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Introduction 

The bone marrow microenvironment has two cell types-

non-haematopoietic stem cells and haematopoietic stem 

cells-which form a bone marrow niche.1-3 The 

haematopoietic stem cells (HSCs) that settle in the bone 

marrow microenvironment differentiate via factors such 

as cytokines and the extra cellular matrix. For example, 

stem cell factor (SCF) and erythropoietin (EPO) are 

effective in erythroid stem cell maturation.4 HSC niches 

can contribute to promoting haematological 

malignancies,5-7 so the biology of these cells can have 

important clinical applications, especially in bone 

marrow transplantation. MSCs that play a critical role in 

the bone marrow niche are able to self-renew or 

differentiate to other lineages8-10 and such cells have 

been isolated from different tissues such as brain, liver, 

bone marrow, adipose tissue, foetal tissues, umbilical 

cord (UC), Wharton’s jelly, and placenta.11-14 According 

to the declaration of the Mesenchymal and Tissue Stem 

Cell Committee of the International Society for Cellular 

Therapy, MSCs express CD13, CD44, CD73, CD90, and 

CD105, but CD45, CD34, CD14, and CD19 are not 

expressed naturally in these cells.15 The bone marrow-

derived MSCs have the highest grade of lineage 

plasticity and are capable of converting to all cell types 

following implantation into early blastocysts.9,16 

Umbilical cord blood-derived MSCs expansion is highest 

in comparison with bone marrow and adipose-derived 

MSCs.17,18 This matter may be due in part to higher 

telomerase activity.19 In bone marrow niche, an oxygen 

gradient exists that creates a hypoxic condition for 

stromal and stem cells.20 Low oxygen tension has an 

effect on different cells in many tissues. Hypoxia has a 

strong effect on several aspects of cell biology such as 

metabolism, angiogenesis, innate immunity and stemness 

induction21 Effects of hypoxia are usually mediated by 

hypoxia-inducible factors (HIFs), i.e. HIF-1α and HIF-

2α.21-24 

HIFs are members of a subfamily of basic helix-loop 

helix transcription factors, and contain a PAS domain 

recognized as the Per, Arnt, and Sim proteins.25 HIFs 

alter more than one thousand target genes. These factors 

heterodimerize with another subunit, HIF-1β (or aryl 

hydrocarbon receptor nuclear translocator (ARNT)), and 

regulate downstream target gene expression.26 HIFs alter 

more than one thousand target genes.23,24 Recent 

examinations revealed expression of HIF-1α and HIF-1β 

to be required for normal development of the heart, 

blood vessels and blood cells.27-30 The signature of 

hypoxia alters many conditions, signalling pathways and 

molecules in cells. Metabolism and enzyme kinetics is 

one aspect that changes when the cell is exposed to 

hypoxia, for example expression of metalloproteases 

such as matrix metalloprotease-1 (MMP-1) and MMP-3, 

firstly regulated by hypoxia/HIF-1α.31 Ho IA confirmed 
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Abstract 
Although physiological and pathological role of hypoxia have been appreciated in 

mammalians for decades however the cellular biology of hypoxia more clarified in the past 

20 years. Discovery of the transcription factor hypoxia-inducible factor (HIF)-1, in the 

1990s opened a new window to investigate the mechanisms behind hypoxia. In different 

cellular contexts HIF-1 activation show variable results by impacting various aspects of cell 

biology such as cell cycle, apoptosis, differentiation and etc. Mesenchymal stem cells 

(MSC) are unique cells which take important role in tissue regeneration. They are 

characterized by self-renewal capacity, multilineage potential, and immunosuppressive 

property. Like so many kind of cells, hypoxia induces different responses in MSCs by HIF-

1 activation. The activation of this molecule changes the growth, multiplication, 

differentiation and gene expression profile of MSCs in their niche by a complex of signals. 

This article briefly discusses the most important effects of hypoxia in growth kinetics, 

signalling pathways, cytokine secretion profile and expression of chemokine receptors in 

different conditions.  
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that MMP-1 is a necessary factor in human bone marrow-

derived mesenchymal stem cell migration towards human 

glioma.32 Another enzyme examined is secreted 

lysyloxidase (LOX), which is required for the linkage 

contacts necessary for migration through focal adhesion 

kinase activity and cell matrix adhesion.33 Activated LOX 

stimulates Twist transcription, and this transcription factor 

leads to the mediation of the epithelial-to-mesenchymal 

transition (EMT) of carcinoma cells.34 HIF-1α regulates 

other lysyl oxidase-like enzymes that play a significant 

role in the creation of the breast cancer metastatic niche.35 

We can also say about the signalling pathway in hypoxia, 

that carcinoma-associated fibroblast differentiation needs 

the TGF-β/SMAD signalling pathway.36 Hypoxia alters 

the inhibitory function of SMAD family member 7 

(SMAD7, an inhibitor of the TGF-β signalling pathway), 

which is a promoter of malignant cell attack.37 

Chromatin modifiers can also be controlled via hypoxia. 

Stimulation of histone lysine-specific demethylase 4B 

(KDM4B, also known as JMJD2B) associates with cell 

invasion in the advanced clinical stage of cancer, for 

example in colorectal cancers.38 Lack of KDM4B leads to 

adipogenic differentiation and reduces osteogenic 

differentiation of MSCs.39 Hypoxia induces a histone 

methyltransferase mixed lineage leukaemia 1 (MLL1), so 

contributing to the differentiation of these cells.40,41 

Different microRNAs are regulated via hypoxia/HIF-1α.42 

MiR-210 is involved in tumour initiation and metastasis 

by targeting various downstream molecules as well as 

gene expression under normoxia, but vacuole membrane 

protein 1 (VMP1) is regulated by hypoxia.43,44 In a study 

performed on MSCs, this microRNA improved the 

proliferation of MSCs significantly.45 Hypoxia and Ras-

signalling pathways are controlled by three groups of 

microRNAs (miR-15b/16, miR-21 and miR-372/373).46 

Induction of Ras/MAPK signalling helps the osteogenic 

differentiation of MSCs via RUNX2 activation.47 Mir-34a 

represses by hypoxia, but blocks osteoblastic 

differentiation of human stromal stem cells.48,49 

 

Different hypoxia aspects 

Hypoxia and mesenchymal stem cells 

For the study of MSC proliferation, differentiation, 

metabolic balance and other physiological processes, their 

cultivation under hypoxia is an important prerequisite 

because it is similar to the natural microenvironment in 

bone marrow.50 Thus, a diverse range of reports for in 

vitro cell cultures and following clinical applications 

recommended MSC cultivation under hypoxia (1% to 

10% O2).51,52 This condition led them to suffer from 

limited nutrient and oxygen sources.53,54 

Different functional characteristics have been confirmed 

for hypoxia-induced MSCs from different sources. MSCs 

have some immunomodulatory effects,55 especially 

autocrine or paracrine diverse activity of cytokines, and 

growth factors of bone marrow-derived MSCs can be 

modulated in hypoxic conditions.56 On the other hand, 

UC-derived human MSCs adjust energy consumption and 

metabolism during hypoxia, and hypoxia leads to an 

increase in UC-derived MSC growth, in parallel to 

reducing cellular injury.57 The cell surface antigen 

expression of adherent cells derived from MSC-PBN 

(MSCs that collect from peripheral blood and culture in 

normoxia) and MSC-PBH (MSCs that collect from 

peripheral blood and culture in hypoxia) after two 

passages in culture is matched with BM MSCs. CD73 

(ecto-5'-nucleotidase), CD54 (intercellular adhesion 

molecule-1), CD44 (homing-associate cell adhesion 

molecule) and CD90 (Thy-1) are positive for the cultured 

adherent PBN- and PBH-derived cells but CD31 (platelet-

endothelial cell adhesion molecule-1), CD45 (leukocyte 

common antigen), CD18 (β2 integrin), CD49d (α4 integrin 

chain) and CD49f (α6 integrin chain) are negative. 

Therefore the cell surface antigen expression arrangement 

of PBN- and PBH-derived cells is comparable to that of 

BM-MSCs.58 

 

Effect of hypoxia on MSC proliferation 

Incubation of UC-derived MSCs with various 

concentrations of oxygen led to a rise in cell proliferation 

at hypoxia. In this condition significant levels of HIF-1α in 

hypoxic MSCs cultured at 2.5% or 5% O2 can be 

observed.57 

 

The effect of hypoxia on MSC expansion and phenotype 

However, stem cells are more resistant to hypoxia than 

their progenies, but hypoxia stimulates cell cycle arrest in 

mammalian cells. This event reflects their native 

environment and their intrinsic inactive state. MSCs and 

HSCs form a distinct bone marrow niche59 and 5% O2 

pressure in vitro is similar to the physiological conditions 

for MSCs. Under 5% tension of O2 up to (Passage 1) P1 

MSCs grew slower, and earned a progressive growth 

advantage in the next passages.60 Simmons showed that 

total cell numbers were reduced in hypoxia versus 

normoxia at first, while they were increased at P1. Overall 

cell-doubling time was reduced by hypoxia until P1 and 

increased afterwards. Fifty percent of the MSCs at P0 

under hypoxia transiently express STRO-1 and reduce 

afterwards.61 Remarkably, STRO-1+-presented cells 

increase expansion and multi-lineage differentiation 

potentialities.62,63 

The genes that were primarily induced were not assigned 

to multipotency but instead belonged mostly to adhesion 

molecules such as the von Willebrand endothelial cell 

adhesion molecule and protocadherin.64 MSC osteogenic 

differentiation is regulated by WNT-related transcription 

factor TCF1.15 In the control of differentiation towards 

adipocytes, osteocytes and chondrocytes, the eight genes 

potentially involved were not changed by hypoxia.15 vWF 

is a marker of endothelial lineage65 and PLVAP is a 

leukocyte trafficking molecule,66 which may help the 

transendothelial passage of MSCs from the bone marrow. 

Stimulation of leptin helps maintain mesenchymal 

progenitor cells’ undifferentiated state.67 The first 

stimulated gene that has a role in angiogenesis and 

extracellular matrix gathering is SMOC2,68 and the Kit 

gene is associated with proliferation.69 Culturing of MSC 
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in hypoxia impedes cell differentiation and biogenesis of 

mitochondria. We can say that cells in hypoxic conditions 

are less differentiated than cells in normoxia, the nuclei 

are larger and less complex, and there exist more abundant 

nucleoli and a higher nuclei/cytoplasm index, while the 

size of the cells is alike in both situations.15,70,71 

 

Effect of hypoxia on MSC differentiation 

In hypoxic microenvironments, haematopoietic and 

stromal stem cells (HSCs, MSCs) adapt themselves to 

hypoxia.15,70,71 Consequently, several reports exist of the 

differentiation capacity of HSCs and MSCs cultured in 

hypoxic conditions.60,72-80 Typical surface markers are 

expressed by bone marrow MSCs in human cells, and they 

have the potential to differentiate into adipogenic, 

osteogenic and chondrogenic lineages. Evaluation of 

adipocyte lineage-specific transcripts (LPL, PPARg) and 

osteocyte lineage-specific transcripts (ALPL, Runx2) 

show that the expression of ALPL in MSCs in severe 

hypoxia is higher than in normoxia. Additionally, ALPL is 

stimulated in hypoxic cells but Runx2 transcription does 

not show any noticeable alteration in normoxic MSCs. 

MSCs in hypoxia are more prone to osteogenic 

differentiation than in normoxia.15,70,71 

Remarkably, expression of VEGF-A transcription is up to 

20 times higher under hypoxic environments through 

osteogenesis than during adipogenesis. Additionally, 

analysis of PPARG expression (a key marker for 

adipogenesis), and Runx2 (a key marker for the osteogenic 

switch) demonstrated that the expression of PPARG in 

adipogenesis is meaningfully higher after two weeks under 

normoxic conditions compared to hypoxic conditions. 

Chemical inducers of HIF-1a facilitate the osteogenesis of 

human MSC, including the iron-chelating factor 

desferrioxamine mesylate (DFX) or the 

dimethyloxalylglycine (DMOG). This facilitation is 

observed even under normoxic conditions, but to a lesser 

extent than hypoxic situations.81 

 

Effect of hypoxia on MSC apoptosis and necrosis 

UC-derived human MSC cultured at 1.5% O2 showed a 

slight rise in apoptosis. Furthermore, in 2.5% O2 cells an 

augmented proliferative capability was confirmed. 

Comparable information was gained in bone marrow-

derived MSC.50,60 Furthermore, the level of cell injury 

and/or necrosis in 1.5% O2 is meaningfully less than in 

normoxic control cells. These data suggest an alteration in 

energy requests during hypoxia. A decreased 

concentration of oxygen in the hypoxic milieu can lead to 

reduced creation and accessibility of reactive oxygen 

species, which are principally responsible for the 

augmentation of cell injury.82,83 

 

Effect of hypoxia on MSC metabolism 

At 1.5% O2, consumption of glucose by MSCs and 

production of lactate is considerably more than in 

normoxic conditions. At 2.5% O2 glucose utilization and 

amount of lactate production were both less than at 1.5% 

O2, but still higher than that of MSCs in normoxic 

conditions. Glucose uptake and lactate production 

showed no difference between 5% O2 compared with 

21% O2. Experiments showed an important stimulation 

of GLUT-1, LDHA and PDK-1 in 1.5% O2, 2.5% O2 and 

5%O2 in comparison with control cells (21% O2). 

However, no increase was detected for G6PD in hypoxia. 

At 1.5% O2, consumption of glutamine is less, and 

consumption at 5% O2 is the same as the 21% O2 

controls. At 1.5%, 2.5% and 5% O2 when compared to 

the 21% normoxic condition control, glutamate 

production is less. 

This data demonstrates that MSCs, especially UC-

derived mesenchymal cells, adjust their oxygen 

consumption and therefore their energy metabolism. 

Thus, oxygen consumption rates of MSCs under hypoxic 

situations were about three-fold less in comparison with 

the control group.84-86 

Hypoxia induces VEGF, GLUT1, LDHA, PGK1, HIF-1a 

and HIF-1 target gene expression after 72 hours under 

hypoxic conditions. Note that VEGF, GLUT1, LDHA, 

PGK1 genes are target genes of HIF-1a.81 Previous data 

showed an increase in PDK1 gene expression. These data 

confirm that reduced cell respiration under hypoxic 

conditions is an outcome of the reduction of 

mitochondrial oxygen consumption.84 The utilization of 

pyruvate as a fuel for the Krebs cycle is suppressed by 

PDK1 upregulation: this mechanism is used by cells to 

preserve intracellular oxygen concentration and keep its 

homeostasis steady. These data are in agreement with 

animal experiments.87 

 

Effect of hypoxia on MSC migration capability 

One report showed that hypoxia led to the constant 

circulation of a small number of MSCs in the peripheral 

blood under inactive circumstances. Then, the circulating 

pool is critically increased. Significantly, this increment 

is moderately definite for MSCs, while HPCs exhibited 

no or limited increase under hypoxic situations. Some 

experiments determined cells similar to BM MSCs to 

circulate in peripheral blood from humans and animals,88-

91 while other studies led to contrary conclusions.92,93 

MSCs can be distinguished directly or indirectly in 

peripheral blood grafts after such a mobilization process, 

as several experiments have demonstrated.90,94,95 

However, this procedure is likely to be an infrequent 

event.92 After G-CSF injection, CFU-Fs are not 

identified in the blood of many of the patients. The BM 

CFU-F (Colony Forming Unit-Fibroblastoid) levels were 

unaffected; this finding showed hypoxia to help MSCs’ 

movement from the BM into the bloodstream. This 

egression, without meaningfully decreasing the BM 

MSC pool, shows that MSCs mobilize from other non-

BM sources. However, the role of an enhanced grade of 

erythropoietin cannot be excluded from these 

experiments.96 

Extensive examination has shown that migration of 

MSCs is reliant upon the different cytokine/receptor 

pairs SDF-1/CXCR4, SCF-c-Kit, HGF/c-Met, 

VEGF/VEGFR, PDGF/PDGFr, MCP-1/CCR2, and 
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HMGB1/RAGE.97 For stem cell recruitment to tumours, 

between these cytokine/receptor pairs, stromal cell-

derived factor (SDF-1) and its receptor, CXC chemokine 

receptor-4 (CXCR4), are significant mediators. 

Experiments studying the activity of secreted SDF-1 and 

cell surface CXCR4 of stem cells have exhibited the 

significance of this interaction, which is essential for 

stem cell migration.98-100 The migration capability of 

MSCs depends on metalloproteinases (MMPs).76 MSCs 

exposed to Conditioned Medium (C.M) of various 

tumour cells displayed suppression of matrix 

metalloproteinase-2 (MMP-2) and stimulation of 

CXCR4. Studies propose that CXCR4 and MMP-2 are 

involved in the multistep migration procedures of MSCs 

to tumours.100 Furthermore, the appearance of MMP-2 

and vascular endothelial growth factor (VEGF) in 

endothelial cells demonstrates their induction by 

hypoxia.101,102 Determination of the key agents 

responsible for this procedure have clinical importance.58 

 

Discussion 

Hypoxia is one of the most significant environmental 

factors affecting cells in different ways. Hypoxia plays 

an important role in different aspects of cell biogenesis 

such as metabolism, migration, proliferation, 

differentiation and apoptosis. Hypoxia through some 

elements such as hypoxia-inducible factors (HIFs), a 

master transcription factor, mediates these events in 

cells. More than 1000 genes are targets of HIF, regulated 

directly or indirectly by it. For example, transcription 

factors, enzymes, receptors, receptor-associated kinases, 

and membrane proteins can be induced or suppressed by 

hypoxia. MSCs can be found in many tissues such as 

brain, liver, bone marrow, skin, adipose tissue, foetal 

tissues, umbilical cord, Wharton's jelly, and placenta.11-14 

These cells can differentiate to tissue types of other 

lineages.8,9 MSCs and HSCs form bone marrow niches59 

and are in physiological hypoxia; thus, research 

performed on mesenchymal stem cell properties such as 

proliferation, differentiation, senescence, metabolic 

balance and other physiological features should be 

performed under hypoxic conditions, similar to the 

natural microenvironment of these cells.50 For this goal, 

5% O2 pressure is similar to the physiological condition 

for MSCs. MSCs can live and adjust to changes in their 

microenvironment: human mesenchymal stem cells 

isolated from the umbilical cord when compared to 

MSCs derived from other tissues exhibited metabolic 

changes through adaptation during hypoxia.57 In relation 

to surface marker expression in MSCs, we can tell that 

these cells are positive for CD73 (ecto-5'-nucleotidase), 

CD54 (intercellular adhesion molecule-1), CD44 

(homing-associate cell adhesion molecule) and CD90 

(Thy-1), in cultured adherent PBN- and PBH-derived, 

but negative for CD31 (Platelet-endothelial cell adhesion 

molecule-1), CD45 (leukocyte common antigen), CD18 

(β2 integrin), CD49d (α4 integrin chain) and CD49f (α6 

integrin chain).58 Total cell numbers were reduced in 

hypoxia versus normoxia at primary cultivation while 

they were increased at the next passage.103 In some 

reports, a steady phenotype was observed over time and 

no important phenotypic changes among hypoxic and 

normoxic conditions were detected.104 However, in other 

experiments under hypoxias STRO-1 was transiently 

expressed and reduced in the next passage. Typical 

surface markers of MSCs expressed by bone marrow-

derived human MSCs are able to differentiate into 

adipogenic, osteogenic and chondrogenic lineages. 

Cultivation of UC-derived human MSCs at 1.5% O2 

shows a slight rise in apoptosis. Similar information was 

gained in bone marrow-derived MSCs.50,60 Furthermore, 

the level of cell injury or necrosis under 1.5% O2 

hypoxia was, importantly, less than in the normoxic 

control cultures.82,83 Finally, one report showed that 

hypoxia led to the circulation of a slight number of 

MSCs constantly in the PB under inactive circumstances. 

Then the circulating pool increases, and this increase is 

moderately definite for MSCs, while HPCs exhibit a 

limited or no increase under hypoxic conditions. 

 

Conclusion 

Mesenchymal stem cells display several biological 

responses to oxygen depletion in different contexts. 

Hypoxia markedly influences major MSCs features 

including cell viability, proliferation capacity, 

differentiation, migration pattern and metabolism. The 

reported conflicts in about the role of hypoxia on MSC 

biological properties, elucidate the importance of more 

dedicate research in stem cell biology. While hypoxia 

intensity is not the same in most of studies, the diversity 

of reported results should be cautiously evaluated as a 

variable when the literatures are reviewed. However, 

promising reports of hypoxia preconditioning supporting 

effects on cell survival and genetic instability of MSC, 

suggest a new hope to overcome poor engraftment after 

transplantation in bed side. Although before totally 

successful cell based regenerative therapies many of 

covert points should be clarified. 
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