Development and Evaluation of a Solid Self-Nanoemulsifying Drug Delivery System for Loratadin by Extrusion-Spheronization

Mohammadreza Abbaspour*, Negar Jalayer, Behzad Sharif Makhmalzadeh

Nanotechnology Research Center and school of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

ARTICLE INFO

Article Type: Research Article

Article History:
Received: 8 June 2013
Revised: 20 June 2013
Accepted: 25 June 2013
ePublished: 24 December 2013

Keywords:
Solid self-emulsifying drug delivery system
Extrusion-spheronisation
Pellets
Loratadin

ABSTRACT

Purpose: Recently the liquid nanoemulsifying drug delivery systems (SNEDDS) have shown dramatic effects on improving oral bioavailability of poorly soluble drugs. The main purpose of this study was to prepare a solid form of self-nanoemulsifying drug delivery system of loratadin by extrusion-spheronization. The liquid SNEDDS are generally prepared in a soft or hard gelatin capsules which suffers from several disadvantages. Therefore incorporation of SNEDDS into solid dosage form is desirable to get together the advantages of SNEDDS and solid multiparticulate systems.

Methods: The SNEDDS was consisted of liquid paraffin, capriole, span 20, transcotul and loratadin as a poorly soluble drug. A multilevel factorial design was used to formulation of SNEDDS pellets, liquid SNEDDS (20 and 30%) was mixed with lactose, microcrystallin cellulose (40%) and silicon dioxide (0, 5 and 10%), and Na-crosscarmelose (0, 5 and 10%). The resulting wet mass transformed into pellets by extrusion-spheronization. The pellets were dried and characterized for size (sieve analysis), shape (image analysis), mechanical strength (fracture test), droplet size (laser light scattering) and drug release rate (dissolution test). Selected SNEDDS pellets were also compared with conventional loratadin pellet or tablet formulation.

Results: The resulting SNE pellets exhibited uniform size and shape. Total friability of pellets did not affected by formulation variables. The in vitro release of SNE pellets was higher than the liquid SNE and powder tablets.

Conclusion: Our studies demonstrated that extrusion-spheronization is a viable technology to produce self-emulsifying pellets in large scale which can improve in vitro dissolution with better solubility.

Introduction

In the drug discovery, a large proportion of new chemical entities and many existing drug molecules exhibit poor water solubility and hence poor oral absorption. An innovation strategy which would overcome this barrier is self-emulsifying drug delivery system (SEDDS) that so results in improving the oral bioavailability of poorly water soluble and lipophilic drugs. Self-emulsifying systems have shown lots of unique and reasonable properties compared to other formulation strategies such as application of cyclodextrins, nanoparticles, solid dispersions, permeation enhancers, micronization, co-solubilization, inclusion complexation, nano suspensions and lipid-based formulations. Self-emulsifying (SE) systems are able to emulsify rapidly and spontaneously in the gastrointestinal fluids and create fine oil/water emulsions under the gentle agitation provided by gastro-intestinal motion. Small droplets of oil created by SEDDS increase drug diffusion into intestinal fluids (because of large surface area). Moreover, the emulsion droplets lead to a faster and more uniform distribution of drug in the GI tract. They also minimize the mucosal irritation due to the contact between the drug and the gut wall. SEDDS are normally prepared as liquid dosage forms or encapsulated in soft gelatin capsules which have some limitations such as: high production cost, incompatibility problems with capsule shell, low drug portability and stability, drug leakage and precipitation, low drug loading, few choices of dosage forms and irreversible drugs/excipients precipitation. More importantly the large quantity of surfactants in the formulations can induce GI irritations. Incorporating liquid SEDDS into pharmaceutical excipients to create solid dosage forms (SE pellets or SE granules) have recently developed by researchers. To some extent, this combination offers the sum of the benefits of both SEDDS and solid dosage forms. From the perspective of the dosage form, pellets have some desired advantages making them of great attraction to

*Corresponding author: Mohammadreza Abbaspour, Nanotechnology Research Center and School of pharmacy, Ahvaz Jundishapur University of Medical Sciences, Golestan Blv., Ahvaz, Iran. Tel.: +98-611-3738380, Email: abbaspourmr@ajums.ac.ir

Copyright © 2014 by Tabriz University of Medical Sciences
the pharmaceutical industry. The pellets have improved appearance with fine pharmaceutical elegance, they can decrease the risk of dose dumping and local mucosal irritation, avoid powder dusting in the pharmaceutical industries, also their larger surface area enables better distribution in case of immediate release products. Furthermore, pellets disperse freely in the gastrointestinal tract and invariably maximize drug absorption with a subsequent reduction in peak plasma fluctuations, as a result they minimize potential side effects without lowering drug bioavailability. Moreover, reduction of intra-and inter patient variability of plasma profiles is achieved by reducing overall transit time. The method of choice in preparing the pellet dosage forms is extrusion-spheronization since it provides much more benefits than other methods, including large-scale producibility, spherical shape, narrow modal size distribution, good flow, ease of coating, compact packaging, higher density and surface area. In this study, we intended to prepare and characterize solid self-nanoemulsifying drug delivery system for oral delivery of loratadin as the model insoluble drug. We firstly prepared a liquid SNEDDS formulation containing loratadin. Then solidified it with incorporating liquid SNEDDS into spherical pellets produced by the extrusion-spheronization technique. The developed formulations were characterized by determination of their morphology, size, friability, in-vitro drug release, disintegrating properties, and emulsion droplet size analysis. Optimum SNE pellet formulations were then selected and their in-vitro drug release was evaluated in comparison with liquid SEDDS, conventional loratadin tablets and pellets.

Materials and Methods

Chemicals

Loratadin was kindly donated by Abidi Pharmaceutical Co. (Tehran, Iran). Capriol® and transcutol® were gift from Gattefosse (France). Span® 20, liquid paraffin and hydrochloric acid were provided by Merk (Germany). Aerosil® (silicon dioxide) was purchased from Exir Pharmaceutical Company. Avicel® (MCC, microcrystallin cellulose) from FMC, Biopolymer (USA) was used as a pellet forming material. Sodium crosscarmellose was provided by Fluka, Germany and lactose was purchased from Akbarieh pharmaceutical Co (Iran).

Preparation of the liquid self-nanoemulsifying drug delivery system (SNEDDS)

Based on previous studies, a self-emulsifying system was prepared containing a fixed proportion of loratadin (0.1%), 73.8% of liquid paraffin, 24.55% span 20, and 6.15% capriole as surfactant and co-surfactant, respectively. 0.5% transcutol was added as permeation enhancer. This procedure involved admixing defined amount of the components (oil, surfactant, co-surfactant and transcutol), then adding loratadin 0.1% (w/w) to the mixture. The mixture was stirred at 40 °C for a time period necessary to solve the drug until a solution was obtained. To evaluate self-emulsification properties of the liquid SNEDDS formulation, 1 ml of liquid SNEDDS was added to 0.1 N HCl (100 ml) under continuous stirring (60 rpm) at 37 °C. The formulation was characterized as transparent to milky dispersion.

Experimental design

The solid self-nanoemulsifying drug delivery system (SNE pellets) was prepared using a multi-level full factorial design. Three independent variables, including the percentage of Aerosil (three levels), the Crosscarmellose (three levels), and the amount of liquid SNEDDS (two levels) were used (Table 1). The dependent variables or responses were pellet’s disintegration time, friability, MDT and sphericity. The SPSS 16 software was employed for the experimental design and regression analysis of the data to evaluate the effect of the variables on the responses.

| Table 1. Independent variables (factors and levels) for factorial design. |
|-----------------|---|---|---|
| Factors | levels |
| Aerosil% | -1 | 0 | +1 |
| Crosscarmelose% | 0 | 5 | 10 |
| SNEDDS% | 20 | - | 30 |

Preparation of the SNE pellets

The composition of SNE pellets is shown in Table 2. The pellets were produced by the following processes: initially the resulted liquid SNEDDS was added into Aerosil (or mixture of Avicel and lactose for formulations that had 0% Aerosil), and mixed in a kneader until the liquid SNEDDS were completely adsorbed to form a fine mixture. Then, the adsorbed mixture was blended with other components (MCC, lactose and crosscarmellose) for 5 minutes. After that, drops of distilled water were added until a mass with suitable consistency was obtained for extrusion. The wet mass was extruded at 100 rpm in a screw extruder (Dorsa, Iran) with a die of 1mm thickness and 1mm diameter holes. The extrudates were spheronized for 2 minutes, at 1000 rpm on a spheronizer (Dorsa, Iran). The produced pellets were then dried for 15 h at 40 °C in an oven drier. The pellets were stored in sealed bags.

Size distribution of SNE pellets

25 mg of SNE pellet formulations were vibrated by a set of standard sieves (0.35, 0.5, 0.71, 1.18, 1.4, and 1.7 mm) for determination of size distribution. The subsequent tests were carried out on the modal size fraction (1180-1400 µm).
Image analysis of SNE pellets
Shape analysis was performed using a stereo microscope (ZSM-1001-3E, Iran) and a digital camera connected to a personal computer with SCION image analysis software. This test was performed on 50 pellets within the 1180-1400 (µm) fraction and two shape factors were determined using projected two-dimensional images of pellets:

\[\text{Aspect ratio} = \frac{d_{\text{max}}}{d_{\text{min}}} \]

\[\text{Sphericity (circularity)} = \frac{4\pi A}{P_m^2} \]

Where \(d_{\text{max}} \) and \(d_{\text{min}} \) are maximum and minimum Ferret diameters of pellets, Ferret diameter is the distance between two tangents on opposite sides of the particle parallel to some fixed direction; so, based on direction several Ferret diameters can be determined for the particle. \(A \) is the pellet’s projected area and \(P_m \) is the pellet’s perimeter.

Friability test of SNE pellets
5 mg SNE pellets (d ≥1mm) were placed in the friabilator (ERWEKA, Germany) together with 5 (g) of glass spheres, and rotated for 15 minutes at 25 rpm. The rotated SE pellets were sieved by mesh 60 sieve and weighed in order to determine friability.

\[\% \, F = \frac{M_b - M_a}{M_b} \times 100 \]

Where \(M_b \) is the weight of pellets before friability test, and \(M_a \) is the weight of pellets after friability test.

Disintegration of SNE pellets
Using a disintegration apparatus (ERWEKA, Germany) 50 mg pellet samples from each formulation were tested (n=3) in 700 ml distilled water at 37 °C, and the end point was taken as the time at which no obvious particles were remained on the sieve in each disintegration baskets.

Dissolution test
The dissolution tests were carried out on, liquid SNEDDS, SE pellets, conventional pellets and tablets formed by drug powder in order to compare drug release profiles. The dissolution medium was 900 ml of HCl 0.1N solution at 37± 0.5 °C. Each formulation weighed to be equivalent to 3 mg loratadin. The USP dissolution apparatus (basket method) was used for pellets and tablets and paddle method was used for liquid SNEDDS, at 50 rpm. 2 ml of dissolution medium was sampled at predetermined intervals and fresh dissolution medium was replaced in flasks to achieve sink condition. The samples were assayed by a UV spectrophotometer at 276 nm to determine the dissolved drug concentration (it was found that SEDDS or pellet compositions had no considerable absorbance in this wavelength), the dissolution data were then converted to mean dissolution time (MDT) by following equation:

\[MDT = \frac{\sum_i t_i \Delta M_i}{\sum \Delta M_i} \]

\[\bar{t}_i = \frac{t_i + t_{i+1}}{2} \]

\[\Delta M_i = (M_{i+1} - M_i) \]
Where t_i is the midpoint of the time period during which the fraction ΔM_i of the drug has been released from the dosage form. A high MDT value for a drug delivery system means that it has a slow in vitro drug release.

Emulsion droplet size determination

To determine the size of the droplets formed by liquid SNEDDS and SNE pellets 1 ml of liquid SNEDDS and 1 g of selected pellet formulations were gently agitated in 50 ml distilled water with a magnetic stirrer. After 30 minutes, samples were filtered through 0.45 μm micropore filters. Then the resulted size of the emulsion droplet was determined by laser diffraction (Scatteroscope Qudix I, Korea). The experiments were carried out in triplicates and reported as mean droplet size and poly dispersity index (PDI).

Statistical analysis

The effects of independent variables on the experimental response were modeled using a second order polynomial equation with a backward, stepwise linear regression technique. Only significant terms ($p<0.05$) were chosen for the final model. ANOVA and modeling process were performed using SPSS for Windows®, Version 16.0 (SPSS Inc., USA). The related surface plots were obtained by Statgraphics for Windows®, Version 5.1 plus (Statistical Graphics Corp., USA).

Results and Discussion

Preparation and characterization of SNE pellets

Size distribution

Acceptable loratadin SNE pellets were successfully prepared by extrusion-spheronization technique, using different factors and levels applied in this study. The calculated pelletization yield for most of the formulation was over 80% (Table 3). Quality assessment of the produced pellets was made by evaluating their size and shape, and percentages of the SE pellets in the sieve fraction are shown in Table 3. The size of modal fraction was 1 – 1.7 mm which more than 60% of pellets were in this range.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>0.5-0.71 (mm)</th>
<th>0.71-1.18 (mm)</th>
<th>1.18-1.4 (mm)</th>
<th>1.4-1.7 (mm)</th>
<th>Total weight (g)</th>
<th>Friability (%)</th>
<th>MDT (min)</th>
<th>Sphericity</th>
<th>Aspect ratio</th>
<th>Disintegration Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.5</td>
<td>6.6</td>
<td>10.3</td>
<td>23.9</td>
<td>44.6</td>
<td>7.4</td>
<td>86.1</td>
<td>0.2±0.3</td>
<td>9.7±0.3</td>
<td>0.53±0.11</td>
</tr>
<tr>
<td>2</td>
<td>21.5</td>
<td>1.9</td>
<td>5.9</td>
<td>21.8</td>
<td>34.3</td>
<td>35.8</td>
<td>97.8</td>
<td>0±0.0</td>
<td>23.6±2.68</td>
<td>0.56±0.09</td>
</tr>
<tr>
<td>3</td>
<td>21.42</td>
<td>0.3</td>
<td>3.3</td>
<td>10.4</td>
<td>21.2</td>
<td>55.6</td>
<td>90.4</td>
<td>0.6±0.04</td>
<td>24.7±5.41</td>
<td>0.57±0.07</td>
</tr>
<tr>
<td>4</td>
<td>11.07</td>
<td>11.2</td>
<td>18.3</td>
<td>21.4</td>
<td>42.5</td>
<td>1.5</td>
<td>83.7</td>
<td>3.8±0.05</td>
<td>12±0.1</td>
<td>0.58±0.08</td>
</tr>
<tr>
<td>5</td>
<td>22.47</td>
<td>0.1</td>
<td>1.2</td>
<td>5.1</td>
<td>12.2</td>
<td>72.5</td>
<td>91.1</td>
<td>0.2±0.09</td>
<td>14.9±2.07</td>
<td>0.59±0.10</td>
</tr>
<tr>
<td>6</td>
<td>15.6</td>
<td>4.2</td>
<td>8.4</td>
<td>17.2</td>
<td>31.7</td>
<td>38.3</td>
<td>95.6</td>
<td>0.44±0.1</td>
<td>15.1±1.46</td>
<td>0.57±0.08</td>
</tr>
<tr>
<td>7</td>
<td>17.54</td>
<td>1.8</td>
<td>5.4</td>
<td>10.1</td>
<td>37</td>
<td>46.6</td>
<td>99</td>
<td>1.2±0.04</td>
<td>7.4±0.2</td>
<td>0.63±0.08</td>
</tr>
<tr>
<td>8</td>
<td>20.5</td>
<td>0.1</td>
<td>0.9</td>
<td>6.1</td>
<td>16.3</td>
<td>59.9</td>
<td>83.2</td>
<td>4.6±0.8</td>
<td>8±0.01</td>
<td>0.63±0.12</td>
</tr>
<tr>
<td>9</td>
<td>19.7</td>
<td>0.1</td>
<td>0.3</td>
<td>4.1</td>
<td>11.9</td>
<td>51.2</td>
<td>67.5</td>
<td>0.6±0.54</td>
<td>9.8±1.17</td>
<td>0.63±0.07</td>
</tr>
<tr>
<td>10</td>
<td>18.53</td>
<td>2.7</td>
<td>3.9</td>
<td>10.1</td>
<td>14.1</td>
<td>68.2</td>
<td>96.3</td>
<td>0.4±0.62</td>
<td>19±0.85</td>
<td>0.63±0.09</td>
</tr>
<tr>
<td>11</td>
<td>19.5</td>
<td>1</td>
<td>2.6</td>
<td>7.1</td>
<td>20</td>
<td>27.3</td>
<td>57</td>
<td>0.6±0.09</td>
<td>25.8±2.56</td>
<td>0.58±0.11</td>
</tr>
<tr>
<td>12</td>
<td>20.4</td>
<td>1.7</td>
<td>5.4</td>
<td>17.6</td>
<td>40.2</td>
<td>34.3</td>
<td>97.6</td>
<td>0.1±0.17</td>
<td>26.6±0.37</td>
<td>0.59±0.06</td>
</tr>
<tr>
<td>13</td>
<td>10.08</td>
<td>1.8</td>
<td>4.4</td>
<td>12.9</td>
<td>52.4</td>
<td>10.1</td>
<td>79.8</td>
<td>0±0.54</td>
<td>15.1±13.7</td>
<td>0.64±0.07</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
<td>0.6</td>
<td>2</td>
<td>6.1</td>
<td>15.2</td>
<td>73.9</td>
<td>97.2</td>
<td>0.4±0.4</td>
<td>22.8±3.84</td>
<td>0.64±0.09</td>
</tr>
<tr>
<td>15</td>
<td>20.04</td>
<td>0.5</td>
<td>1.5</td>
<td>5</td>
<td>13.3</td>
<td>76.4</td>
<td>96.3</td>
<td>0.1±0.17</td>
<td>18.5±2.47</td>
<td>0.64±0.06</td>
</tr>
<tr>
<td>16</td>
<td>11.25</td>
<td>9.9</td>
<td>11.3</td>
<td>13.7</td>
<td>54</td>
<td>7.6</td>
<td>86.6</td>
<td>1±0.67</td>
<td>7±1.3</td>
<td>0.65±0.09</td>
</tr>
<tr>
<td>17</td>
<td>14.6</td>
<td>8.2</td>
<td>11.5</td>
<td>18.8</td>
<td>44</td>
<td>12</td>
<td>86.3</td>
<td>0±0.25</td>
<td>7.8±0.92</td>
<td>0.62±0.08</td>
</tr>
<tr>
<td>18</td>
<td>21.54</td>
<td>0</td>
<td>0.3</td>
<td>2.8</td>
<td>9.5</td>
<td>66.5</td>
<td>79.1</td>
<td>0.3±0.6</td>
<td>10.8±2.69</td>
<td>0.64±0.09</td>
</tr>
</tbody>
</table>

Image analysis

The image analysis was based on the consideration that for a perfect spherical particle the aspect ratio shows the value of unity and values deviating from unity (greater than 1) indicate the degree of sphericoid elongation. For the sphericity a value of unity considers a perfect spheroid and smaller values show the deviation from spherical form.

Details of shape analysis results are brought in Table 3. The regression analysis did not show any significant relevancy between aspect ratio and studied formulation factors; while it is indicated that the sphericity could be affected by the factors. As shown in the surface plot (Figure 1) increasing the amount of Aerosil as an absorbent and pelletization aid lead to improve pellets sphericity. Although the amount of croscarmelose as disintegrating agent and the percent of SNEDDS had no significant effect on sphericity, in formulations containing higher levels of Aerosil, increasing the amount of croscarmelose showed a negative impact on pellets’ sphericity.
Solid Self-Nanoemulsifying Drug Delivery System for Loratadin

Friability test

The summary of friability test results is shown in Table 3. In this study the mechanical strength of pellets was not significantly affected by studied factors. However it is reported that increasing the amount of SEDDS of the pellets or granules would weaken the interaction within the pellets due to incomplete adsorption on pellets components and decrease their hardness.\(^1\)\(^,\)\(^2\) This could be attributed to utilization of different amounts of granulating water in different formulations to achieve suitable consistency which can affects the pellets mechanical strength.

Disintegration of SNEDDS pellets

The effect of both Aerosil and crosscarmelose on disintegration time is shown as a surface plot (Figure 2). The plot demonstrates that increasing the amount of crosscarmelose lead to faster pellet disintegration. It is well known that crosscarmelose possesses wicking and swelling abilities and hence favors the water ingress inside the pellets and improve disintegration of pellets.\(^2\)\(^,\)\(^3\) Moreover, increasing the quantity of Aerosil as a pelletization aid would be useful to improve pellets integrity and the disintegration time. As we found out in this test and according to a previous study, adding the lactose had less effect on disintegration time, but would be useful to improve appearance of the pellets.\(^1\) However, the amount of liquid SNEDDS, had no significant effect on disintegration time.

In vitro dissolution test

In vitro dissolution profile of different pellets formulations are shown in Figure 3. The mean dissolution time (MDT) was used to compare the release profiles easily, (Table 3). The results are shown in Figure 4 as a surface plot. According to the plot increasing amount of Aerosil, increasing the (MDT), is in accordance with the disintegration time of the pellets, while increasing crosscarmelose cause to decrease MDT.

Formulations F_7 (30% SNEDDS) and F_16 (20% SEDDDS) which had lowest MDT and highest drug release rate, were selected as optimal formulations; moreover, their release profiles were compared with liquid SNEDDS, pellets and tablets, which were prepared in our lab based on powder drug with the same fraction of components as selected formulations (Figure 5).

As shown in Figure 5 and using MDT results, the selected SSNEDDS had a faster drug release than liquid SNEDDS and powder drug pellets (p<0.01). This finding could be primarily attributed to the effects of pellet components particularly crosscarmelose on enhancing water absorption into the pellets and improve interfacial surface between liquid SNEDDS and dissolution medium. Secondly the result could be related to the role of fine solid components of pellet formulations as an auxiliary emulsifying agent. It has been shown that finely divided solid particles can be used as emulsifying agents and emulsion stabilizer.\(^2\)^
As shown in Table 4, pelletization process did not affect the emulsifying efficiency of the SNEDDS. However, the F16 pellets resulted in smaller droplet size compare to the liquid SNEDDS (p<0.05). This may explained by emulsifying effect of solid components in the formulation. The efficiency of self-emulsification could be estimated by determining the rate of emulsification and droplet size distribution.20 The droplet size of the emulsion is a crucial factor in self-emulsification performance because it determines the extent of drug release as well as absorption.25 Furthermore, F16 have a slightly faster drug release than F7 (Table 4). This result could be related to the smaller droplet size of F16.26

Figure 5. In vitro dissolution profile of the selected SNE pellets (▲), liquid SNEDDS (●), tablets (■) and pellets formed by powder drug (♦); a: F7, b: F16 (n=3)

Table 4. Droplet size, PDI and MDT results of liquid SNEDDS and two selected pellet formulations.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Mean Droplet size (nm)</th>
<th>PDI</th>
<th>MDT (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid SNEDDS</td>
<td>190±42</td>
<td>0.39</td>
<td>17.6±5.9</td>
</tr>
<tr>
<td>SSNEDDS (F7)</td>
<td>213.3±46</td>
<td>0.34</td>
<td>7.4±0.2</td>
</tr>
<tr>
<td>SSNEDDS (F16)</td>
<td>87.0±27</td>
<td>0.34</td>
<td>7.1±0.33</td>
</tr>
</tbody>
</table>

Conclusion

The overall results of this study indicated that an improved formulation of loratadain SNEDDS pellets was successfully developed using the extrusion-spheronization technique. The resulting SE pellets exhibit uniform size and spherical shape and suitable hardness. The results of in vitro dissolution revealed that the pelletization process of loratadain SNEDDS not only had no inappropriate effect on its self-emulsification properties, but also improve the drug release rate from resulted nano-emulsions.

Acknowledgments

This study was a Pharm. D thesis of Ms. N. Jalayer and was supported by a grant from Ahvaz Jundishapur University of Medical Sciences.

Conflict of Interest

The authors report no conflicts of interest.

References

