome C release, caspase-3 activation).3? Flow cytometry for apoptosis/necrosis (Annexin
V/Pl) showed no significant increase in early apoptosis (Annexin V+/PI-) or late apoptosis/necrosis
(Annexin V+/PI+) compared to controls on HepG2 cells after 24 h with LuG treatment. At the same time, Chen
et al. reported that Luteolin-7-O-glucoside induced apoptotic features in HepG2 cells.3* The mentioned study
indicates that an Annexin signal should have been observed in the present study. However, this discrepancy may
be attributed to differences in dosage or time-course. Additionally, Chen et al. demonstrated that luteolin glycoside
has caspase-independent activity, as evidenced by increased cleaved PARP without caspase activation. In contrast,
Lee et al. showed caspase-3 cleavage with luteolin.®32 This study demonstrated cell death induced via a non-
apoptotic mechanism by glycosylated luteolin. Furthermore, other flavonoids such as quercetin and apigenin yield

strong Annexin/PI signals.®

Cell cycle analysis of LuG-treated HepG2 cells revealed impaired G1 to S progression, resulting in fewer cells
reaching the G2/M phase. In contrast, Chen et al. reported that 24 h of LuG treatment induced G2/M phase in

HepG2.3 Overall, flavonoids can arrest cancer cells at various checkpoints. Previous studies have shown that
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luteolin and quercetin inhibit the G1 phase by downregulating cyclin D1 and p21, as well as the G2/M phase by
decreasing cyclin B1 and CDC2 levels.®33* But, apigenin induces GO/G1 phase by inhibiting the phosphorylation
of the Rb protein.3> While some literature indicates that flavonoids induce G1 and/or G2/M phase, this study found
that LuG-treated HepG2 cells exhibited cell cycle inhibition. This divergence may be related to variations in cell
type, concentration, and treatment duration. The difference between this study and previous studies may be due
to the natural source of luteolin. Both isomeric forms of glucose exist in the plants. a-Glucose and B-glucose are
stereoisomers, and their pharmacokinetic and pharmacodynamic properties differ. In addition, the cytotoxicity
effects of flavonoids are time- and dose-dependent. In other words, different times and doses can induce and

activate different apoptotic and non-apoptotic death cell pathways.

In summary, the findings of the present study align with the established characteristics of the glycoside form of
luteolin, including its vigorous anti-proliferative activity in HepG2 cells, predominant hepatic distribution, and
ability to induce cell cycle arrest. The inhibition of cell cycle progression in the S-phase and depletion from the
G2/M phase is typical of DNA-targeting drugs, such as antimetabolites (e.g., 5-FU and gemcitabine) or replication

inhibitors.

4. Conclusion

The biodistribution and cytotoxicity studies of luteolin-7-O-glucoside indicate that this flavonoid preferentially
accumulates in liver tissues and effectively inhibits HepG2 cell viability. However, the hypothesis suggesting a
relationship between the target organ and the effectiveness on cancer cells in that organ was rejected, particularly
concerning the colon cell line (SW480). In other words, tissue accumulation alone did not ensure efficacy outside
the liver. These observations demonstrate a clear tissue-selective pharmacological profile with vigorous anticancer
activity on hepatic cancer cells and no cytotoxic effects on non-hepatic cells. The liver biodistribution of luteolin-
7-O-glucoside may be responsible for its anti-HepG2 activity. Therapeutically, the strong liver affinity of luteolin-
7-O-glucoside could be leveraged to treat hepatocellular carcinoma more effectively, potentially allowing for high

local efficacy with reduced off-target toxicity.
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Figures

Figure 1. The structure of Luteolin and Luteolin-7-O-glucoside

Figure 2. SPECT images of the biodistribution of **™Tc-Luteolin (A) and *°™Tc-Luetolin-7-O-glucoside (B) in the whole
body of the rat at 0, 5, 15, 30, 60, and 90 min after radioactive-flavonoid complex injection
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Figure 3. The cell viability percentage (mean + SEM) of luteolin (red) and luteolin-7-O-glucoside (blue) with different
concentrations by MTT assay. a. HUVEC, b. SW480, c. HepG2
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Figure 4. The percentage of HepG2 cells viability against different concentrations of luteolin-7-O-glucoside treated after 24
(blue), 48 (red), and 72 h. (green) by MTT assay (mean + SEM)
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Figure 5. Double staining of Luteolin-7-O-glucoside with annexin and propidium iodide. a. Annexin group, b. Auto group, c.
Pl group, d. LuG at 5 ug/mL concentration, e. LuG at 30 ug/mL concentration, f. LuG at 50 ug/mL concentration, g. unstained

group without LuG.
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Figure 6. Effect of Luteolin-7-O-glucoside on cell cycle progression in HepG2 cells. a. HepG2 cells were incubated at 37 °C.
b. HepG2 cells were incubated at 37 °C with Luteolin-7-O-glucoside for 24 h.
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