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Introduction

Legionnaires' disease is a serious form of pneumonia and 

lung inflammation, which is caused by intracellular 

bacterium Legionella. Although early therapeutic 

intervention using antibiotics usually cures Legionnaires’ 

disease, some patients experience complications that 

could lead to death.
1
 Legionella rapidly develops 

resistance to commonly used antibacterial agents.
2
 

Therefore, there is an urgent demand for discovery of 

new antibacterial targets to overcome the resistance 

problem. Bacterial pathogens deliver effector proteins 

which interfere with host cell physiological functions and 

hijack their target cell machinery leading to specific 

clinical symptoms.
3,4

 To escape degradation by its host 

cells, a Legionella-containing vacuole (LCV) is formed 

and protects the bacterium from cell immune defense, 

possibly through secretion of bacterial proteins into the 

host cytosol.
5
 Therefore, specific antibiotics with high 

levels of permeability are required to pass cell membrane 

barrier and reach the bacterium within the cells.
6
 This 

review describes different gene therapy approaches 

including antisense therapy mediated by dendrimers to 

target and eliminate or disarm pathogen, novel method 

for specific targeting of effective types of antibiotics to 

intracellular L. pneumophila (Legionella pneumophila). 

We also describe antisense therapy for L. pneumophila 

treatment targeting bacterial protein synthesis aiming to 

disturb host trafficking pathway through interference 

with phagosome and lysosome fusion in macrophages, 

therefore targeting bacteria in the cytoplasm by different 

methods such as RNA interference type would be an 
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Abstract 
Finding novel and effective antibiotics for treatment of Legionella disease is a challenging 

field. Treatment with antibiotics usually cures Legionella infection; however, if the resultant 

disease is not timely recognized and treated properly, it leads to poor prognosis and high 

case fatality rate. Legionella pneumophila DrrA protein (Defects in Rab1 recruitment 

protein A)/also known as SidM affects host cell vesicular trafficking through modification 

of the activity of cellular small guanosine triphosphatase )GTPase( Rab (Ras-related in 

brain) function which facilitates intracellular bacterial replication within a supporter 

vacuole. Also, Legionella pneumophila LepA and LepB (Legionella effector protein A and 

B) proteins suppress host-cell Rab1 protein’s function resulting in the cell lysis and release 

of bacteria that subsequently infect neighbour cells. Legionella readily develops resistant to 

antibiotics and, therefore, new drugs with different modes of action and therapeutic 

strategic approaches are urgently required among antimicrobial drug therapies;gene therapy 

is a novel approach for Legionnaires disease treatment. On the contrary to the conventional 

treatment approaches that target bacterial proteins, new treatment interventions target DNA 

(Deoxyribonucleic acid), RNA (Ribonucleic acid) species, and different protein families or 

macromolecular complexes of these components. The above approaches can overcome the 

problems in therapy of Legionella infections caused by antibiotics resistance pathogens. 

Targeting Legionella genes involved in manipulating cellular vesicular trafficking using a 

dendrimer-mediated antisense therapy is a promising approach to inhibit bacterial 

replication within the target cells. 
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alternative option to prevent bacterial growth and prevent 

the clinical symptoms. 

 

Legionella pneumophila a medically important 

intracellular pathogen 

The most recent major outbreak of L. pneumophila, or 

Legionnaires' disease happened in Portugal in 2014, and 

was referred to one of the biggest in European history. If 

this relatively rare infection is not timely recognized and 

properly treated, it can have poor prognosis and present a 

high case fatality rate.
7
 

L. pneumophila is a gram-negative intracellular 

bacterium
8
 that causes Legionnairesis in humans. The 

natural host of L. pneumophila is unicellular protozoa 

and it infects human alveolar macrophages.
9,10

 Despite 

progress in the antimicrobial treatment, pneumonia is 

still one of the important infectious diseases, causing 

death in the developed countries.
11-13

 L. pneumophila co-

infection with influenza could lead to influenza infection 

with possibly lethal prognosis.
14

 

Following inhalation, L. pneumophila infects and 

replicates in alveolar macrophages, which contribute to 

inflammation and progress of the disease. L 

.pneumophila, with ability to deliver above 300 proteins 

to the host cell through its Type IVB, Icm/Dot (the 

intracellular multiplication/defective organelle 

trafficking) translocation system conserves the major 

recognized set of translocated substrates between all 

bacterial pathogens.
15

 Inside host cells, L. pneumophila 

avoids phagosome-lysosome fusion and influences host 

cell procedures to form a particular phagosome which is 

proper for intracellular replication.
3,8,16

 The Icm/Dot 

system is used by the bacterium to translocate its 

effectors.
4,15

 

 

Legionella pathogenesis 

The lungs are the main site of infection, where bacteria 

grow inside the lung macrophages.
16-19

 In the extra 

pulmonary forms of disease, organs such as heart, CNS, 

liver and intestines are involved and heart is the most 

common organ involved in the hospitalized patient. 

Recipients of organ transplant and patients with diabetes 

mellitus and chronic lung disease as well as aged people 

and cigarette smokers are suitable candidate for this 

disease.
20

  

 

L. pneumophila Life Cycle 
Intracellular pathogens use different mechanisms to 

manipulate the host cell system for intracellular 

replication. For example, L. pneumophila as an 

intracellular bacterial pathogen hijacks host vesicle 

trafficking pathway to stop phagosome and lysosome 

fusion inside the cell.
4,21-23

 Lysosomes are intracellular 

organelles with acidic pH in eukaryotic cells containing 

hydrolytic enzymes for digesting cellular waste products, 

bacteria and viruses. Normally when bacteria enter to 

cell by phagocytes, they are killed in lysosomes through 

digesting by the lysosomal enzymes.
23

 

Host cells use the defense mechanism for limiting the 

intracellular infection.
23

 Following cell infection by L 

.pneumophila, some immune system cells such as 

macrophages surround the bacteria but bacteria 

manipulate host cells using membrane trafficking 

pathway. Inside the macrophages, pathogen utilizes the 

host cell proteins mediating intracellular trafficking 

pathway. This forms an organelle termed L. pneumophila 

- containing vacuole (LCV) which supports bacteria 

replication (Figure 1).
9,16,21,23,24

 

Type IV secretion system of L. pneumophila which is 

encoded by the Icm/Dot genes enables bacteria to 

transfer its proteins into host cytosol.
25-27

 A number of 

different translocated substrates of Icm/Dot have been 

identified with similar functions to eukaryotic host cell 

proteins involving in vesicle trafficking pathway (Figure 

1).
9,23,27-31

 

Rab GTPase proteins in eukaryotic cells act as molecular 

switches and are important in cellular trafficking 

pathway. Following pathogen phagocytosis or 

endocytosis, host cell Rab GTPase proteins are essential 

for intracellular transportation. Bacterial effectors hijack 

Rab proteins at the molecular level act to escape 

degradation, be carried directly to specific intracellular 

locations, and control host vesicles carrying molecules 

requiring for a stable niche and/or bacterial development 

and differentiation.
4,32,33

  

 

Development of antibacterial resistance by Legionella 
The discovery and therapeutic use of antibiotics in the 

1950s have certainly contributed to the one of the 

ultimate profits to human; however, because of the short 

life cycle and capacity to adjust rapidly to variations in 

the environmental condition, pathogenic bacteria 

continue to persevere by regularly overcoming the effect 

of drugs used to eliminate them. The growing drug 

resistance was the first problem resulting from the 

extensive, uncontrolled and inappropriate use of 

antibiotics. In spite of the entrance of new antibiotic into 

the market, drug resistance is detected in years or even 

months. At present, more than 70% of pathogenic 

bacteria are resistant to most antibiotics existing on the 

market and the mortality of some multi-resistant 

infections has extended to 50 - 80% and also the 

mortality rate as a result of bacterial infections is above 2 

millions per year, worldwide.
34,35

 Furthermore, 

nowadays, some environmental bacterial pathogens such 

as Legionella spp. as a result of artificial ecosystems are 

a main problematic issue in industrialized countries, 

associated with Other factors such as modern 

medications and lifestyles have been caused an increased 

incidence of unintended pathogens in the form of 

emerging pathogens.
36

 

According to the different approaches especially 

bacterial resistance and action of antibacterial 

medications presently used, different targets such as 

cellular structures, the cell wall biosynthesis, protein 

biosynthesis, DNA, different RNA families, biosynthetic 

pathway, new protein families or macromolecular 
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complexes of these components have been suggested by 

commercial antibacterial companies and scientists.
35,37

 

Therefore, targeting specific bacteria such as L. 

pneumophila which may present as Legionnaires’ 

diseases and cause case fatality rate of about 10% and 

even mortality rate higher than 25% in immune 

suppressed and nosocomial patients
11

 requires to be paid 

more attention.  

 

 
Figure 1. The replication of Legionella pneumophila inside the cell (Figure adapted from 

23
) 

Wild-type and mutant form of Legionella use different ways for trafficking pathways(a) dot/icm mutants and trafficking pathway, (b) Wild-
type of Legionella Pneumophila, the LCV formed and avoids endosomal fusion, (c) The Dot/Icm different effectors, (d) Host cell is 
prevented from death by the Dot/Icm effectors SdhA and Sid F, (e) the Dot/Icm effecter LubX effect the host cell factor Clk1, (f) the LCV 
was surrounded with Ribosomes, (g) Several cycle of Legionella Pneumophila replication,(h) Legionella Pneumophila Dot/Icm effectors 
LepA and B cause to Legionella pneumophila infect the other neighbour host cell Dot/Icm-translocated effectors is shown in green.

23
 

 

Targeting Legionella proteins by antibacterial 
Finding new and effective antibiotics is a challenging 

research area driven by novel approaches required to 

tackle unconventional targets. Intracellular grown 

Legionella is extremely resistant to antibiotics.
38,39

 

Although combination antibiotic therapy might be a 

choice in some conditions, it is not recommended for all 

patients and is a controversial and challenging issue.
40

 L. 

pneumophila is able to manipulate vesicular trafficking 

by modification the activity of the small GTPase Rab1. L 

.pneumophila manipulates Rab1 function using some of 

its associate proteins such as DrrA (SidM). DrrA (SidM) 

has both guanine nucleotide exchange activity in Rab1 

GDF (GDI dissociation factor) and Rab1 GEF (guanine 

nucleotide exchange factor).
19,41-43

 Also there is another 

protein of L. pneumophila named LepB which 

manipulate and inactivate host-cell Rab1 protein’s 

function.
33,41

 Following growing inside the LCV, a 

bacterium lyses the host cell and release to infect the 

neighbour cells. Two effectors, LepA and LepB, which 

show a role in the non-lytic release of Legionella from 

protozoa, are translocated by the Icm/Dot TFSS (Type 

Four Secretion System).
42,44

 Reduction of the Lep 

proteins through deletion of their genes contributes to 

better ability to lyse red blood cells. In contrast, 

overexpression of Lep-containing hybrid proteins seems 

to exactly block the activity of the Icm/Dot TFSS and 

may stop the transfer of other effectors which are critical 

for intracellular multiplication.
33,42

 Therefore, 

Legionella’s effectors which hijack host protein to 

escape degradation and replicate intracellularly could be 

targeted in antibacterial treatment. In addition, the LepA 

and the LepB proteins in Legionella are the other targets 

to induce infection the neighbour cells in host cells. 

 

Gene therapy approach for treatment of Legionella 

infection 

Antibiotic resistance is a health threat, worldwide. In 

spite of good progresses in genome sequencing and 

genetic manipulation tools, there are still problems to be 

used for effective therapeutic aims.
45

 Gene therapy is a 

technique which causes insertion, silencing or alteration 

of genes in a patient's cells to treat or prevent disease.
46

 

RNA regulators are developed to overcome various 

restrictions of protein regulators such as simple 

structures and mechanisms causing their behaviour in 

different conditions anticipated with software tools. Also 

they propagate signals directly and fast as RNAs.
47

 The 

remodeling of RNA and DNA molecules with the aim of 

engineering antibiotic bunches to cause antibiotic 

overexpression is possible.
48

 Recently, combination of 

CRISPR (Clusters regularly interspaced short 

palindromic repeats) and antisense RNA system in order 

to control bacterial gene expression is introduced.
47
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Through blocking genes that manipulate and inactivate 

host-cell Rab1 protein’s function, Legionella can’t form 

LCV to support bacteria inside LCV for replication. 

 

CRISPR-Cas system: a novel tool for treatment of 

Legionellosis 

Not only CRISPR-Cas component is important in the 

natural history and pathogenesis of Legionnaires’ 

disease, but also L. pneumophila Cas2 has a role that is 

unique from the main view of CRISPR-Cas function.
49

 

CRISPR , which were first discovered in bacteria in 

1980s and then in archaea in 1990s, are a powerful 

genome editing tool. CRISPR function to facilitate 

adaptation of the organism to extreme environmental 

conditions and act as a part of bacterial immune system 

to defend against pathogens and harmful 

environment.
50,51

 CRISPR/Cas systems are powerful and 

efficient genome modifying tool in comparison to other 

genome modifying tools like zinc-finger nucleases 

(ZFNs) and transcription activator-like effector nucleases 

(TALENs). The system includes a nuclease (Cas) and 

small guide RNA that recruits the Cas to cut at a specific 

place in the genome. This system is able to induce 

targeted specific gene deletion, correction or mutation 

via RNA guided DNA cleavage. Short palindromic 

repeat 36 base pair (bp) lengths in the genome associated 

with the (Cas) gene carry out targeted editing in the 

proposed genome. It works by binding a RNA stem-loop 

structure when attached to a short target sequence (22-

33bp) to guide the Cas protein to a specific spot in the 

genome. These adaptable sequences together with non-

contiguous direct repeat attached to Cas gene forming 

the CRISPR Cas systems.
52-57

 

CRISPR type II, based on Cas9 is the primary system 

used to genetically modify mammalian cells. Cas9 

function in CRISPR system is central part of the tool and 

is guided to the target sequence by a trans activating 

crRNA (tracrRNA) to cleave target DNA – Cas9 cleaves 

supercoiled, relaxed and linear DNA – cleavage occurs 

3bp upstream of Pam motif.
54

 This type of gene editing 

technology has been independently described by several 

groups and is termed RNA guided engineered nucleases 

(RGENs).
58

 

CRISPR technology has some benefits over early 

methods of gene editing technology and is rapidly 

expanding in the area of genetic and biology research. It 

is a relatively rapid and cost effective genome editing 

technology that can be used to modify the genome in 

different organisms and various cell types. CRISPR Cas 

system target the bacterial lipoproteins transcript through 

dual RNA protein complexes (Figure 2).
59 

 

 
Figure 2. The Type II CRISPR-Cas system function in adaptive nucleic acid restriction (Figure adapted from

59
) 

(A) Invading DNA is located by Cas1 and Cas2 and take it as new spacer sequence inside CRISPR array (immune completion 
blue). (B) To stop invading DNA, the pro-crRNA in constructed and matured into small targeting crRNAs to associate with Cas9 and the 
sequence of spacer within the crRNA can hybridize the matching DNA. Cas9 then cleavages target DNA just 3bp downstream of PAM 
site and generates double stranded break on target DNA.

59
 

 

Antisense therapy of Legionellosis 
Gene expression could be down regulated by RNA 

interference and antisense oligonucleotides (AS-ODNs) 

through inducing enzyme-dependent degradation of 

targeted mRNA.
60

 For treatment of different gene-

specific diseases, oligonucleotide-based cure is a novel 

area of medicine to design new drugs. The antisense 

oligonucleotides and short interfering RNAs (siRNAs) 

are the more common forms, which often act against 

similar targets.
61

 Using antisense and other gene 

silencing technologies provide an efficient alternative 

way of treatment for cancer, genetic disorders or 

infection.
62,63

 The gene expression through changing 

mRNA splicing, arresting mRNA translation and 

inducing degradation of targeted mRNA are blocked 

through sequence-specific antisense oligonucleotides by 
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RNase H.
64

 Antisense therapy is also convenient way of 

genetic alteration compare to more difficult methods 

such as generating gene knockout in cells and organisms. 

Antisense ODNs have been applied to efficiently block 

gene expression in eukaryotic cells and there is one 

antisense ODN-based product in the market and others in 

clinical trials.
65,66

 This gene therapy method is common 

for silencing the abnormal gene to stop the human 

disease such as cancer progression
67-69

 and 

neurodegenerative disorders
70

 as well as pneumonia.
71

 

Antisense transcription was first revealed in bacteria 

about 50 years ago. The significant amount of antisense 

transcription is an important feature of gene expression 

in eukaryotes. This technique mostly uses DNA or RNA 

to inactivate circular segment of bacterial genome 

resembling RNA interference and prevents duplication of 

bacterial cells or kills them;
62,71

 however, antisense 

technology is not applied widely in prokaryotic systems. 

Gene regulations in prokaryotic cells have been done by 

antisense mechanisms of bacteria and also through 

increased antibiotic efficacy.
35,45,62,72

 Former reports 

indicated short antisense and modified antisense 

oligodeoxynucleotide (AODNs) could inhibit gene 

expression in bacteria.
45,72,73

 Others stated that gene 

expression in bacteria can be inhibited by peptide nucleic 

acid (PNA).
71,74

 The transcriptomes of bacteria such as 

Escherichia coli, Synechocystis sp. strain PCC6803, 

Helicobacter pylori, Bacillus subtilis, Mycoplasma 

pneumoniae, Sinorhizobiummeliloti, Vibrio cholerae, 

Chlamydia trachomatis, Pseudomonas syringae, and 

Staphylococcus aureus have been stated to have 

antisense RNA (asRNA) transcripts.
35

 The bacterial 

protein YidC is extremely preserved among pathogens 

and is necessary for membrane protein attachment and 

decrease of YidC production contributing to bacterial 

growth retardation. Therefore, it can be a novel potential 

target for therapeutic applications. Antisense RNA-

mediated YidC down-expression in E. Colistrain resulted 

in identify antibacterial essential oils eugenol and 

carvacrol.
75

 The influence of the antisense oligomer is 

extremely particular to the targeted gene’s sequence, 

which is preserved in numerous bacterial types, and it 

does not have any noticeable toxicity against human 

cells.
45

 The combined CRISPR and asRNA system, can 

be applied to reversibly repress or derepress multiple 

target genes concurrently, permitting for rational 

reprogramming of cellular functions. Gene target are 

repressed/derepressed by CRISPR system from 

Streptococcus pyogenes and synthetic antisense RNAs 

(asRNAs) in Escherichia coli strains. In fact, when the 

CRISPR system represses the target gene, it can be 

derepressed by expressing asRNA which hide away a 

small guide RNA (sgRNA). In addition, up to 95% of 

derepression can be attained through designing as RNAs 

which target various regions of a sgRNA and by 

changing the hybridization free energy of the sgRNA–

asRNA complex.
47

 RNA interference has been suggested 

to be an alternative method to prevent bacterial growth or 

demolish them. For this aim we suggest antisense 

therapy against type IV secretion system and Lep 

proteins synthesis in Legionella. 

 

Dendrimers-based antisense delivery system 

approaches for treatment of Legionellosis 
The important therapeutic aim in biotechnology is the 

capacity to safely and professionally transfer external 

DNA, RNA, antisense or drug
76

 into cells.
63,77

 The 

capability to deliver fragments of DNA or RNA to the 

required section of a cell is a challenging issue. Substrate-

mediated transfection, which withstands the release of 

knocked DNA or vector/DNA complexes and provides 

cell growth, has been established to solve the problems 

associated with the extracellular obstacles in gene 

delivery system.
78

 Rapid transfection which can achieve 

by viral carrier, immunological and oncologic side effects 

connected to these vectors have remained as controversial 

issues. Nowadays, non-viral gene delivery system to 

transfer genetic material to targeted cells such as 

natural/synthetic molecules or physical forces are 

preferred methods. They have some benefits such as 

targeting capability, simplicity of fabrication, possibility 

for repeat administration and low immune rejection.
79

 

There are different dendrimers such as peptide, and 

glycopeptide, has capability to bind bacterial 

polysaccharides representing interesting tools for both 

therapeutics and diagnostics applications. Nowadays, 

because of higher bacterial resistance for common 

antimicrobial drugs, discovery of new antibacterial 

medications and diagnostic tools are very important .
80

 It 

has been reported that acid-triethylene glycol (GATG) 

dendrimers is valuable and versatile platform to develop a 

novel antimicrobial materials targeting microbial viability 

and/or virulence.
81,82

 The anti-bacterial sequences (ABS) 

can be integrated into plasmids, viral, and other vectors 

and packaged in liposomes or cationic polymers such as 

polyethylenimine (PEL) to prevent or reduce the 

likelihood of infections leading to sepsis.
65

 Dendrimers as 

non-viral gene delivery tools which can be utilized to 

deliver sequence of DNA or RNA as oligonucleotides to 

the certain part of cells are challenging experiments and 

novel method.
83,84

 Dendrimers as Nano-sized synthetic 

polymers have positive charge with distinct, 

homogeneous, and monodisperse organization containing 

tree-like arms or branches.
85

 Dendrimers are suitable and 

safe for the successful application in biomedicine such as 

imaging, drug delivery, gene delivery and photodynamic 

therapy.
86

 The highest benefits are the progress in the 

antifungal properties and antibacterial action, for example 

decrease in toxicity, bioavailability, and target tissue 

which simplifies advanced therapeutic methods.
87,88

 

Valuable effort is being performed to elucidate the 

techniques of using dendrimers for gene trafficking into 

the cells without any interference of damage to the cell’s 

DNA. It is important to maintain DNA activity in the 

course of dehydration so dendrimer/DNA complexes 

need to be encapsulated and compressed in a water 

resolvable polymers, subsequently they are deposited on 

or inserted in functional polymer films with a fast 
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degradation rate to facilitate gene transfection. Based on 

this method, for substrate-mediated gene delivery, 

Polyamidoamine (PAMAM) dendrimer/DNA complexes 

have been applied to encapsulate functional 

biodegradable polymers. Many reports have revealed that 

the fast-degrading functional polymer with excessive 

potential for localized transfection is a good tool.
78,86,89,90

 

Antisense has negative charge and conjugates with 

dendrimers as a positive charge polymer. We have 

established Epidermal growth factor receptor (EGFR) 

and c-Src antisense oligonucleotide encapsulated with 

PAMAM dendrimers in human colon cancer cell line and 

have showed its effects on signalling pathway.
63,68,91

 To 

confirm entry of antisense to the cell, fluorescent 

microscope and Fluorescence-activated cell sorting 

(FACS) analysis have been carried out and showed that 

Fluorescein isothiocyanate (FITS) are conjugated 

effectively to dendrimers. Our studies evaluated the 

antisense dendrimers mediated transfer into cells and 

showed the effective antisense entry inside the cell; 

however, the antisense alone is not able to enter the cells. 

As a result, dendrimers could be safe and suitable tool to 

antisense delivery system for L. pneumophila treatment. 

Therefore, antisense against the type IV secretion system 

and Lep protein synthesis in Legionella encapsulated 

with dendrimers could be a novel approaches in 

Legionnaires' disease. 

 

Conclusion 

Vesicle trafficking pathway in L. pneumophila could be 

as a target for eliminating or disarming pathogens via 

antisense therapy. Antisense therapeutic application for 

bacterial protein synthesis has role in mediating the 

intracellular trafficking pathway to avoid phagosome and 

lysosome fusion in macrophages. Some of these proteins 

have been shown to participate in the trafficking of the 

Legionella phagosome. By reducing these proteins 

through antisense therapy, bacteria could not be able to 

hijack host vesicle trafficking pathway, therefore 

phagosome and lysosome fuse inside the cell and they 

are killed in lysosomes through digesting by the 

lysosomal enzymes. Nowadays, instead of proteins based 

targeting as potential drug action, drug companies and 

researchers are interested in utilizing different RNA 

species, DNA, new protein families or macromolecular 

complexes of these components to treat and eliminate 

antibiotics resistance pathogens. 
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