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Introduction
Cancer is the leading cause of mortality across most 
developed countries and the second main reason of death 
in developing countries, with more than 8.2 million deaths 
every year.1-3 Surgery, chemotherapy, and radiation therapy 
(RT) are three major modalities for cancer treatment.4 In 
particular, RT is one of the successful cancer treatment 
strategies used for more than 60% of all cancer patients.5,6 
It causes tumor cell death by delivery of high intensity 
ionizing radiations to the tumor tissue.7 

In general, the sensitivity of the highly or functionally 
active tumor cells is somewhat higher than that of nearby 
or adjacent normal tissue. Thus, the dose of radiation 
required to destroy cancerous tissue is far lower than that 
of normal tissue.8 However, some tumors are resistant to 
the radiation and their treatment require higher doses of 
radiation, which is out of normal tissue’s tolerance level.8 
This limits RT application regardless of its fundamental 
role in cancer treatment. As a result, attempts are being 
made to improve the efficiency of RT mainly by: (I) 
enhancing the radiation dose inside the cancer cells; 

(II) sensitizing the tumors that are radio-resistant; (III) 
applying targeted RT.9,10 Radio-sensitizers are materials 
that increase sensitivity of the tumor tissue to radiation.11 

In order to enhance radiation dose to the tumor, 
multiple approaches have been proposed such as metal 
based nanoparticles (NPs),12,13 quantum dots,14,15 super 
paramagnetic iron oxides,8,16 and non-metal-based 
NPs.17 With development of nanotechnology, NPs 
especially noble metal NPs, have also been developed 
as a hopeful approach to improve RT technique efficacy 
due to their unique physical and chemical properties. 
Radio-sensitizers have provided novel and great tools for 
imaging,18,19 diagnosing,20 and treating cancer.21-24 To date, 
several different NPs such as gold, iron, bismuth, titanium 
and carbon have been applied as probable tumor-selective 
radio-sensitizers.12,25-27 Radio-sensitizers are chemical 
or pharmacologic agents which enhance the response 
of cells to radiation. Ideal sensitizers should have these 
characteristics: Selectively sensitize, chemically stable 
and slowly metabolized, effective throughout cell cycle 
and effective at low daily doses of radiation. The relative 
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Abstract
In recent years, high atomic number nanoparticles (NPs) have emerged as promising radio-
enhancer agents for cancer radiation therapy due to their unique properties. Multi-disciplinary 
studies have demonstrated the potential of NPs-based radio-sensitizers to improve cancer 
therapy and tumor control at cellular and molecular levels. However, studies have shown that 
the dose enhancement effect of the NPs depends on the beam energy, NPs type, NPs size, NPs 
concentration, cell lines, and NPs delivery system. It has been believed that radiation dose 
enhancement of NPs is due to the three main mechanisms, but the results of some simulation 
studies failed to comply well with the experimental findings. Thus, this study aimed to 
quantitatively evaluate the physical, chemical, and biological factors of the NPs. An organized 
search of PubMed/Medline, Embase, ProQuest, Scopus, Cochrane and Google Scholar was 
performed. In total, 77 articles were thoroughly reviewed and analyzed. The studies investigated 
44 different cell lines through 70 in-vitro and 4 in-vivo studies. A total of 32 different types of 
single or core-shell NPs in different sizes and concentrations have been used in the studies.
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efficacy of a particular cell radio-sensitizer is most often 
described with the sensitizer enhancement ratio (SER) or 
dose enhancement factor (DEF). The SER and DEF are 
the dose ratio of radiation alone versus in the presence of 
the cell sensitizer to produce the same biologic effect. If 
they were greater than one, then the addition of the agents 
is functioning as a radio- sensitizer. If they were less than 
one, then the drug is a radio-protector.

The mechanism of photon interactions with high-Z 
NPs is strongly related to radiation beam energy. However 
the probability of photoelectric interaction is dominant 
during low energy radiation, Campton scattering and 
pair production mainly accrue in mega voltage (MV) 
energies. Briefly, the basis of cellular damage with high 
atomic number NPs is based on generation of secondary 
electrons, free radicals, and reactive oxygen species (ROS).

Having explored electronic resources, it seems 
that no systematic review study has been done in 
this field. This study presents a historical report and 
provides a comprehensively review and analysis of the 
published studies. The first aim of the current study is 
the quantitative evaluation of the physical, chemical, 
and biological parameters of NPs affecting radiation 
enhancement. The second goal is assessing the NPs 
materials with a particular focus on the in-vitro 
outcomes as well as the principal mechanisms of response 
in non-metal and metal-based NPs radio sensitization. 
Also, we investigated the effect of the NPs type, NPs size, 
NPs concentration, cell line type, and radiation beam 
energy on the radiation dose enhancement during RT 
modality.

Materials and Methods 
The literature review was done and reported according 
to the standards set out in Preferred Reporting Items 
for Systematic Reviews and Meta Analyses (PRISMA) 
checklist.28

Inclusion and exclusion criteria
Articles were included in the current review based on the 
following inclusion criteria: (i) the original, quantitative 
papers, review papers, thesis, conference papers, meetings 
and ongoing papers in English language; (ii) the study 
involved only experimental procedures, not simulation 
(such as Monte Carlo methods, Geant 4); (iii) studies 
which investigated the effect of NPs as a radio sensitizer 
substance in RT; (iv) photon RT not particle (proton, 
electron, neutron and carbon). On the other hand, 
articles that used NPs for drug delivery, drug formulation, 
shielding material or as imaging agents were excluded.

Quality assessment
The Consolidated Standards of Reporting Trials 
(CONSORT) checklist29 was used for quality assessment 
of included studies. Two investigators separately rated the 
methodological quality of included studies. 

Search strategy, design and study selection 
A literature search was performed to find published 
studies that involved NPs as a radio sensitizer for 
cancer treatments. An organized search of PubMed/
Medline, Embase, ProQuest, Scopus, Cochrane and 
Google Scholar was performed based on Mesh key 
words and suitable synonyms. Two researchers (RM 
and FS) independently and separately performed 
literature search. Our search strategy in each database 
was established by the following terms: ((enhancement 
[Title/Abstract]) AND (((“Radiotherapy”[Mesh]) OR 
Radiotherapy [Title/Abstract]) OR Radiation [Title/
Abstract])) AND (((Metal Nanoparticles [Title/Abstract]) 
OR “Nanoparticles”[Mesh]). Database search had no 
limitation in time, and our last update on search was in 
March 2019. To have a comprehensive search and to find 
probable appropriate articles, manual search was also 
conducted on the reference list of articles. The search was 
limited to articles published in English. 

Data extraction 
The results of systematic literature search from the data 
bases were collected in Endnote X7. After removing 
duplicates, the articles were selected independently by two 
subject specialists in three stages. At first, the titles of all 
articles were reviewed and articles that were not consistent 
with the study objectives were excluded from the study. In 
the next step, the abstract and the full text of the articles 
were considered, and the full texts of relevant articles that 
involved inclusion criteria identified and included. For 
each eligible study, one reviewer extracted the data and 
then the results were checked by second reviewer. Any 
in consistencies were resolved through discussion and 
by consulting a third reviewer. After the final selection 
of studies, the required information was extracted and 
summarized using the extraction table. The extracted data 
of each study included the following content: publication 
year, cell line type, NPs type, NPs size, NPs concentration, 
photon energy, DEF or SER and mechanisms of cell 
damage. The total articles presented as a flow chart for the 
selection of the included studies (Figure 1).
 
Results and Discussion
Research results and study selection
Totally, 1670 relevant articles were identified through the 
literature search; of these 77 studies met the inclusions 
criteria which examined the effectiveness of NPs during 
RT and thence considered as relevant and included in 
the systematic review. In these studies, DEF of different 
NPs had been investigated in a wide range of radiation 
beam energy values from 88 keV to 18 MV. Specifically, 
52 studies used radiation beams with less than 300 keV, 
43 studies with radiation energy over 1 MV, and only 
six studies used Cs-137 radioactive source with 662 keV 
photons energy.

Various types of NPs also were used, of which the most 
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common types were gold (Au, with atomic number 79) 
in 56 studies, gadolinium (Gd, with atomic number 64) 
in seven studies, core-shell NPs, in six studies, bismuth 
(Ba, with atomic number 83) in 4 studies, platinum (Pt, 
with atomic number 78), silver (Ag, with atomic number 
47), and iron (Fe, with atomic number 26), with each used 
in three studies, titanium (Ti, with atomic number 22) in 
two studies; other NP types included hafnium (Hf, with 
atomic number 72), silicon (Si, with atomic number), 
zinc (Zn, with atomic number 30), neodymium (Nd, with 
atomic number 60), lanthanide (La, with atomic number 
57), cerium (Ce, with atomic number 58), tantalum (Ta, 
with atomic number 73), which each used in one study 
(Figure 2). 

Principal finding
NPs have received special attention over the last decade 
and they have been studied as one of the best ways to 
improve radiation dose enhancement agent. Significant 
studies have been conducted to determine the NPs’ radio 
sensitization effect. The main finding of the literature 
review was that NPs considerably enhanced the radiation 
dose in loaded tissues. All studies recommended the use 
of NPs to enhance the effects of radiation at the tumor 
site. The results indicated a DEF of 1.01 to 2.95 (1.44 ± 
0.43) depending on the NPs type, NPs concentration, 
NPs size, cell line, radiation energy, and delivery 
condition. Table S130-106 (See online Supplementary file 
1) summarizes the main results of the involved studies 
such as the NPs’ size, NPs’ concentration, cell line types, 
and radiation energy. The sensitizing characteristics of 
NPs have been established on various cell lines. To better 
compare the effect of different NPs concentrations, the 

reported concentrations in the articles were converted to 
the same unit (mM). Different NP sizes, concentrations, 
cell lines, radiation energies, and doses had been used in 
the included studies. Among NPs, Au NPs were the most 
studied NPs in cancer therapeutics. 

Mechanisms of radio-sensitization by NPs at biological 
systems
The integration of nanotechnology with biotechnology 
allows us to deliver high atomic number metal NPs to 
the target cells as radio-sensitizers due to their elevated 
absorbance properties in comparison to surrounding 
soft tissue.107 Further, with increasing experimental and 
simulation studies in the field, it was found that the DEF 

Figure 1. Systematic review PRISMA flow diagram.

Figure 2. Various kinds of nanoparticles which have been introduced 
as radio-sensitizers in cancer radiotherapy up to date.
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values obtained in experimentally biological (in-vitro and 
in-vivo) studies were considerably greater than those found 
by the simulation (mass attenuation coefficients) studies 
in both kilo-voltage and mega-voltage radiation energy. 
These findings reported other mechanisms through 
which NPs sensitize cells to radiation. Indeed, based on 
the results of previous studies, it can be concluded that 
the mechanism of NPs radiation dose enhancement 
in biological systems is classified into three sections: 
1) physical phase, 2) chemical phase, and 3) biological 
phase.108,109 Thus, the disagreement between DEF values 
of experimental and simulation studies can be explained 
by the lack of chemical and biological phases on cellular 
damage in simulation studies.

The physical phase of radio-sensitizers is based on the 
photoelectric effect, coherent and incoherent scattering, 
and pair production. Each photon can interact with the 
matter and be completely absorbed or be scattered and thus 
deposit part or all of its energy according to three possible 
mechanisms.110 The probability of each three different 
mechanism depends on the photon energy and the atomic 
number of the radio sensitizer. Further, original studies 
suggest the key NPs chemical characteristics including 
size, shape, crystal structure, surface area, surface energy, 
surface characteristics, and inner structure generally 
influence the toxic manifestations of these materials.111,112

The biological effects of NPs are a major cause for 
cell death. They reflected in cells as increased ROS and 
oxidative products, as well as elimination of cellular 
antioxidants. Thus, according to studies to date, three 
important biological pathways for radio sensitization 
have been introduced: (1) oxidative stress,113 (2) cell cycle 
disruption, and (3) DNA repair inhibition.109,114

NPs Size, surface area, and chemistry
NPs surface chemistry is a key parameter which affects 
bio-distribution and cellular uptake of NPs. NPs are single 
elements with a diameter of 1 to 100 nm. The smaller 
the NP diameter, the larger the surface area/volume 
ratio. The larger surface area causes more atoms to form 
around the surface of NPs, making NPs highly reactive 
and conferring them new and unique physicochemical 
properties. Thus, an important difference between NPs 
and micro-particles is their surface area. NPs are capable 
of interacting radiation due to their larger surface area 
thereby enhancing the physical, chemical, and biological 
effects.115,116 Also, the smaller the NP size, the longer they 
remain in the blood circulation. Smaller NPs are filtrated 
through kidneys quickly, while larger ones avoid clearing. 

There are studies proving that NPs of any compound are 
more cytotoxic than MPs of the same compound.117,118 In 
the study by Gurr et al, they disclosed a strong relationship 
between the size and toxicity of TiO2 NPs. TiO2 NPs with 
diameter < 50 nm caused increased micronuclei number 
in human bronchial epithelial cells, while TiO2 micro 
particles with diameter > 200 nm were nearly harmless at 

the same concentration.119 
As cellular uptake of the NPs depends on surface 

chemistry, Chompoosor et al determined the effect of 
Au NPs surface functionality on ROS generation and 
DNA damage. They approved that the cytotoxicity and 
genotoxicity of Au NPs depend on their surface chemistry 
(hydrophobicity). Increasing the hydrophobicity of the 
particles improved their cytotoxicity.120 Also, the majority 
of studies have found that size is an influential radiation 
sensitivity parameter. Large-sized Au NPs have the 
most efficient DEF. Wang et al50 examined the in-vitro 
Au NPs radiosensitization effect in the breast cancer 
cell line (MDA-MB-231). DEFs of 1.49 and 1.86 were 
observed with 16 nm and 49 nm Au NPs, respectively. 
Brun et al56 prepared a comprehensive study for size 
effect of Au NPs for radiosensitization. They found 
that DEFs of 1, 1.75, 1.76, 2.65, and 2.95 were obtained 
associated with 8 nm, 20 nm, 37 nm, 74 nm and 92 nm 
of Au sample size, respectively. Similarly, Bobyk et al32 

showed that use of 1.9 nm and 15 nm caused DEF 1.92 
and 1.40, respectively. Also, a systematic study of the size-
dependent radiosensitization of Au NPs against HeLa cell 
line found that 4.8 nm, 12.1 nm, 27.3 nm, and 46.6 nm Au 
NPs revealed DEFs of 1.41, 1.65, 1.58, and 1.42 obtained at 
the same concentration and radiation energy, respectively. 
Since only NPs with size 1-100 nm are able to enter cells, 
optimal size design can enhance the cell internalization 
and consequently results. 

NPs’ type and concentration
Based on literature review, the effect of NPs’ concentrations 
on dose enhancement is far greater than NPs’ size. 
Elevation of the NPs’ concentration reduces the cell growth 
rate. This decrease seems reasonable as the concentration 
rise of NPs increases the number of NP atoms. Thus, 
more physical, chemical, and biological interactions 
occur between cells, photons, and atoms. Higher NP 
concentrations seem to carry a higher risk of toxicity. 
Thus, the balance between dose enhancement effect and 
toxicity should be set. Butterworth et al33 examined the 
radiation enhancement of Au NPs in several cell lines 
with two different concentrations at 160 kVp photon 
irradiation. The following DEFs have been reported for 
various cell lines using 0.05 and 0.5 mM concentrations 
of Au NPs: DEFs of 0.86 and 0.87 (L 132), 1.04 and 0.96 
(Astro), 1.16 and 1.97 (AGO), 1.30 and 1.91 (T98G), 
1.67 and 1.11 (MDA 231), 1.41 and 1.09 (MCF7), 1.07 
and 1.02 (PC3), and 0.98 and 0.81 (DU145), respectively. 
In another study, Rahman et al47 examined the effect of 
different concentrations of Au NPs on enhancing the 
radiation effects. They revealed that DEFs significantly 
increased using a high concentration of NPs. DEFs of 2.4 
and 2.0 were noted while using 1mM and 0.5 mM at 80 
kVp, respectively. Also, DEFs of 2.2 and 1.4 were obtained 
using 1mM and 0.5 mM at 150 kVp, respectively.

Ahamed et al explored the effects of TiO2 and Pb NPs 
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toxicity in human lung epithelial (A549) cells. They 
found that TiO2 was not toxic to A549 cells. However, 
cell viability diminished due to Pb-induced toxicity, 
production of ROSs, and reduction in antioxidant levels. 
Interestingly, in co-exposure group (TiO2  NPs + Pb), 
TiO2 significantly reduced Pb toxicity in A549 cells. 
Cellular uptake confirmed that TiO2 NPs increased the 
bioaccumulation of Pb in cells.121

Several studies confirmed that Ag NPs mostly cause 
significant cytotoxicity.122 As for Pt, the Pt NPs were shown 
to enter the cells through diffusion, leading to an increase 
in DNA damage and apoptosis.123 Asharani et al compared 
the toxicity between 3–10 nm Pt, 5–35 nm Ag, and 15–35 
nm Au NPs covered with PVA, and concluded that Ag 
NPs were the most toxic, followed by Pt NPs, while Au 
NPs presented no indication of toxicity.124

Radiation energy
The choice of optimal beam energy in using a dose-
enhancing agent is an important consideration. Several 
reports have shown the efficiency of NPs’ radio-
sensitization at low energy beam (kV). Meanwhile, such 
radio enhancement is shown at MV X-rays. Initial RT was 
carried out with kV energy range. With advances in RT 
and the potential damage of low-energy radiation to the 
skin, today, most RT units use clinical linear accelerators 
for producing MV X-rays. 

In order to find the best radiation energy used in RT to 
produce the most effective dose enhancement effect in a 
tumor, we need to have a closer look to the interactions 
between radiation and matter. Theoretical principles 
of X-ray interactions with NPs have already been 
described.125 The interaction of photons with materials at 
low energies is based on the photoelectric phenomenon. 
The photoelectric effect exhibits a cross-section with Z3/
E3 depending on the photon energy and material atomic 
number, and is enhanced due to increased absorption by 
electron shells (K, L, M, etc.) as shown in Figure 3. Thus, 
when only a small amount of NPs with a high atomic 
number is delivered to the tumor, the photoelectric cross-
section significantly grows and absorbs considerably 
more energy per unit of mass than the soft tissue, which 
is typically 10 to 150 times greater than surrounding soft 
tissue at low energies. With the increase in the photon 
energy in RT, Compton scattering and Pair production 
(photon energies >1.022 MeV) occur with a higher 
probability than photoelectric effect. Note that the 
radiation beam of the linear accelerators has a spectrum 
of energy (poly-energetic), so the low-energy component 
of the spectrum releases energy by photoelectric effect 
where high-energy components are more likely to interact 
by Compton effect and pair production. On the other 
hand, Compton scattering does not depend on the Z of 
the materials; Pair production is also a function of Z2, 
so the relative effect of NPs for Au NPs to soft tissue is 
approximately 127 (792/72). 

As a result of all these mechanisms, secondary electrons 
(nearly 104 per MeV) are produced at the tumor site, 
which has a very low energy (< 50 eV) and low linear 
energy transfer (LET).126 Thus, their energy is left to their 
immediate surroundings and damaging target cells. It is 
well known that secondary electrons induce significant 
single- and double-stranded breaks in DNA due to the 
rapid collapse of molecular resonance located in the DNAs 
basic components (i.e., the bases, sugar and phosphate 
group analogs and oligonucleotides) and of proteins (e.g. 
amino acids).127-129

The mass attenuation coefficients of applied NPs and 
soft tissue are shown in Figure 3. These attenuation 
curves show that NPs are considerably more absorbent, 
especially around certain energies that are related to the 
K-edge, L-edge, and M-edge.130 As expected, DEF depends 
on radiation energy. According to review results, such 
following DEF for variation radiations have been described: 
DEFs of 2.9 and 3.7 using 0.5 mM, a concentration of 1.9 
nm Au NPs at 6 MeV and 12 MeV were reported. DEFs 
of 1.66, 1.43 and 1.17 were observed with 105 kVp, 220 
kVp and 6MV X-rays, respectively. DEFs of 1.44, 1.1 and 
1.32 were achieved with 8 keV, 160 kVp and 6 MV X-rays, 
respectively. DEFs of 2.0-3.7 and 1.8-3.0 were reported 
while using 90 keV and 50 keV, respectively (for different 
sizes and concentrations). 

It is expected that the radio-sensitization of NPs 
is insignificant at MV energies due to the negligible 
contribution of photoelectric absorption of photons. 
Chithrani et al assessed the dependence of radio-
sensitization at the clinically relevant radiation energy. 
They reported a decrease in radio-sensitization (DEFs 
were 1.66 at 105 kVp, 1.43 at 220 kVp, 1.18 with 660 keV) 
with increasing energies. Similarly, Jain et al41 observed 
that DEFs of 1.41, 1.29 and 1.16 were acquired in MDA-
MB-231 cells by 1.9 nm Au NPs in combination with 160 
kVp, 6 MV, and 15 MV X-rays, respectively. To sum up, in 
almost all studies, the dose enhancement of photons with 
MV energies is lower than kV energies, but still far greater 
than the MC simulation, which is due to the biological 
effect of NPs.

29 
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Figure 3. Mass attenuation coefficients of suggested nanoparticles and soft tissue versus 

different radiation with 1keV until to 18 MeV energies. Plot data obtained from WinXCom 

software. 
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Cell line type effect
The cytotoxicity of NPs varies in different cell types. NPs 
could enhance the sensitivity of some cells to irradiation 
but not all cells, as glucose-coated Au NPs did not radio 
sensitize human diploid fibroblast cells but did enhance 
human prostate carcinoma cells. As another proof, despite 
cellular uptake in human prostate cancer cells and lung 
epithelial cells, radiosensitization was observed in neither 
of them. Au NPs’ cellular uptake levels and cell cycle 
phases might justify it. Metallic materials block cells at 
the G2/M phase, the most radiosensitive phase of the cell 
cycle, and therefore augment cell radio-sensitivity.

Albanese and Chan investigated the effect of Au NPs 
aggregation with different sizes on cellular uptake and 
toxicity in three different cell lines. Their contrasting 
results suggested that cell type may play a significant role. 
It was found that, while there was no difference in the toxic 
response of single and aggregated NPs, the uptake patterns 
had a clear difference between single and aggregated NPs. 
There was a 25% reduction in the uptake of aggregated 
NPs with HeLa and A549 cells compared to single NPs. 
However, there was an increase of 200% in cell uptake of 
MDA-MB 435 for the largest synthesized aggregates.131 
Similarly, Jain et al40 evaluated the cytotoxicity of 1.9 
nm Au NPs in normal L132, prostate cancer DU145, 
and breast cancer MDA-MB-231 cells in combination 
with 6 megavoltage X-ray. DEFs of 1.08, 1.13 and 1.29 
were achieved in L132, Du 145 and MDA-MB-231 cells, 
respectively. Due to the same NP and radiation energy, 
this cannot be contributed to levels of radiosensitization 
based on physical action. So it obviously showed that 
different cell lines had a various biological response to Au 
NPs. Au NP chemo-sensitization was observed in MDA-
MB-231 cells treated with bleomycin which approved 
different biological respond. Similar results were shown 
in McMahon et al study.132 This suggests that some cell 
lines show little or no radio-sensitization despite taking 
up similar numbers of NPs.

Generation of ROS
Although the main mechanism whereby NPs induce cell 
damage effects is still unknown, it has been suggested by 
different biological studies that they can produce ROS, 
and therefore can affect the concentration of intracellular 
calcium, activate transcription factors, and induce 
cytokine production.133,134 ROS can damage cancer cells 
in several ways, such as DNA damage, interfering with 
signaling functions, and modulating gene transcription.135 
The most commonly produced ROS in biological systems 
include anion superoxide (O2), hydrogen peroxide 
(H2O2,), and hydroxyl reactive radicals (-OH). The 
extent of damage caused by ROS depends not only on 
the type and amount of ROS, but also on the time and 
duration of exposure to ROS and the external factors of 
the cell, such as temperature, oxygen pressure, and the 
surrounding environment including ions and proteins.136 

In physiological conditions, the concentration of H2O2 
is low and about 5-50 nM. If the H2O2 concentration 
reaches 1-3 μM, apoptosis (planned cell death) induction 
happens. For concentrations above 3 μM, it becomes 
toxic to the cell and leads to its necrosis (un-programmed 
cell death pathway).137,138 Antunes and Cadenas verified 
that by increasing certain ROSs (e.g., H2O2), the cell’s 
viability declines.139 Shukla et al assessed genotoxicity 
of TiO2 NPs on human epidermal cells (A431) as an in 
vitro model.140 They observed a statistically significant 
relationship between ROS generation and DNA damage 
and micronucleus formation on exposure to TiO2 NPs 
group. Their results are in agreement with Kang et al. 
who reported that TiO2 NPs induced ROS generation in 
human lymphocytes.141 Also, they have been described 
cell–specific DNA DSB formation, cytokinesis arrest, and 
apoptosis in the absence of radiation with 30 nm Au NPs.

Nonmetal NPs (silicon and carbon-based NPs) can also 
induce radiosensitization effects based on an oxidative 
stress mechanism. Si NPs significantly improved ROS 
production in glioma C6 and MCF-7 cells under X-ray 
irradiation. Positively charged NH2-Si NPs penetrated 
the mitochondrial membrane and significantly raised 
intracellular ROS levels in MCF-7 cells under radiation.103

ROS generation has also been proposed as a possible 
mechanism by ionizing radiation.142 Geng et al39 showed 
that Au NPs enhanced the production of intracellular ROS 
when irradiated with 90 kVp or 6 MV X-rays in SKOV-
3 human ovarian cancer cells. Wason et al investigated 
whether and to what extent cerium oxide NPs might 
affect radiation-induced ROS production in pancreatic 
cancer cells and normal pancreatic cells.143 Surprisingly, 
the results disclosed a 200% increase in radiation-induced 
ROS generation in L3.6pl cells with cerium oxide NPs 
compared to cells exposed to radiation alone. These 
results indicate that increasing ROS production by NPs 
may be one of the mechanisms that facilitates NPs radio 
sensitivity. The enhanced radio-sensitivity of cancer cell 
by NP is shown in Figure 4.

Definitely, NPs supported RT open up new perspectives 
in the fight against cancer. However, there are some 
problems and limitations that prevent it from translated 
into the clinic. It was found that the promising preclinical 
results of in vitro studies did not fully match with the in 
vivo experiments. This may be due to disparity between 
predicted levels of radiosensitization based on physical and 
biological actions. Also, reviewing the studies, showed that 
the radiosensitization of a particular cell line depends on 
many factors, and even different cell lines show different 
responses to the NPs. So to boost efficiency, specific NPs 
must be used for each cell line. Moreover, interesting is 
the existence of various mechanisms of cell damage by 
NPs. Simultaneous use of several types of NPs or the use 
of Nano-complexes to increase the efficiency of treatment 
as a radio-sensitizer can be very promising in the future.
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Conclusion and future perspectives
The studies conducted on the potential of using NPs in RT 
have confirmed the role of these various NPs in enhancing 
the radiation dose in loaded tissues. NPs have proved to 
cause radio-sensitization at kilo-voltage and megavoltage 
photon energies. RT dose enhancement with NPs appears 
to be a promising approach for improved cancer treatment. 
Different NPs sensitize cancer cells to RT through multiple 
mechanisms, including oxidative stress, DNA damage, 
cell-cycle arrest and apoptosis. For successful RT, it seems 
to use, (1) NPs with high atomic number (Z) to enhance 
RT efficacy via their photoelectric and Compton effects, 
(2) targeting cancer cells with specific targeting molecules 
extends the circulation time of the NPs to increase their 
accumulation in cancer cells and (3) the combination of 
two different types of radio-sensitizers or the combination 
of radio-sensitizers can result in significantly synergistic 
tumoricidal effects. Finally, using NPs can be an asset not 
just to radio-sensitize cells but also to provide contrast as 
they can be imaged, which can lead to better drug tracking 
and detection of the exact location of the tumor for RT. 
Despite their unique merits, it is difficult to move toward 
clinical programs without understanding the mediating 
mechanisms of biological effects in cells.
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