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Introduction

At present, the large spectrum of brain disorders 

classified as deficits in bot neurological and psychiatric 

chapters with short and long-term disabilities.
1
 These 

deficits are the results of intrinsic brain dysfunction or 

environmental interaction with brain.
2
 CNS disorders 

affect 1.5 million people worldwide and responsible for 

1% deaths.
3
 Out of any other disease, 11% brain disorder 

burden is reported
3
 which might be increased to 14.7% 

by 2020.
4
  

A variety of potential drugs has discovered to treat 

several neuronal disorders.
5-8

 But, the therapeutic success 

of these pharmaceuticals is still limited due to the 

presence of (i) Blood-brain barrier (BBB), and (ii) 

Blood-cerebrospinal fluid barrier (BCSFB). It acts as 

anatomical and biochemical dynamic barriers in the 

brain.
9-11

 BBB has made up by specific vascular 

endothelial cells that tightly bound with neurons, 

pericytes, and astrocytes.
12-14

 Less than 1% of the 

traditional drug can cross this barrier,
15

 therefore, BBB 

protects the brain from systematic circulatory molecules 

as well as externally injected molecules and poses a key 

challenge for drug delivery.
9,16

 Although, there are 

several endogenous transporters are present in the 

nervous system, BBB makes treatment ineffective by 

interacting with enzymes and restricts the entry of 

neuropharmaceutical agents.
17

 Hence, large dose of the 

drug requires to treat CNS disorders and neurotoxic 

effects observed in the form of physical or mental 

deformations.
11 

Several researchers are working on a multidisciplinary 

approach to nanotechnology to overcome these major 

obstacles in CNS therapeutics. Nanoparticles and 

combination with therapeutic agents may consider as an 

effective tool in brain drug targeting for safer therapies in 

future.
9,18

 

In first decades PNPs, SLNS, liposomes, and micelles 

have used as nanocarriers in the medical field. But, now 

this nanotechnology approach has shifted towards newer 

and more advance nano-system e.g. dendrimers, 

nanoemulsions, nano gels and nanosuspensions.
10
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Abstract 

Purpose: For the past few decades central nervous system disorders were considered as a 

major strike on human health and social system of developing countries. The natural 

therapeutic methods for CNS disorders limited for many patients. Moreover, 

nanotechnology-based drug delivery to the brain may an exciting and promising platform to 

overcome the problem of BBB crossing. In this review, first we focused on the role of the 

blood-brain barrier in drug delivery; and second, we summarized synthesis methods of 

nanomedicine and their role in different CNS disorder. 

Method: We reviewed the PubMed databases and extracted several kinds of literature on 

neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. 

The inclusion criteria included chemical and green synthesis methods for synthesis of 

nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded 

nanomedicine gene therapy and nanomaterial in brain imaging. 

Results: In this review, we tried to identify a highly efficient method for nanomedicine 

synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs 

reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play 

significant role in therapeutics but some metallic nanoparticles reported the adverse effect 

on developing the brain. 

Conclusion: Although impressive advancement has made via innovative potential drug 

development, but their efficacy is still moderate due to limited brain permeability. To 

overcome this constraint,powerful tool in CNS therapeutic intervention provided by 

nanotechnology-based drug delivery methods. Due to its small and biofunctionalization 

characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. 

But still, understanding of their toxicity level, optimization and standardization are a long 

way to go. 
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Traditional therapies have very little capacity to 

penetrate the BBB as well as null capacity for neuronal 

repair and neuronal regeneration.
19

 Hence, functionalized 

nanomaterial may serve as a potential drug delivery 

vehicle. It can use as both in-vivo and in-vitro viz, 

polysorbate coated poly (butyl cyanoacrylate) (PBCA) 

nanomaterial interact with endothelial cells of cerebral 

vessels and stimulate drug delivery via endocytosis.
20

 

Nanotechnology combined with stem cell therapy is 

being increasingly used to rebuild the neural circuit and 

to induce specific cellular response.
18,20-22

 

Recently, biofunctionalized carbon nanotubes (CNTs) 

have become a promising tool due to its cell-penetrating 

ability, surface chemistry diversity, structural, and 

mechanical properties.
23

 In contrast, instead of having 

larger structure than CNT, functionalized fullerenes have 

identified as more efficient in CNS drug delivery
24,25

 due 

to its higher permeability and less excitotoxity.
26

 

 

Normal drug delivery to CNS and their challenges 

For effective traditional therapy, the drug should lipid 

soluble with small molecular weight (400-600 

Dalton's).
27

 This transport can perform by invasive, non-

invasive and miscellaneous techniques,
3,28

 but, BBB 

allows restricted entry of potential drugs.
9,15,16,29

 Major 

reasons for therapeutic failures in the brain are slow drug 

action, association or conversion of the drug into non-

transporting legends and less neuronal absorption.
13

 

Some catalytic mechanisms in the nervous system also 

degrade the drug which performs a non-specific action or 

stay in inactive form in the brain.
29

 

 

Strategies of drug delivery in brain 

BBB acts as a capillary endothelial interface, that 

facilitates transport of essential chemical and ion to the 

brain.
30

 Crossing BBB is always a key obstacle for drug 

delivery system. Hydrophilic molecules reported 

transferring via specific carrier-mediated endocytosis, 

transporter, and paracellular pathway. Lipophilic 

molecules have transported by diffusion and P-

glycoprotein.
31

 Routes of drug delivery include: 

 

Invasive approach 

This physically breached technique penetrates BBB and 

directly injects the drug into the brain. It requires 

craniotomy for intracerebroventricular (ICV) infusion 

and intracerebral drug administration.
31,32

 BBB 

disruption for drug delivery performs via breaking 

down the tight junction of endothelial cells.
31,33

 This 

can administer through osmotic disruption
30,34,35

 or 

disruptive plasma solutes.
36,37

 ICV drug delivery 

considered as a very poor approach, because the drug 

transported in the peripheral blood stream, less to the 

targeted tissues.
38

 Instead of having the advancement of 

high molecular drug transport, ICV also restricted to 

limited drug distribution and loss of desired CNS action 

due to high intracranial pressure during direct drug 

administration.
39

 

 

Pharmacological approach 

This observational approach based on the free passive 

movement of drugs through BBB.
31,32

 These molecules 

can cross BBB unassisted due to their small molecular 

size, low hydrogen bonding capacity and lipophilicity.
40

 

This approach also consists chemical change, e.g. 

reduction in number of polar groups, which increases 

drug transfer across the BBB.
41

 But, the modified 

molecule may act as P-glycoprotein efflux pump, if 

lipophilicity increases by many folds.
31

 

 

Physiological approach 

Receptor-mediated and carrier-mediated drug delivery to 

the brain considered as a most advanced technique in 

pharmacology.
30,31

 Transferrin and insulin receptors are 

commonly found on the BBB.32 Hence, the drug adjoins 

with the ligand of these receptors might transport drugs 

to the targeted brain area. In the case of transporter 

mediated delivery, the drug needs to mimic to the 

endogenous carrier substrate.
42

 But kinetics and binding 

capacity of transporter molecule limit the CNS drug 

delivery through physiological approach. 

 

Nano-formulated drug delivery in CNS 

Conventional drug delivery strategies are unable to 

restore cytoarchitecture and connection pattern in CNS 

disorders.
43

 Nanotechnologies overcome these problems 

due to its nanoscale quantum effect, small and high 

surface area to volume ratio.
44,45

 Basically, 

nanotechnology is a convergence of science and 

engineering, which needs one-dimensional designing and 

characterization at the nanometric scale.
21

 Nanoparticles 

used in CNS drug delivery should have following 

promising features: 

i. They should biodegradable, non-toxic and 

biocompatible.
46,47

 

ii. Their physical properties should easily manipulate 

according to mode of delivery.
48

 

iii. Different nanoparticles with modified chemical 

properties should achieve organ- or cell- specific 

drug delivery.
49

 

iv. The formulation should cost-effective. 

In summary, all these beneficial considerations enhance 

CNS drug delivery. 

 

Nano-formulation strategies 

For an affecting drug delivery system in CNS treatment, 

nanoparticle alters the pharmacokinetics of drug48 and 

enhances drug loading capacity.
50

 Drugs need to 

chemically modify and transported to the brain via 

loading with different nanomaterial-based vehicles.
45

 It 

also received in the brain via transcytosis through the 

BBB.
31

 Nanobiotechnology has made a revolutionary 

progress in drug delivery system. We have mentioned the 

properties, nanotechnology-based drug delivery, and 

drug release mechanism with few example of patent 

nanomedicine in Table 1.
51 
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Table 1. Properties of different nanocarriers, drug delivery and drug release mechanism with example of patents (partially adapted from 
reference 51). 

Type 
Size 
(nm) 

Synthesis technique 
Mode of 

administration 
Mechanism for 

delivery 
Drug release 
mechanism 

Example 

Drug disease Patent 

PNP 10-1000 

 Solvent 
evaporation 

 Nanoprecipitation 

 Dialysis 

 Supercritical fluid 
technology 

 Emulsification/solv
ent diffusion 

Subcutaneous, 
intravenous 
and oral 

 Receptor-
mediated 
endocytosis 

 

 Transcytosis 
 
 

 Swelling of 
PNPs via 
diffusion 

 Degradation 
of polymer 
through 
enzymatic 
reaction 

Chitosan-
coated 
erythropoiet
in (HMG-Co-
A reductase 
inhibitors) 

Brain 
targeting 

US20070237827 

PLGA 
encapsulate
d NMDA-
NR1 vaccine 

Alzheimer
’s disease 

US20100173004 

SLN 50-1000 

 High-pressure 
homogenization 

 Ultrasonication 

 Microemulsification 

 Supercritical fluid 
technique 

 Spray drying 
technique 

Nasal, oral, 
parenteral, 
rectal and 
respiratory 

 Absorption 

 High-pressure 
homogenizati
on causes 
dispersed 
molecular 
drug in solid 
solution 

 Supersaturati
on of SLN-
drug 
conjugates at 
high cooling 

LDL-
cholesterol 
conjugates 

AD, PD, 
and 
cancer 

US7682627 

LDL 
nanoparticle
s 

Epilepsy, 
stroke, 
Trauma 
and AD 

US20060222716 

Micelles 
 

80-100 
 Self-assembly 

 Ring-opening 
polymerization 

Pulmonary 
delivery 

Receptor-
mediated 
transport, 
absorption, and 
endocytosis 

Bursting, diffusion, 
and cleavage 

doxorubicin, 
vincristine 
sulphate 
loaded  poly 
(L-histidine)-
poly(ethylen
e glycol) 
block 
copolymer 
and PLEG 
poly micelles 

Cancer US7659314 

Paclitaxel-
loaded 
copolymer 
micelle 

Lung 
cancer 

NCT01023347 
 

Nanoliposom
es 

Less 
than 
100 

 High-pressure 
homogenization 

Pulmonary 
delivery,  
intravenous, 

Adsorption, fusion 
and diffusion/ 
endocytosis 

Endocytosis and 
Adsorption to cell 
surface 
Bursting due to 
environmental 
stimuli 

Glutathione 
encapsulate
d liposomes 

Myoclonu
s 

US20100166846 

Tempamine 
loaded 
liposome 

Multiple 
sclerosis 
and PD 

US20110027351 

CNTs 
 

Diamete
r of 3.5-
70nm 

 Arc discharge 
method 

 Chemical vapors 
deposition 

 Laser ablation 
method 

 Flame synthesis 
method 

mainly 
intraperitone
al and 
intravenous 

Endocytosis, 
diffusion, 
penetration 

Electrically or 
chemical controlled 

Streptavidin-
HRP 
(Horseradish 
peroxidase)  
bounded 
SWCNT-
annexin 
conjugates 

Breast 
cancer 

US201001846691
A1 
 

Stem cell 
loaded CNT 

AD, PD, 
and 
ischemia 

US20090148417A
1 

Dendrimers 
 

Diamete
r range 
1.5-13.5 

 Divergent method- 
Micheal reaction 

 Convergent 
method 

 Click chemistry- 
Diels_alder 
reactions, azide-
alkyne reaction, 
and thiol-yne 
reactions 

 Hypercore & 
branched 
monomers 

Oral, 
transdermal, 
topical, IV 

Transcytosis and 
endocytosis 

Degradation and 
environmental 
stimuli 

Anxiolytic 
and 
antipsychoti
c agents 

Psychotic 
disorder 

US20100160299 
 

 

Nanotechnology-based drug delivery vehicles 

The nanotechnology-based drug administration has 

shown significant advantages over traditional drug 

delivery. The different nanoformulation carrier has 

used for targeted drug delivery, some of them are 

Nanoparticles (NP), lipid-based vehicle, carbon 
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nanostructure-based vehicle and polymer based 

vehicle; as shown in Figure 1. We are discussing 

important nano drug carrier in the following section. 

 

 
Figure 1. Overview of traditional and nanotechnology based drug delivery in CNS disorders 

 

Nanoparticle 

The inorganic nanoparticle of size 10-1000nm recently 

elicited much interest due to their chemical and 

biological properties. Several features of nanoparticles 

show significant advantages to overcome problems 

associated with traditional drug delivery, which includes: 

high drug carrying capacity, high stability, controlled 

release, high specificity and hydrophilic and hydrophobic 

molecules transportability.
52

 Drug-loaded nanoparticles 

release to target site via diffusion, degradation, erosion 

or due to external energy input.
53

 Protein and ceramic NP 

are most commonly used in targeted drug delivery.
54 

Easy functionalization property and good 

biocompatibility of modified molecule are the key 

requirements to select an effective route for prepare 

different sized NP.
55

 Drug delivery through gold 

nanoparticles (AuNP) gives a versatile platform for 

effective drug delivery. Doxorubicin coated AuNP have 

reported making enhanced drug accumulation by 

overcoming multidrug resistance (MDR) in cancer 

treatment.
56

 Similarly, curcumin conjugated AuNP also 

shows haemocompatibility, resulting in antitumor 

activity in leukemia.
57

 Recent research on imatinib 

mesylate (IM) encapsulated, layer by layer coated 

functionalized AuNP, demonstrated rapid delivery into 

murine melanoma cells in mice.
58

 This topical 

application for iontophoretic IM delivery shows effective 

cancer treatment. Chitosan derived mitochondrial 

targeted multifunctional NP (MNPs) performs lysosomal 

escape, multistage pH response, and mitochondrial and 

hepatocyte targeting for safe and targeted anticancer drug 

delivery.
59

 

 

Polymeric nanoparticles (PNPs) 

Polymeric nanoparticles are a particulate dispersion of 

biodegradable and biocompatible polymers with size 10-

1000nm. The core-shell structure of PNP varies with 

hydrophilic and hydrophobic blocks present in the 

polymer chain.
60

 The core of these PNP made up of a 

dense polymer matrix to encapsulate the hydrophobic 

drug and hydrophilic polymers in corona to serve steric 

stability and stealth properties to NP.
61

 Drug delivery 

through PNP were also performed via drug 

encapsulation, absorption or chemically linked to 

surface.
62

 

Availability of polymer choice and drug release from 

nanoparticle makes them unique candidates for drug 

delivery. Biologically inert polymers PEG (Polyethylene 

glycol), PLGA (poly-L- glutamic acid),
43

 poly(alkyl 

cyanoacrylate), and poly(butyl) cyanoacrylate are most 

common used formulated nanopolymers. Level of drug 

release is not only controlled by molecular weight & 

polymer composition, drug-to-polymer ratio also affects 

as well.
63

 

The role of PNP's in drug delivery can also consider non-

replaceable. Doxorubicin loaded nanoparticles used to 

treat glioblastoma
64

 and quinoline derivatives loaded 

polymeric nanoparticles used in Alzheimer’s disease 

(AD).
65

 Similarly, nano gels, a crosslinked polymer
66

 and 

nanosuspensions, mixture of crystalline drug and non-
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ionic surfactants
67

 provide excellent pharmacokinetics 

control in CNS disorders.
68

 

 

Solid-lipid nanoparticles (SLN) 

SLN is surfactant stabilized lipid oily droplet, which is 

generally solid at room temperature.
54

 It considered as a 

colloidal nano drug carrier that synthesized by 

homogenization of melted lipid at high pressure while 

dispersing in water at 70 
0
C with a nanometric range of 

50-1000nm.
69,70

 It also exhibits physical stability and 

easy manufacturing; hence it replaces liposomal 

technology in drug delivery.
71

 SLN particles conjugate 

with lipid emulsions that can stabilize by high-level 

surfactant inclusions and protect from degradation.
72

 The 

active part or drug to transported is administrated via 

loading or coating with nanoparticles.
73

 

Recently, self-amplifying RNA in SLN nanoparticles has 

demonstrated the importance of lipid nanoparticle in 

nucleic acid vaccine development.
74

 The effect of 

different SLN conjugated drug is widely investigated in 

CNS treatment. Quercetin loaded SLN shows the 

antioxidant property to treat AD
75

 and diminazene 

aceturate loaded SLN particles used to treat human 

African trypanosomiasis (HAT).
76

 Similarly, 3’,5’-

dioctanoyl-5-fluoro-2’-deoxyuridine (DO-FUdR) 

incorporated SLN used to treat neurological disorders.
77

 

(3H)-atazanavir loaded SLN also crossed the BBB in 

HIV-encephalitis treatment.
78

 

 

Dendrimers 

Highly branched dendrimers made up of a focal core, 

building blocks with repetitive units in interior layers and 

peripheral functional units.
79

 Other than synthesis routes, 

the functionality, and efficacy of dendrimers depend on 

upon the used monomer and targeted polymer structure.
80

 

Low dispersity and high functionality of these 

dendrimers offer themselves as a useful therapeutic tool 

in biomedical and pharmaceutical science.
81

 High 

penetration ability, high density, and peripheral 

functional group reactivity also considered as featured 

advantages as a drug vehicle.
82

 The terminal surface 

group, biocompatibility, and multivalency of three-

dimensional dendrimers have displayed their importance 

in emerging with Nanomedicine.
83

 Polyamidoamine 

(PAMAM), polypropylene imine (PPI), and polylysine 

dendrimers are the most commonly used dendrimeric 

drug carrier for both hydrophobic and hydrophilic drug 

molecule.
84

 Drug either physically entraps with 

dendrimer, or covalently bound with peripheral 

functionalized molecules of dendrimer to form 

dendrimer-drug conjugates.
79

 The complexities of their 

bounding keep the chemical integrity and pharmaceutical 

properties of the drug. 

In further research, cholesterol loaded poly 

(amidoamine) dendrimers reported neuroinflammation 

treatment.
85

 Similarly, multi-functionalized 

CMCht/PAMAM dendrimer nanoparticles incorporation 

with antibody also played an important role in specific 

CNS targeting.
86

 

Different dendrimers such as PAMAM, polyester-

copolyester (PEPE) and PPI, shows anticancer and anti-

inflammatory properties to treat several neurological 

disorders.
87

 

 

Nanoliposome 

These lipid nanoparticles are the most studied bilayer 

vehicle, developed in drug delivery in the 70’s.
88

 Less 

than 100nm sized nanoliposomes may consider as an 

advanced form of SLN that includes nanostructured lipid 

carrier (NLC), nanoemulsions and lipid nanocapsules 

(LNC).
54

 The distorted structure of NLC provides 

enough space to accommodate active drug molecule 

which can develop by mixing lipid droplet into solid 

media at very high temperature.
54

 Combination of 

liposomes and nanoemulsion particle gives rise to LNCs 

(less than 100nm) with thicker outer wall that allows 

more functionalization and controlled targeted drug 

delivery.
89

 

The lipid, oily core of LNCs surrounded by lipophilic 

and hydrophobic surfactant that improves therapeutic 

drug delivery.
42

 Liposomal technique emerged with 

pegylation for targeted brain drug delivery
41

 which 

optimized the plasma pharmacokinetics. Neurotrophic 

agents loaded liposomes used in brain disorders.
90

 

Pegylated liposomes loaded with doxorubicin and (3H)-

Prednisolone treats brain tumors
91

 and autoimmune 

encephalitis
92

 respectively. OX26 monoclonal antibody-

mediated antineoplastic agent, (3H) daunomycin, 

conjugate with a liposome and exhibit brain drug 

delivery.
93

 Similarly, heat shock protein (HSP) 

encapsulated liposomes also used in the stroke 

treatment.
94

 

 

Micelles 

Micelles are monolayered spherical lipid nanostructures 

with inwards facing hydrophobic ends and outwards 

facing hydrophilic ends with a range of 80-100nm.
95

 Due 

to its small, the micelles shows short circulation time in 

body compares to liposomes that make them easily 

transportable elements.
54

 Polymeric micelles considered 

as more stable with longevity and good biodistribution 

compare to traditional micelles.
96

 These modified 

micelles show improved target penetration due to their 

nanoscale size, easy transportation to target location, and 

low critical association concentration (CMC).
97

 

Physically entrapped and covalently bonded micelles 

drug conjugate play an important role in controlled drug 

release system.
98

 Drug loading to micelles generally 

depends on upon the physiochemical property of drug, 

the chemical composition of core forming polymers, and 

physical state of micelles core.
99

 The release is generally 

affected by temperature, pH, and environment.
100

 

 

Carbon Nanotubes and fullerenes 

CNT exhibits advanced physical, mechanical property, 

and high aspect ratio at the nanometer scale of less than 

100nm.
101

 Functionalized CNT shows high solubility and 

high biocompatibility which generally depends on upon 
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surface property, size and shape of modified 

molecules.
102

 These parameters greatly influence the 

internalization of therapeutic molecules inside the cell. 

CNT functionalization strategies include the addition of 

an organic group at sidewall/tip of CNTs and carboxyl 

group coupling after oxidation process.
103

 Polymers and 

dendrimer conjugated CNTs also reduces aggregation, 

increases their solubility and biocompatibility.
104

 Very 

few studies of the CNT in CNS treatment have been 

reported, yet acetylcholine loaded SWCNT (Single wall 

carbon nanotube) studied in the AD treatment
105

 and 

CNT with stem cell therapy used in stroke treatment.
106 

Amphotericin B loaded CNT showed lower aggregation, 

high solubility with reduced toxicity, and anti-fungal 

activity compares to administration of amphotericin B 

alone.
107

 

Carbon nano horns and nanodiamonds modified the form 

of CNT which reported enhancing the nanotechnology 

application in biosciences and pharmaceutical industry.
54

 

Diamond nanoparticles also used as an important 

therapeutic tool in tumor patches and wound healing.
108

 

Fullerene has uniquely identified a class of carbon 

allotropes which described as 60 linked carbon with 60 

vertices and 32 faces.
109

 The extensive research on 

nanosized C60 have identified its use in drug delivery.
110

 

Their antioxidant and radical oxygen quenching 

character made them more promising than any other 

nanomaterial.
111

 Hydrated C60 fullerene prevents 

astrocytes and glial fibrillary acidic proteins (GFAP) 

damage which caused by oxidative stress and improves 

cognitive function.
112

 

 

Nanoparticle-mediated drug transport mechanism 

For effective drug treatment, nanomedicine needs to 

cross the BBB without losing its properties. There are 

several possibilities for this translocation: Absorption, 

opening of tight junctions, endocytosis, transcytosis, 

surfactant effect, and inhibition of efflux system.
113

 

i. Polysorbate coated dalargin nanoparticle 

reported to induce an antinociceptive effect 

(surfactant effect) and created high 

concentration gradient which helps to transport 

nanomedicine.
47

 

ii. Polysorbate-80 coated nanoparticle also 

unfolded the tight junction and increases inulin 

space without disrupting BBB.
114

 

iii. At present, endocytosis is considered as the 

most likely mechanism of nanomedicine 

transport. Polysorbate-80 coated PBCA 

nanoparticle endocytotic transport studied by 

laser confocal microscopy and significant and 

rapid uptake of coated nanoparticles were 

observed, rather than uncoated nanoparticle.
115

 

iv. Dipalmitoyl phosphatidyl choline cholesterol-

coated malto-dextrin nanoparticle transcytosis 

through BBB and upregulated the LDL receptor 

expression in a cholesterol-depleted model 

system.
116

 

 

CNS disorder and nanomedicine 

Recent trends of nano-therapeutics advance over 

traditional drug therapy in CNS disorders via its proper 

property to cross the BBB.
19,117

 Nanotechnology used in 

for both diagnoses (imaging) and treatment, here we will 

discuss in-vivo drug delivery system in CNS disorders. 

 

Alzheimer’s disease 

Alzheimer’s disease (AD) recognized as a progressive 

neurodegenerative disorder, which characterized by 

memory loss and dementia.
118

 Pieces of evidence support 

inclined graph of AD patients with prevalence rate 

0.62% and 1.07% in people with age +55 and +65 years 

respectively. Estimated data are much scaring as 24.3 

million people globally affected by dementia and each 

year 4.6 million cases reported.
119,120

 Amyloid-β 

aggregation considered as hallmarks of AD.
121

 Other 

than this, wide spectrum of AD pathology covers genetic 

change of EpoE protein, mitochondrial abnormalities, 

oxidative stress, and dysfunction of D-serine.
122-124

 

Insufficient use of oral administrated drugs for AD, such 

as tacrine, memantine, rivastigmine etc, pulls the door 

open for nanomedicine in neurodegenerative 

disorders.
125,126

 Cerium oxide nanoparticles,
127

 SLN of 

ferulic acid,
128

 tempol loaded PLGA nanoparticles,
129

 

and epigallocatechin-3-gallate (EGCG) phenol coated 

nanolipids
130

 reported to show antioxidant property and 

degrade amyloid-β.
131

 Thioflavin-T (ThT), charged and 

fluorescent biomarker, detect Aβ in senile plaques. 

Therefore, ThT encapsulated polymerized but 

cyanoacrylate NP injected directly into intrahippocampal 

space, and light microscopy and TEM analysis 

confirmed Aβ in AD brain.
132

 Cu (I) chelator and MBP-

PE induced D- penicillamine nanoparticles were also 

used tauopathies detection in AD brain.
133

 

Nanofabricated quinoline derivative, clioquinol (5-

chloro-7-iodo-8-hydroxyquinoline,CQ), was reported to 

inhibit Aβ when it was functionalized with n-butyl 

cyanoacrylate and PBCA nanoparticle.
65

 Imbalance in 

Ach of the cholinergic nervous system also reported in 

AD and free Ach could not inject into the brain directly, 

because it is easier to decompose in the blood and high 

polarities.
134

 Curcumin nanoparticles have been also 

identified as important finding in AD treatment.
135

 

 

Parkinson Disease 

Increasing lifespan and demographic changes in 

population demonstrates increased prevalence of 

Parkinson disease (PD).
136

 50+ people in world’s most 

10 populous countries have around 4.6 million PD 

patients, which might be 9.3 million by 2030 with a rate 

of 1 per 100.
137,138

 A hallmark of PD is gliosis and 

degeneration of dopaminergic neurons in the substantia 

nigra are not the only features of PD. It also involves 

selective denervation,
139

 dysfunctions in the 

mitochondrial and ubiquitin-proteosome system, and 

oxidative and nitrosative stress.
140

 Available drugs for 

PD neither surpass nor reverse disease progression
141

 and 

BBB causes additional challenge in drug delivery.
142
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Nanotechnologies control and manipulate the drug 

delivery in PD to overcome these problems. Recent 

research has demonstrated that nerve growth factor 

(NGF) bound poly butyl cyanoacrylate nanoparticles
143

 

and L-Dopa encapsulated nanoparticles
48

 crosses BBB 

and reduces basic symptoms of PD. Physically modified 

saline RNS60 with charged-stabilized nanobubbles, 

suppresses the proinflammatory molecules in MPTP-

induced animal model of PD.
144

 Similarly, coumarin-6 

loaded lactoferrin conjugated PEG-PLGA nanoparticle 

show important role in neuroprotection in Parkinson 

disease.
145

 

 

Tumor 

Upward trends of brain tumor show increased incident 

rate with 6/100,000 for malignant brain tumors in the 

adult.
146

 Male shows higher susceptibility than female 

with increasing age at a rate of 8.5 v/s 7.9 per 100,000 

that have increased 5-6 folds by now.
147,148

 Drug therapy 

is less effective in brain tumor because of less infiltration 

of tumor cells from normal cells
149

 and less 

microvascular permeability of BBB.
150

 

To overcome these problems, nanoformulation drug 

therapy is widely used an alternative approach. Gold 

porphyrin or camptothecin encapsulated lipid 

nanoparticles enhanced drug delivery to tumor tissue 

with a low side effect to the liver.
151

 Nanotechnology-

based drug delivery used in cancer treatment with a 

combination of gene and radiotherapy.
152

 

Nanotechnology in chemotherapy enhances efficacy to 

treat glioblastoma. DOX-loaded nanodiamond exhibit 

excellent cell biocompatibility and increase apoptosis of 

glioma cell lines.
153

 MWCNTs (Multiwall carbon 

nanotube) showed a high level of internalization of 

macromolecules in microglial cells and their molecular 

modulation helped in immunotherapy of cancer.
154

 Folic 

acid (as targeting agent) and methotrexate conjugated 

PAMAM dendritic polymers bind to tumor cell which 

overexpressed for folate receptor in cancer treatment.
155

 

Boron-enriched nanocomposites of copolymerized 

acetal-poly(ethylene glycol)-block-poly(lactide)-

methacrylate with 4-vinylbenzyl substituted closo-

carborane demonstrated high incorporation and 

hemocompatibility.
156

 

 

NeuroAIDS 

NeuroAIDS drags both infectious and neurological 

pathophysiologic pathways under one umbrella, in which 

HIV1 (Human Immunodeficiency Virus 1) enters in the 

CNS in the early stage of infection.
157

 Approximately 15-

30% of AIDS patients experiences several neurological 

and neurocognitive complications in which 7.3-11.3% 

and 30-60% experienced dementia and encephalopathy 

respectively.
158,159

 BBB disruption is not the only 

mechanism in neuroAIDS, activated endothelial cells 

with decreased permeability of the barrier
160

 and CD 

163, Glut5 & ISG15 genes
161

 are also shown deleterious 

effect. Currently, there are no effective vaccines or 

specific drug therapy for NeuroAIDS,
162

 therefore, 

multidisciplinary approach to nanotechnology shed light 

on potential therapeutic approaches in HIV infection. 

Nanoformulated antiretroviral therapy (ART) reported 

increasing blood-brain penetration in neuroAIDS 

treatment. Indinavir (IDV) NP loaded murine bone 

marrow macrophages (BMM) cause reduced HIV-1 

replication in HIVE (HIV-1 encephalitis) region of the 

brain.
163

 Their research also demonstrated the role of NP 

loaded BMM in studying targeted migration and 

antiretroviral responses. Nanotechnology-based, highly 

active antiretroviral therapy (HAART) also played a 

significant role in neurosis treatment.
164

 Several 

antiretroviral drugs, zidovudine, delavirdine, saquinavir, 

and lamivudine, were nanoformulation with PBCA, 

MMSPM (methylmethacrylate–sulfopropyl 

methacrylate), polylactide (PLA) and PLGA that 

increases BBP 10-20 folds.
165

 Liposome loaded AZT- 

myristate and zalcitabine were also reported with 

improved efficacy and longer half-life compare to 

traditional ARV drug treatment.
166

 SLN loaded ARV 

drugs recently come into a highlight. Large surface area 

and high efficacy of SLN coated delavirdine and 

saquinavir ARV drug replaced MMSPM coated ARV 

drug treatment in neuroAIDS.
162

 

 

Stroke 

With second place, stroke is affecting mortality rates of 

6,000,000 deaths annually with estimated susceptibility 

of 8-10% of lifetime.
167

 1.2% deaths in India reported 

due to this in which 87% caused by ischemia and the 

remaining is due to hemorrhage.
168

 Glutamate 

excitotoxity, oxidative stress, lipid peroxidation, BBB 

dysfunction, leukocyte infiltration and brain injuries play 

an important role in the pathophysiology of stroke.
169,170

 

BBB and blood-cerebrospinal-fluid barrier (BCSFB) are 

the main issues in stroke drug delivery,
171

 so 

optimization and efficiency of drug carriers are needed to 

improve. 

The new, unusual perspective of nanotechnologies in 

stroke therapy is ‘jeevandayani’ (life protecting).
37

 One 

researcher used engineering triiodothyronine (T3) 

nanoparticle coated with PLGA-PEG and enhanced 

neuroprotection observed compared to glutathione 

alone.
172

 Cerium oxide nanoparticles also showed 

neuroprotective naturally in the rodent stroke model. 

Cerium oxide nanoparticle reduces the 3-nitrotyrosine 

level, which was generally induced by peroxynitrite 

radical during the stroke.
173

 Similarly, platinum 

nanoparticles showed their antioxidant property which 

reported lowering cerebral cortex volume and improved 

motor function in stroke animal model.
174

 Irreversible 

caspase-3 inhibitor loaded transferrin targeted 

nanospheres provide a reduction in infarct volume in 

ischemic brain.
175

 SiRNA loaded carbon nanotube also 

documented as potential therapeutics in stroke 

treatment.
37

 Transferrin-coupled liposomes promote 

vascular regeneration and neuroprotection via delivering 

vascular endothelial growth factor (VEGF) in stroke 

treatment.
176

 The stroke damage can also recover by 
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progenitor stem cell differentiation when it impregnated 

with CNT.
106

 

 

Cerebral palsy 

Cerebral palsy (CP) is one of the major 

neurodevelopmental disorders in children that considered 

as chronic & non-progressive in nature.
177

 It causes 

motor dysfunction, serve paralysis
178

 and 

musculoskeletal problems in 2-3 per 1000 children
179

 

with a male/female ratio of 1.4:1.
180

 Unfortunately, there 

is no effective cure available for CP due to unknown 

molecular and biochemical mechanisms involvement.
181

 

But researchers show the wide interest to use 

Nanoscience used drug delivery in CP. 

PAMAM dendrimers and dendrimer-based N-acetyl-L-

cysteine administration suppress neuroinflammation & 

motor dysfunction in CP patients.
182

 Stem cell therapy 

with nanomedicine has also come in the limelight 

recently to cure CP via promoting repair and 

regeneration of injured neurons.
183

 

 

Epilepsy 

Epilepsy is leading in all CNS disorders with a rate of 57 

per 1000 people
184

 which might increase as in 5.5 million 

patients by the year 2001 in India.
185

 Abnormal neuronal 

discharges considered linking with oxygen deprivation, 

trauma, tumors and infections that cause neuronal 

excitability
186

 and neuroinflammatory cytokine 

dysfunction in epilepsy.
187

 The adverse effect of anti-

epileptic drugs,
188

 promotes the use of nanoparticle-

loaded drugs with the ability to cross the BBB and direct 

drug delivery.
189

 Carbamazepine loaded solid lipid 

nanoparticles of chitosan reported to be more effective 

than nano emulged loaded carbamazepine.
190

 Similarly, 

poly (d,l-lactide-co-glycolide) nanoparticle loaded β-

carotene anticonvulsant considered more effective when 

it coated with polysorbate-80.
191

 

 

Multiple sclerosis 

Multiple sclerosis (MS) considered as an autoimmune 

neurodegenerative disease with chronic inflammatory 

processes.
192

 Modification of myelin basic protein 

(MBP) and glial fibrillary acidic protein (GFAP) triggers 

lesions in white matter
192

 that causes MS. Advanced 

stage of MS causes demyelination and tissue damage due 

to oxidative stress are found higher in the patients.
193

 

Ultra sized cerium oxide nanoparticles declines oxidative 

stress and alleviates motor deficits in MS brain.
194

 

 

Challenges 

Emerging nanotechnology with neurosciences is like a 

game of risk and gain. Currently, Nanomedicine 

considered as a successful tool in drug delivery via 

crossing the BBB.
195,196

 These nano drugs are in the 

process of clinical trials, but their proper transport and 

safety concerns are yet to be determined.
1,45

 The 

composition and properties of nanoparticles may lead to 

oxidative stress, amino acid disturbance and BBB 

disruption,
196,197

 that causes neurotoxicity in the brain. 

Although functionalized nanoparticles pose successful 

drug targeting, but their nano-size structure and the large 

surface area may result in particle aggregation and 

limited drug loading.
65,198

 State of aggregation and 

mechanical properties affects nanoparticles toxicity 

which basically depends on preparation and purification 

methods. Hence, one should select a proper method to 

reduce toxicity. 

Toxicity concerns of nanomedicine delivery based on 

their mode of drug administration and a measure of the 

drug; which causes neuroinflammation, excitotoxicity, 

DNA damage and allergic responses.
199

 Therefore, 

biocompatibility and biodegradability of nano drug are 

also needed to understand. 

As Nanomedicine need to interact with neurons at a 

systemic level to show their effect. But, 

multidimensional cellular interaction at neuronal level 

and restricted anatomical access increase the challenges 

in nano-drug delivery system.
21

 The primary function of 

CNS needed to preserve before drug administration 

which also a big challenge itself.
200

 

 

Conclusion 

CNS disorders are a most serious problem in this 

industrialized world. Nanotechnology has proven very 

advanced and promising science which provides easily 

targeted drug delivery to the brain. But, we still need to 

gain more knowledge about their properties and features 

to evaluate their dynamic behavior in biomedical 

science.
201

 At present, we don’t have any 

multidimensional drug for different CNS disorders that 

may result of several individual biochemical pathways.
21

 

Nanodrugs may lead to solving this problem. 

Sometimes, few diseases viz, diabetes, trauma or some of 

the psychotic diseases, also associated with the 

neurological disorder. Hence, nanomedicine requires 

achieving termination of these entire co-morbidity 

factors with fewer side effects. Other than this, Genetic 

manipulation in the neuronal cell is also considered as a 

difficult target, so nanotechnology-based drug delivery 

should potentially efficacious approach in CNS 

treatment. 

Polymer-based gold nanoparticles and CNT nano drugs 

have very few clinical trials, but due to their noble 

physical and mechanical strength, they may useful to 

carry the drug whose transport is still unidentified. 

Although, the nanoparticle-based drug has several 

advantages, but many aspects are still matters of concern. 

So far there is no specific method to identify the toxicity 

level and targeted drug release in the CNS. Hence, the 

current nanotechnology application needs to improve 

further, so that it can be safe and target oriented.
68

 

In recent years, some nanomedicine registered for 

patents in complex CNS treatment, which are following: 

Gold nanoparticle (US2011262546, US2011111040), 

lipid nanoparticle (WO2008024753, WO2008018932), 

chitosan nanoparticle (US2010260686) and SLN 

(US2011208161).
1
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Increasing population and increasing brain disorders are 

calling for the urgent need of new promising therapies. 

Involvements of nanotechnology in neurosciences will 

unmet medical need and give a hope to patients. The new 

generation nanomedicine might control prolonged and 

targeted drug delivery in a specific manner. Instead of 

reduced side effect and increased viability of nano drug, 

we still need to improve nanotechnological methods in 

pharmaceuticals for better comprehension and improved 

life quality. It can not be denied the potential benefit of 

nanomedicines, but their opportunity and risk formula 

also point towards hazardous effects. Due to the high 

ongoing emergence of nanotechnology in today’s 

research, one just cannot throw it away due to its 

negative points only. Specific guidelines should follow 

to avoid the most harmful effect of nanotechnology. It 

can also predict that nanotechnology-based drug delivery 

can revolutionize the era of traditional drugs delivery and 

that modified drug will be incredibly efficient from the 

current standard. 
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