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Introduction 

Piroxicam, 4–hydroxy–2–methyl–N–2–pyridinyl–2H–

1,2–benzothiazine–3–carboxamide 1,1–dioxide (PX), is 

non–steroidal anti–inflammatory, and analgesic agent 

belonging to a new class of compounds called oxicams. 

It is widely used in the treatment of patients with 

rheumatologic disorders.
1
 

PX is readily absorbed after oral or rectal 

administration. After a single oral dose of 20 mg of PX, 

its peak plasma concentration and plasma half–life 

were 4.5 μg/mL and 35–60 h, respectively. PX is 

extensively metabolized to 5–hydroxypiroxicam (5–

HP) and the hydroxylated metabolite undergoes 

subsequent glucuronidation. About 2–5% of an oral 

dose is excreted unchanged in urine, and under steady 

state conditions, 75% of a dose is excreted as either 5–

HP or 5–HP glucuronide in urine and feces.
2
 

The employment of several analytical methods such as 

membrane sensors,
1
 potentiometric titration,

3
 

spectrophotometry,
3–7

 spectrofluorimetry,
8–11

 

luminescence
12

 and chromatography
5
 has been 

proposed for the determination of PX in pharmaceutical 

preparations. On the other hand, different analytical 

methods such as derivative spectrophotometry,
2
 

spectrofluorimetry
10,13

 and high performance liquid 

chromatography (HPLC)
14–20

 have been reported for 

the determination of PX in different biological fluids.  

In general, HPLC has been the most employed method 

to measure PX in different biological fluids. Most of 

these methods require liquid–liquid extraction (LLE) 

with consecutive evaporation.
15–19

 The extraction 

procedure is prone to complications because it involves 

several separate steps, which not only make the method 

tedious and time consuming but also increase the 

potential of introducing a bias in the results.
20

 

Simple, effective and environmentally–friendly 

extraction procedures are still in demand. Nowadays, a 

new mode of liquid–phase micro–extraction (LPME) 

named DLLME as a high–performance, powerful, rapid 
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and inexpensive ME method has been proposed.
21

 The 

basic principles of this method is dispersion of 

extraction solvent (immiscible in water) assisted with 

disperser solvent (miscible in both water and extraction 

solvents) within aqueous solution which lead to very 

high contact area between aqueous phase and 

extraction solvent.
22

 The ease of the operation, speed, 

lower sample volume, low cost, high recovery and high 

enhancement factor are some advantages of DLLME. 

With the development of DLLME, the principles and 

the applications of this new technique have been 

reviewed recently
23,24

 and its application extended to 

separation, pre–concentration and determination of 

organic
21,25–27

 and inorganic
22,28–30

 compounds in 

different samples. However, to the best of our 

knowledge, this is the first report concerning PX 

extraction using the DLLME method. 

In this work a DLLME methodology has been 

developed and optimized for the extraction of PX from 

human urine and pharmaceutical formulation. The 

extracted PX was analyzed by using spectrophotometry 

and this method was used due to ease and low cost of 

operation. Potential parameters affecting the DLLME 

and analytical performance were studied and optimized 

systematically. Using the developed method PX can be 

analyzed in pharmaceutical formulation and human 

urine sample in a simpler, cheaper and more rapid 

manner.  

 

Materials and Methods 

Apparatus 

Spectral measurements were carried out with Shimadzu 

UV–visible Recording Spectrophotometer (UV–160 

model) using 1–cm path length and 1.5 mL quartz cells. 

A Hettich centrifuge (EBA 20 model/ Andreas Hettich 

GmbH & Co. KG, Föhrenstr. 12, D–78532 Tuttlingen, 

Germany) with 15 mL calibrated centrifuge tubes 

(Hirschmann, EM techcolor, Germany) was used to 

accelerate the phase separation process. A Corning 

M120 pH–meter (Halstead, Essex, England CO9 2DX) 

was used for checking the pH of solutions.  

 

Reagents 

All solvents containing chloroform, dichloromethane, 

carbon tetrachloride, acetone, acetonitrile, ethanol and 

methanol were obtained from Merck (Darmstadt, 

Germany). The β–glucuronidase, Type HP–2 from 

Helix pomatia (116,400 units/mL), was from Sigma–

Aldrich.  

A stock solution of 500 μg/mL of PX was prepared by 

dissolving appropriate amounts of pure drug (obtained 

from Zahravi, Tabriz, Iran) in ethanol and was kept 

away from the light in a refrigerator at approximately 

4°C. Working standard solutions were obtained by 

appropriate dilution of this stock standard solution. 

The acetic acid/acetate buffer (1 mol/L, pH 3.0) was 

prepared from sodium acetate trihydrate (Riedel–De 

Haёn) and acetic acid (Merck). A 20% (w/v) solution 

of NaCl (Merck) was prepared. All other reagents were 

of analytical reagent grade or higher. Ultrapure water 

(Milli–Q Advantage A 10 system, Millipore) was used 

throughout the work. 

 

Procedure for DLLME 

From the PX standard solution (10 µg/mL) aliquot 

volumes, in the range 0.2–4.8 µg/mL, were pipetted 

into 15–mL centrifuge tubes and mixed with 0.5 mL of 

1.0 mol/L acetate buffer at pH 3.0 and 2.0 mL of 20% 

NaCl solution. The contents were diluted to 5.0 mL and 

subjected to the DLLME. Seven hundred microlitres of 

methanol (as disperser solvent) containing 70 µL of 

chloroform (as extraction solvent) was injected rapidly 

into a sample solution using a 2.0–mL syringe. A 

cloudy solution was rapidly produced, resulting from 

fine droplets, and the PX was extracted into these fine 

droplets. The mixture was centrifuged at 3500 rpm for 

3 min and the dispersed fine droplets of chloroform 

were settled. The supernatant aqueous phase was 

readily decanted with a Pasteur pipette. The remained 

organic phase was diluted to 700 µL with ethanol–

water (1:1 v/v) and the absorbance measured at 355 ± 3 

nm against a reagent blank. 

     

Procedure for pharmaceutical preparation 

The contents of ten capsules (Pursina Pharm. Co., 

Tehran, Iran), each containing 10 mg PX, were 

accurately weighed individually and finely powdered. 

Powdered sample containing 10 mg PX was weighed 

and placed into a 15–mL glass tube dissolved in 10–mL 

methanol and was vigorously shaken on a vortex mixer 

for 30 sec. The solution was then filtered and 

transferred into a 50–mL volumetric flask. The residue 

was washed in enough methanols and the solution was 

finally made up to the mark with water. Thus, a 200 

µg/mL solution of PX was obtained. This solution was 

diluted quantitatively to yield concentrations in the 

range of working standard solution and then the PX 

content was analyzed by the procedure proposed above. 

 

Procedure for urine sample 

Urine sample was obtained from healthy male 

volunteer who took single oral dose of 10 mg PX 

capsule. After administration, the samples were 

collected between 0–24 h and frozen at –20 °C until 

analysis. The frozen urine samples were thawed at 

room temperature, centrifuged for 15 min at 4000 rpm 

and then the supernatants were transferred to clean 

glass tubes. Enzymatic deconjugation was performed 

according to the literature,
14,16

 with some 

modifications. For this purpose, 2.0 mL of urine sample 

was transferred into 10–mL centrifuge tube and 300 μL 

of sodium acetate buffer (1.0 mol/L, pH 5.0) and 200 

μL of β–glucuronidase/aryl sulphatase (116400–1015 

IU/mL) were added. The tubes were mixed vigorously 

and incubated at 56°C for 6 h. Then tubes were 

centrifuged at 3000 rpm for 15 min and 0.5 mL aliquots 

of the supernatant solutions were subjected to the above 

mentioned procedure. 
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Results and Discussion 

A literature survey reveals that both spectrophotometric 

and spectrofluorimetric techniques have been the most 

employed methods for the determination of PX in 

pharmaceutical preparations. By taking into account 

that the extracted PX didn’t show any significant and 

sensitive fluorescence in the studied conditions, 

spectrophotometric detection was adopted for its 

monitoring after DLLME. 

The spectrophotometric methods used for the 

determination of PX are generally based on the 

oxidation of PX with different agents, such as 

potassium iodate,
3
 ferric salts,

6
 ceric ammonium 

sulfate
31

 and indirect spectrophotometric determination 

of the reaction products, solid–phase 

spectrophotometry
4
 and or chelating with ferric ion.

5
 In 

this study, quantitative determination of PX in different 

real samples was performed by direct 

spectrophotometry in order to avoid of slow 

derivatization reactions, specific or toxic agents, large 

sample volumes and/or excess use of organic solvents. 

Figure 1 shows the absorption spectrum of the target 

analyte after DLLME which exhibits an absorption 

band peaking at 355 ± 3 nm. To obtain higher 

extraction efficiency, the effect of different factors such 

as pH, type and volume of dispersive and extraction 

solvents, salt addition and etc. were tested using the 

one variable at a time method.  

 

 

 
Figure 1. Absorption spectra of PX after DLLME: a) Standard solution of PX (2.0 μg/mL) (b) sample "a" after addition of NaCl (8% w/v), 

(c) 0.5 mL urine sample spiked with PX (2.0 μg/mL); other conditions: 0.5 mL of 1.0 mol/L acetate buffer at pH 3.0; extraction with 500 of 

methanol µL containing 50 µL of chloroform. 

 

Effect of pH 

It is well known that the pH of the sample solution was 

one of the important factors affecting the states of 

analytes (as ions or neutral forms). Figure 2 shows the 

effect of pH on the absorption signal of the target 

analyte. As can be seen, the signal intensity of PX 

improved with the increasing of pH from 3.0 to 3.5, 

and then decreased in pH 3.5–12.0. This can be 

explained by the following reasons: Analytes in neutral 

forms are much easier to be extracted by extraction 

solvent than those in ion forms due to their strong 

affinity. According to the literature,
8,32

 the pKa values 

of PX are 1.81 and 5.12. By considering these values, 

below pH 1.8 both the pyridyl and enolic groups are 

mostly prorogated (LH
2+

, positive global charge) and 

above pH 5.1 these groups are deprotonated (L
–
, 

negative global charge). In the pH range 1.8–5.1, a 

tautomeric equilibrium between the neutral molecule 

(LH
0
) and the zwitterions (LH

±
) is established.

8
 Hence, 

when the pH of the solution was between 1.8–5.1, the 

analyte is neutral form in aqueous solution which has a 

greater tendency to be extracted into the extraction 

solvent. Accordingly, the pH of samples was controlled 

at 3.0 by acetate buffer for subsequent study. 

 

 
Figure 2. Effect of pH on the analytical responses, PX 

(1.2 μg/mL); other conditions: 2.0 mL of 20% NaCl; 0.5 

mL of 1.0 mol/L acetate buffer at pH 3.0; extraction with 

500 of methanol µL containing 50 µL of chloroform. 
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Effect of the extraction and disperser solvent type 

The type of extraction solvent used in DLLME is an 

important factor for efficient extraction. The solvent 

should be denser than water. Moreover it should have 

more capability for the extraction of interested 

compounds and lower solubility in water. Thus, 

chloroform, dichloromethane and carbon tetrachloride 

were studied as extraction solvent. On the other hand, 

the selection of a dispersive solvent is limited to 

solvents such as methanol, ethanol, acetonitrile and 

acetone, that are miscible with both water and 

extraction solvents. 

In this study, all combinations of dichloromethane, 

chloroform and carbon tetrachloride as extraction 

solvents (50 µL) and methanol, ethanol, acetonitrile 

and acetone as dispersive solvents (500 µL) were 

tested. The results shown in Figure 3 indicated that, 

when dichloromethane was used as extraction solvent, 

no cloudy state was observed and also no sediment 

droplet of extract was found on the bottom of the tube 

after centrifuging. With carbon tetrachloride and 

chloroform, a two–phase system was formed with all 

four dispersive solvents but in the case of carbon 

tetrachloride low signals was observed, probably due to 

little extractability of the analyte in this solvent. While 

in the case of chloroform with methanol more stable 

two–phase systems and higher signals were observed. 

Thus chloroform and methanol was selected as 

extraction and disperser solvents, respectively, in 

subsequent experiments.  

 

 
Figure 3.  Effect of the type of extraction and dispersant 

solvents on the analytical responses, EtOH: ethanol, MeOH: 

methanol, Ac: acetone, ACN: Acetonitrile, PX (1.8 μg/mL); 

other conditions have been mentioned in Figure 2. 

 

Effect of the extraction and disperser solvent volume 

The effect of the volume of the extraction solvent on 

the analytical signals was investigated. Experiments 

were performed with different volumes of chloroform 

(in the range of 30–90 µL) as the extraction solvent by 

fixing the volume of the methanol at 500 µL. Figure 4 

indicates that the absorbance increased by increasing 

the volume of the chloroform to 70 µL and then 

remained approximately constant by further increasing 

of its volume between 70 and 90 µL. Thus 70 µL of 

chloroform was used in other experiments. In order to 

examine the effect of the disperser solvent volume, 

solutions containing different volumes of methanol (in 

the range of 400–800 µL) containing 70 µL of 

chloroform were subjected to the same DLLME 

procedure. As shown in Figure 5, the absorbance 

reached to its maximum value at 700 µL of the 

methanol. Thus this volume was used in other 

experiments. 

 

 
Figure 4. Effect of the extraction solvent (CHCl3) volume on 

the analytical signals, PX (1.8 μg/mL); other conditions have 

been mentioned in Figure 2. 

 

 
Figure 5. Effect of the dispersant solvent (MeOH) volume on 

the analytical signals, PX (1.8 μg/mL); other conditions have 

been mentioned in Figure 2. 

 

Effect of salt addition 

For investigating the influence of ionic strength on the 

extraction efficiency of DLLME, various experiments 

were performed by adding different amount of NaCl 

(0–15%, w/v) when other experimental conditions were 

kept constant. It was found that the absorbance was 

increased by increasing the amount of NaCl from 0 to 

8%, and then decreased gradually by further increase of 

the salt concentration (see Figure 6). Based on these 

results, 8% (w/v) NaCl was chosen as the optimal salt 

concentration in the DLLME procedure. 

 

Method validation 

The optimized DLLME–spectrophotometric method 

was validated according to ICH guidelines.
33
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Calibration graphs were obtained by DLLME of 5 mL 

of standard solutions containing known amount of the 

PX and under the experimental conditions specified in 

the procedure. The remained phase (≈100 µL) was 

diluted to 0.7 mL with ethanol: water (1:1 v/v) and the 

absorbance measured. Thus, the theoretical and 

experimental preconcentration factors of 50 and ≈7 

were achieved. The calibration curve for the detection 

of PX was linear over the concentration range 0.2 to 4.8 

µg/mL
 
and the corresponding regression equation was: 

Abs. = 0.1711C – 0.0154 (r = 0.9965), where Abs. is 

the absorbance intensity, C is the concentration of PX 

as µg/mL and r is correlation coefficient. 

Table 1 indicates the analytical characteristics of the 

proposed method. Limit of detection (LOD) was 

calculated as 3σs/R, where σs is the standard deviation 

of the blank and R the slope of the calibration curve, 

and found to be 0.058 μg/mL. This LOD was 

sufficiently low to be valuable for the determination of 

PX in different biological fluids. In addition, obtained 

linear range, LOD and RSD were comparable with 

those reported in other extractive methods (see Table 1). 

 

 

 
Figure 6. Effect of salt amount on the analytical signals, PX 

(1.8 μg/mL); other conditions have been mentioned in Figure 2. 

 

Table1. Analytical characteristics of the different extractive methods. 

Method 
Sample & 
Ex. method 

Concentration 
range (μg/mL) 

Slope Intercept r RSD% LOD (μg/mL) 
Mean recovery 

(%) 
Ref. 

E.C  sensor P.P 5.2×10-5-10-2 55.8 22.5 - 0.83-1.4 0.795 98.8-102 1 

S B.S 0.50-12 0.348 -0.014 0.9998 0.13-2.0 0.290a 89.4 2 

S P.P 0.05-1.1 1.07 -0.033 - 0.62-2.6 0.012b 99.7-100 3 

Solid phase S P.P 0.5-10 5.10×10
-2

 0.013 0.9950 1.8 0.100 95.7-104 4 

Derivative S P.P 2.4-20 5.20×10-3 -4.04×10-4 0.9986 1.29 - 99.7 5 

HPLC – 5.0-20 1.14×104 2.72×103 0.9996 0.82 - - - 

S P.P 0.20-6.5 0.112 0.021 0.9993 0.93 8.35-8.75b 98.9-99.6 6 

  0.05-6.5 0.112 0.032 0.9989 0.88 - 98.9-99.5 - 

F P.P 0.02-1.0 28.6 2.90 0.9990 1.6 0.020 100 8 

F P.P 0.03-0.20 42.3 1.02 0.9930 2.9 0.010 100 9 

F 
P.P and 
B.S & LLE 

0.05-1.5 18.0 3.29 0.9993 1.3-1.6 0.015 99-104 10 

Luminescence 
P.P and 
B.S 

0.2-1.0 1.83 -0.024 0.9955 0.5-3.9 0.029 97.5-100.8 12 

S B.S 1.0-10 - - 0.9777-0.9975 1.0(S.D) 0.030-0.040 99-114 13 

HPLC B.S & LLE 0.05-20 0.463 -4.70×10-3 0.9999 0.6-2.9 0.050 88-99 16 

HPLC B.S & LLE 7.2×10
-4

-0.6 0.727-1.44 -0.197-0.574 0.9960 3.2 7.20×10
-4a

 57.8-67.8 18 

HP–TLC B.S & LLE 0.1-15 0.689 0.046 0.9970 3.1-4.9 0.050 94.8 19 

HPLC B.S & P.P 0.1-6.0 0.972 0.011 0.9998 4.2-5.4 0.020 100 20 

S - 0.2-4.8 0.171 -0.015 0.9965 2.8 0.058 97-110 
This 
work 

E. C=Electrochemical; S.D=standard deviation; S=Spectrophotometry; F=Spectrofluorimetry; Pharmaceutical preparation=P.P; Biological sample=B.S; 

P.P=protein precipitation; a LOQ has been reported; b sensitivity has been reported. 

 

 

The interferences 

As can be seen from Figure 1, the analytical signals in 

the presence of urine are higher than that obtained in 

the absence of it. This can be attributed to the chemical 

composition of the urine and present salts which can 

contribute at higher extraction efficiencies of PX, due 

to salting out effect. It was found that the addition of 

NaCl to the standard solutions of PX, up to 

concentrations of 8% (w/v), can increase its extraction 

efficiency due to salting out effect, therefore remove 

this interference effect. 

 

The validation and application of the method 

Application to the commercial formulation 

The proposed method was successfully applied to the 

analysis of PX in its pharmaceutical dosage form (10 
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mg per capsule) and the results are shown in Table 2. 

The data in this table show that the PX content 

measured by the proposed method was in excellent 

agreement with those obtained by an independent 

spectrofluorimetric method.
10

 A comparison using t–

test at 95% confidence interval demonstrates that there 

isn’t any significant difference among the achieved 

results using these two methods.
34

 The accuracy of the 

proposed method was further tested by performing 

recovery experiments on the solutions prepared from 

PX formulation. The results are summarized in Table 3 

and recoveries ranged from 104–110%. These 

recoveries indicate that no significant matrix effect was 

observed in the proposed procedure. 

 
Table 2. Results of recoveries of spiked samples. 

Sample 
PX added 

(μg/mL) 

†PX found 

(μg/mL) 
Recovery (%) 

PX solution* 

(μg/mL) 

0.5 0.52 ± 0.015 104 

1.0 1.07 ± 0.031 107 

1.5 1.65 ± 0.048 110 

Human urine♥ 

0.5 0.51 ± 0.015 102 

1.0 0.97 ± 0.029 97 

1.5 1.62 ± 0.048 108 

*Prepared from drug formulation. 
♥
A 0.5 mL portion of urine sample was used for recovery experiments. 

†
Average of three determinations ± standard deviation. 

 

 

Table 3. Determination of PX in pharmaceutical preparation. 

Method 

*PX 

concentration 

(μg/mL) 

†The tabulated t & F 

values 

Spectrofluorimetry [10] 11.0 ± 0.170 t = 1.78 (2.78) 

Spectrophotometry 

(this work) 
10.5 ± 0.350 F = 4.24 (19) 

*Average of three determinations ± standard deviation. 

†
Figures between parenthesis are the tabulated t and F values 

at p = 0.05.
34

 

 

Application to the human urine 

Drug–free urine sample obtained from healthy 

volunteer was used for recovery experiments. Aliquots 

of 0.5 mL of urine sample was spiked with certain 

concentrations of PX and subjected to the recovery 

experiments. The obtained recoveries ranged from 97 

to 108%, as shown in Table 2, and seem to be 

satisfactory. Typical spectra of a standard solution of 

PX, blank urine and a urine sample taken from a 

volunteer after β-glucuronidase treatment are illustrated 

in Figure 7. No additional picks due to interferences 

were observed at the analytical absorption wavelength. 

Thus the coincidence of absorption spectra along with 

reasonable recoveries indicated that no significant 

matrix effect was encountered in the proposed method.  

 

 

 

 
Figure 7. Absorption spectra of (a) urine blank, (b) Standard solution of PX (1.8 μg/mL) (c) collected urine after oral administration of 10 

mg of PX and β–glucuronidase treatment; other conditions have been mentioned in Figure 2. 

 

The proposed method was successfully applied to the 

determination of PX in human urine. For this purpose, 

urine was collected for 24 h after a single oral dose of 

10 mg of PX to one volunteer. It must be mentioned 

that according to the literature,
2
 there is an extensive 

overlap of the spectral bands of PX and 5–HP. 

Therefore the total excreted drug, i.e. unchanged PX 

and its metabolites, can be determined as PX after β–

glucuronidase treatment and performing the analysis in 

the analytical absorption wavelength of PX. 

The average concentration of PX was found to be 

2.99±0.09 µg/mL in a total volume of 0.79 L of urine. 

In the present study, approximately 23.6% of the PX 

dose was recovered in urine as the 5'–hydroxy 
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metabolite and its glucuronide conjugate, which was in 

accordance with values reported in the literature.
35,36

 

Also, urinary excretion of unchanged PX was 

negligible and below the detection limit of the assay. 

 

Conclusion 

The feasibility of employing DLLME as a simple and 

effective tool for the extraction of PX from different 

real samples has been studied. The method was 

validated using real samples and applied to the 

determination of PX in human urine. Compared to the 

HPLC, the proposed method allows carrying out the 

analysis of PX with low operational costs, simplicity of 

instrumentation and without further sample clean–up 

steps. Thus, the time and cost of analysis can be 

significantly decreased in addition to other well–known 

advantages of DLLME methodology. The method can 

be further developed by combining DLLME 

methodology with the proper HPLC method for the 

separation and determination of each PX and its 

metabolites. 
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