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Introduction
In the most recent years, nanotechnology has influenced all 
technical fields, including drug delivery systems. Modern 
drug delivery technology is growing rapidly. For the 
deepest interpretation and association with biotechnology, 
biomedical engineering and nanotechnology solid lipid 
nanoparticles (SLNs) extends their application in care and 
diagnosis.1 Formulation scientists are facing challenges in 
improving the solubility and bioavailability of the newly 
invented drugs. Lipid nanoparticle presents a successful 
approach in resolving the solubility and bioavailability 
issues. Nanotechnological applications in medicine2 

as compared to other colloidal carriers, lipids are 
biocompatible, biodegradable, and mostly they comprise 
physiological components which are generally regarded 
as safe (GRAS). Insoluble drug delivery strategies: review 
of recent advances and business prospects3,4 SLNs as a 
colloidal carrier have proved their potential by surpassing 
the limitations of other carriers from the early 1990s.5

Several potent formulations do not show success in 
therapy, leading to an increase in the rejection rate of 
API from the FDA. Factors that contribute to treatment 
failure include low absorption and fast metabolism, 
indiscriminate drug distribution leading to insufficient 
drug concentration (e.g. peptides, proteins), BCS class II 

and IV drugs (excluding I.V aqueous injectable solution), 
and unpredictable bioavailability.6,7 To improves the 
therapy success rate, instead of developing or focusing on a 
new molecule, it would be cost-effective to do the suitable 
modification in drug molecule with an existing colloidal 
carrier like SLNs. The SLNs structure (Figure 1) is made 
up of lipid, which may contain triglycerides, glyceride 
blends, or waxes that are solid at both room temperature 
and human body temperature.8 SLNs also contain different 
surfactants and co-surfactants to enhance the stability 
in the concentration range of 0.5% to 5%. Commonly 
used lipids are listed in Table 1. Due to the presence of 
solid lipid and submicron-sized nanoparticles, SLNs 
show less toxicity and easily attain sustained release.9,10 

The reticuloendothelial system cells are not taken up 
immediately, particularly those between 50–200 nm, and 
thus bypass the liver and spleen filtration.11 SLNs also 
offer the advantage of controlled and targeted release 
because the surface of solid lipid can be easily tailored 
with suitable ligands and polymers.12 Incorporation of 
active compounds into the solid matrix of SLNs offers 
stability against chemical degradation and environmental 
factors.13 Both hydrophilic and lipophilic drugs can be 
easily incorporated into the matrix of solid lipid.14,15

Despite several advantages, certain drawbacks are also 
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Abstract
Solid lipid nanoparticles (SLNs) are one of the developed technologies for addressing the 
bioavailability and targeting issues of drug delivery. In this review article, we attempted to 
incorporate all the essential details of SLNs like various methods of preparation, different models 
of SLNs, updated characterization methods, in vivo behavior (uptake), their applications, route 
of administration as well as advancements taken place in the field of delivery of biological drugs 
like gene vector, new adjuvant for vaccines, protein, and peptide with SLNs. Surface modified 
SLNs hold excellent potential for targeted and controlled drug delivery which is discussed and 
summarized. Based on the available data, the future success of SLNs is widened because they 
could be easily fabricated with various functionalities which would display enormous potential 
for targeting and diagnosing various diseases. This review would help the budding researchers to 
find out the unexplored areas of SLNs with the present discussion that reframes the potential of 
SLNs by gathering the various research findings of SLNs in tabular form along with the approved 
patent technologies of SLNs.
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reported for SLNs which include (a) poor drug loading 
capacity especially for the hydrophilic drug (b) limited 
solubility of drugs in the lipid melt (c) chances of drug 
expulsion and particle aggregation after polymeric 
transition during storage.19-21 A comparison of benefits 
of SLNs over liposomes and other polymeric systems is 
summarized in Table 2.

In vivo behavior of SLNs
The portal circulation facilitates accessibility of the 
administered drug into the systemic circulation. To 
understand the lipid digestion and absorption processes 
associated with the delivery of lipophilic drugs which play 
a crucial role in the transport of drugs to the lymphatic 
system we should understand the physiology of lipid 
digestion and absorption.27 In Vivo behavior of SLNs is 
reflected in Figure 2.

Lipid digestion starts in the oral cavity by the action 

of lingual lipases. Digestion continues in the stomach by 
the action of both lingual and gastric enzymes. Initially 
formed lipid emulsion of lipid enters in duodenum in the 
form of fine droplets and undergoes various chemical 
and physical changes by the actions of bile and pancreatic 
juices. Bile and pancreatic juices provide pancreatic lipase, 
bile salts, and colipase for the effective digestion and 
absorption of lipids. In the duodenum micellization along 
with emulsification and hydrolysis continues to promote 
absorption through the intestinal wall.28

Digestion and absorption of triacylglycerides (TAGs)
TAGs are primarily digested by the pancreatic lipase in 
the upper part of the jejunum. Pancreatic lipase acts on 
the surface of emulsion particles and converts TAGs into 
2-monoacylglycerol (2-MAG) and free fatty acids (FFAs). 
2-MAG is the major form in which MAG is absorbed from 
the small intestine. FFAs are absorbed from the intestinal 
lumen into the enterocytes. Here it is used to biosynthesize 
the neutral fats. A number of proteins are involved in the 
uptake and transport of FFAs. 

Biosynthesis of TAGs
Once inside the enterocytes, specific binding proteins 
carry fatty acids and MAG to the intracellular site, for the 
biosynthesis of TAG.

In the case of SLNs, drug absorption through 
the lymphatic system is assisted by the lipid core of 
SLNs, which stimulates the formation of lipoprotein 
(chylomicrons) and absorbs free drugs associated with 
the lipoprotein. The lipoprotein (like chylomicrons) 
associated with hydrophobic drugs with a size <1 µm 
in diameter facilitates selective lymph transport in the 

Figure 1. Schematic figure of solid lipoid nanoparticles.

Table 1. Lipid used for solid lipid nanoparticle preparation

Lipids Examples

Triglycerides16,17 Trilaurin, Tricaprin, Hydrogenated coco glycerides (Softisan®142), Tripalmitin [Dynasan® 116, Tristearin [Dynasan® 
118, Trimyristin [Dynasan®114

Fatty Acids18 Dodecanoic acid, Myristic acid, Palmitic acid, Stearic acid

Monoglycerides18 Glyceryl monostearate, Glyceryl hydroxyl stearate, Glycerylbehenate

Waxes17 Cetyl palmitate, Beeswax, Carnauba wax

Table 2. Benefits of SLNs with respect to liposome and polymeric nano-systems

Points to consider Benefits of SLNs over liposomes Benefits of SLNs over polymeric Nano-systems

Organ Distribution
SLNs High bioactivity is in the spleen while Liposomes are 
more active in the liver due to the flexibility difference of both 
formulations.22

SLNs do not have undesirable effects unlike polymeric 
nanoparticles such as accumulation in various organs like the 
spleen, liver, etc. which leads to unwanted effects.23

Flexibility in 
the selection of 
preparation method

The use of organic solvents can be avoided by the selection of a 
suitable method with scale-up and reproducible properties.

Homogenization is an aqueous-based scalable method 
available for the production of SLNs.24

Target ability

Both Surfaces modified liposomes and SLNs can be used for site-
specific delivery but very less work is reported on gene delivery 
with liposomes due to various cellular barriers like the liposome-
cargo-barrier interaction, binding of the liposome to the cell surface, 
liposome entry into the cells by endocytosis, or direct traversing of the 
plasma membrane, escape of the liposome from the endosome and 
dissociation of the liposome to release the nucleic acid payload.25

Surface modified SLNs offer site-specific delivery for the 
drugs as well as protein, DNA, and RNA while polymeric 
nanoparticles may produce nonspecific drug delivery and still 
more work is to be done on a tailored synthetic approach for 
gene delivery.26
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intestines. The compound was also exposed during the 
absorption process to Cytochrome P450 3A4 (CYP 3A4) 
enzymes found in enterocytes at higher concentrations 
and studies proved the role of these enzymes to improve 
drug bioavailability in the use of lipids.29,30

Suzanne M. Calip has reported in her research that 
lymphatic transport of extreme lipophilic drugs (log P > 5, 
solubility in triglycerides (TG) > 50 mg/mL) was strongly 
correlated with the TG content of the lymph.31 Drugs with 
limited solubility (BCS II & IV) are suitable candidates 
for SLNs. Due to the presence of lipids, SLNs showed 
increased bioavailability because lipids are consumed by 
intestinal lymph (dietary or lipid dependent formula) and 
in combination with long-chain TGs transported (Lipid 
core formed into enterocytes of the intestinal lipoprotein 
after FA and MG re-esterification). Co-administration 
of lipid with drug promotes the synthesis of lipoprotein 
and therefore it enhances the lymphatic drug transport of 
drug.32,33 Lymphatic fluid (average 3 L a day) is pumped 
into the subclavian vein through a thoracic duct to shield 
this medicament from first-pass hepatic metabolism. 
Dispersed structures such as micelles or mixed micelles 
may be available in a circulatory system in their free form. 
When combined with significant quantities of blood/
lymph, the concentration of the surfactant will decrease 
below its critical micelles concentration and micelles 
may dissociate into monomers through it helps the 
drug transported as lipid vesicles in intact form over an 
extended period, and it leads to prolonging the release of 
the entrapped drug.34,35

Drug loading model and release pattern from SLNs
Based on the various production methods of SLNs 
and as described by Müller et al, three types of 
SLNs are reported for drug incorporation.18,34-39 
Details of all types of SLNs with their properties and 
applications are summarized in Table 3.

The SLNs are composed of physiological lipids in 
the submicron size range (50–1000 nm) and at room 
temperature, the particles are in the solid-state, which 
helps to reduce the mobility of entrapped drugs, which is 
a prerequisite for controlled drug release.41,42 The common 
ideology of drug release from any nanoparticle reflects 
that the release is affected by particle size and the type 
of drug entrapment model of SLNs. The release of drugs 
can be affected by parameters like drug solution and its 
relationship with the lipid matrix.43 The release profile of 
SLNs can be modified in response to external and internal 
stimuli by temperature transition. Chen et al investigated 
the pH-sensitive release profile of doxorubicin-loaded 
cholesterol-PEG coated SLNs and found the accelerated 
drug release of doxorubicin at pH 4.7 compared to pH 
7.4. The author had concluded that the protonation of 
negatively charged lipid core lauric acid to the positively 
charged doxorubicin leads to depletion of electrostatic 
attractions which promotes the release profile at lower pH 
microenvironment of cancerous tissue.44 Generally burst 
release was observed with SLNs.35 The burst release of the 
drug could be reduced with increasing particle size and 
prolonged release will be achieved.45 zur Mühlen et al had 
taken tetracaine, etomidate, and prednisolone as a model 
drug and reported that due to large surface area and drug 
augmentation in the outer shell, tetracaine and etomidate 
SLNs were detected with a burst drug release (100 % release 
<1 minute). In contrary to this data, 5 weeks prolonged 
release was reported with prednisolone-loaded SLNs. Due 
to the different chemical behavior of the lipid matrix-like 
cholesterol and compritol, burst (83.8%) and controlled 
releases (37.1%) were achieved respectively.46 Olbrich and 
Muller47 reported that lipid matrix degraded by lipases 
requires a lipid interface for enzyme activation. To modify 
the release and increase the stability of SLNs appropriate 
steric stabilizers and other surfactants should be optimized 
and therefore surface modification with the hydrophilic 
carrier (like PEG) is suggested so that SLNs surface will 
not be recognized easily by lipase enzymes. Savla et al 
had recently mentioned in their review that drugs with a 

Figure 2. In vivo behavior of SLNs.

Table 3. Summary of drug loading models in SLNs

Model  Properties Applications References

Drug-enriched shell model
The lipid center is surrounded by a drug-enriched 
outer shell.

(a) Suitable for potent drugs.
(b) Suitable model for burst release

18,34-37

Drug-enriched core model The drug is concentrated in the core of SLNs.
(a) Suitable for high-dose drugs.
(b) This SLN model is desirable for burst release as in the 
case of dermal preparation along with occlusive effect. 

38-39

Homogenous matrix model or 
solid solution model

Drugs within the melted lipid are dispersed in the 
core of SLNs in amorphous clusters or molecularly 
dispersed phases.

The model is suitable for a highly lipophilic drug. 40
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Log P value of 2 and high melting point (numerically not 
defined) are usually poor candidates for lipid systems.48,49 

Lipid-based formulations are an excellent carrier for 
the highly lipophilic drug (Log P>5) (BCS Class-II). In 
support of this Chen et al also proposed50 the following 
drug profile for lipid formulations: hydrophilicity (water 
solubility) <10 mcg/mL; Log P >5; solubility in oils and 
lipids >25 mg/mL; relatively low melting point; and good 
chemical stability. However, there are inadequate studies 
reported especially relative studies for the group of drugs 
having Log P 2-5.

Method of preparation
High energy approaches
High-pressure homogenization (HPH)
HPH includes two types of methods one is hot 
homogenization, and another one is cold homogenization. 
Both hot and cold method involves a preliminary step of 
dissolving or dispersing the drug in solid lipid melt.51 The 
HPH method includes a high-pressure chamber piston 
and a narrow gap. The pressure piston can make the 
pressure of 10–500 mPa. A narrow gap in the HPH is the 
place from where the primary emulsion will be forced to 
go through the valve and in the valve’s limited territory the 
emulsion drops will be reduced into small sizes.52,53

Hot homogenization method: At the lab-scale, this 
is the most accepted method to formulate the SLNs. By 
the addition of lipid melt holding the drug to an aqueous 
phase containing emulsifier with the addition of energy of 
high shear homogenizer at 500-1500 bar pressure, a pre-
emulsion is formed with reduced size. The hot colloidal 
O/W emulsion forms which lead to the forming of SLNs 
after cooling the lipid melt dispersion in the globules. 

Cold homogenization method: To address problems 
with hot homogenization processes like (a) thermolabile 
drugs cannot handle with high temperature, (b) drug 
loss during its distribution in the aqueous phase, 
and (c) complex crystalline structure of lipid54-56 cold 
homogenization mechanism has been introduced

Ultrasonication technique
This method requires the addition of homogenization 
or stirring steps to avoid the particle size growth due 
to broader particle size distribution.57Ultrasonication 
method is also known as the High-speed Homogenization 
method.4,18

Electrospray technique
With the electrospray technique to date, more than 
30 polymers have been effectively electrospun. The 
fundamental setup for electrostatic atomization includes 
a spout associated with a high-voltage control supply, 
provided with a fluid to be atomized.58-60 In general the 
solution of the matrix is filled in the syringe with a metal 
capillary, which is attached to an electrode with high power 
supply. A collector, made up of foil is placed opposite the 

metal capillary to act as a counter electrode.60

Low energy approaches
Microemulsion method
The word microemulsion was initially proposed by 
Schulman et al.61 Microemulsions are the two-phase 
systems. An emulsifier (e.g. polysorbate 80), a co-
emulsifier (e.g. butanol), and water are an important 
parts of typical micro-emulsions. They are an optically 
transparent mixture.62

Membrane contractor method 
An effective module, including a Kerasep clay film (0.1, 
0.2, 0.45 μm pore estimate), has been recognized for 
this process., which isolates the water phase, allowed the 
digression into the layer surface, and lipid phase, allows it 
to move digressively to the layer surface. The lipid phase is 
heated above its melting point by a pressure vessel, passed 
through the module through a cylinder, and squeezed via 
membrane pores to allow smaller particles to form. After 
cooling, SLNs are formed in an aqueous phase.60,63 The 
particle size can be managed by controlling the process 
parameter like lipid content, lipid phase pressure, and 
aqueous cross-flow velocity. Smaller size SLNs are obtained 
by keeping the aqueous phase temperature below the 
lipid’s melting point, and this is because the lipidic phase 
solidifies suddenly in an aqueous phase.64 Charcosset et al 
used membrane contactors for the formulation of SLNs. 
The merit of this new process of SLNs appeared to be its 
feasibility of utilization, and control of particle size can be 
achieved with suitable process parameters and easy scale-
up ability.63

Phase inversion temperature (PIT) method
The essential elements of the phase inversion temperature 
method are mechanical emulsification at the Phase 
inversion temperature followed by sudden cooling to 
room temperature, where an emulsion with the large 
number of small droplets is found.65 In this method, two 
main components are used one is the oil phase containing 
solid lipids and nonionic surfactant, and another is an 
aqueous phase containing NaCl. Both phases are heated 
at ~90°C (above phase transition temperature). With 
constant stirring and temperature, an aqueous phase 
is added drop-wise to the oily phase to obtain W/O 
Emulsion. Then the mixture is allowed to cool at room 
temperature under continuous stirring. At the phase 
inversion temperature, turbid mixture gets cleared and 
below the PIT O/W nanoemulsion is formed. The stability 
of the lipid nanoparticles after fabrication depends on 
the storage temperature relative to the PIT and melting/
crystallization points.66

Coacervation method 
This is the solvent-free technique for the production 
of SLNs by the acidification of salt of micelles. When 
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pH is low fatty acids start precipitating as a result of 
proton transfer between the solution of acid and soap. 
This method is widely used to formulate polymeric 
nanoparticles. Nanoparticles in the range of 250-500 nm 
size with spherical shape are obtained with this method.67,68

Double emulsion method 
This method is mainly used for hydrophilic drugs. The 
drug is dissolved in an aqueous phase and emulsified in 
melted lipid. Primary emulsion is formed, and that primary 
emulsion is stabilized by using appropriate surfactants 
and co-surfactants. Then the primary emulsion will be 
dispersed in an aqueous phase containing an aqueous 
emulsifier like PVA.69

Approaches with organic solvents
Solvent emulsification evaporation technique
In this technique, lipid and drug are dissolved in an organic 
solvent (e.g. cyclohexane, dichloromethane, toluene, 
chloroform) followed by emulsification using high-speed 
homogenizers in an aqueous process. The coarse emulsion 
was quickly passed through a microfluidizer to increase 
the efficiency of emulsification. By mechanical mixing at 
room temperature and reduced pressures (e.g., rotatory 
evaporators), the naturally solubilized content disappears 
leaving SLNs lipid precipitates.11,34

Solvent emulsification diffusion technique
In this method, water-miscible organic solvent is used 
(e.g., methyl acetate, isopropyl acetate, benzyl alcohol, 
ethyl acetate, butyl lactate). The initial saturation of 
both aqueous and oil phases maintains the initial 
thermodynamic balance of both phases.70

Supercritical fluid (SCF) technique 
Being productive and environment friendly, the 
supercritical liquid-based technique proved its efficiency 
and an efficient substitute over the conventional techniques 
for the production of SLNs for molecule generation. The 
supercritical liquid innovation removes the wide setting 
and assembly constraints for the production of SLNs 
related to other techniques but to produce the nanometer 
scale SLNs has been challenging.71

SCF is defined as a substance that existed above its 
critical temperature (TC) and critical pressure (PC). The 
critical point represents the highest temperature and 
pressure at which the substance can exist as a vapour 
and liquid in equilibrium. The SCF has unique thermo-
physical properties which can be changed easily by small 
changes in the pressure since the pressure increases the 
power of the fluid to dissolve compounds increases while 
the viscosity remains constant. In the supercritical range 
under high pressure and a sufficient temperature, the fluid 
can act as an alternative to organic solvents and dissolve 
different drugs and lipids.72 SCF like carbon dioxide is 
safe, cheap, non-irritable, and generally inactive, and has a 

low critical point. The strategy frequently yields particles 
in the micrometer run and is regularly joined with another 
homogenization system like ultrasound.73

Solvent injection technique 
A fundamental principle of this method is the precipitation 
of dissolved lipid in a solution.74 Solid lipid is dissolved 
in an organic solvent, and the mixture is injected with a 
syringe into the stirred aqueous phase having surfactant. 
Obtained dispersion is filtered to remove any excess 
amount of lipid. The aqueous emulsifier helps to produce 
lipid droplets at the injection site and also assists in 
stabilizing the SLNs by reducing the surface tension 
between the water and lipid phase.75

Spray drying
It is a less expensive and alternative procedure of 
lyophilization. This strategy causes aggregation of 
molecules because of high temperature, shear force, and 
partial melting of the particles.9 The effect of spray drying 
on the W/O/W double emulsion of methyl testosterone 
loaded stearic acid matrix has been stated by Mlalila et 
al.76 The lipid usage with a melting point >700°C for spray 
drying was recommended by Freitas and Muller. SLNs 
have provided the best results with 1% solution of trehalose 
in water or 20% in ethanol-water mixtures (10/90 v/v).77

SLNs characterization
Characterization of SLNs is a key parameter for 
the successful development of drug delivery. The 
physiochemical parameters like size, surface charge, 
molecular weight, and solubility have a profound effect 
on the uptake and distribution of lipid-based nano-
formulations by the lymphatic system, so all these 
parameters need to be critically characterized. 

Surface charge and particle size
The most frequently used methods for calculating particle 
size are photon correlation spectroscopy (PCS) and laser 
diffraction (LD).5,9 PCS was previously known as quasi-
elastic light scattering and currently known as dynamic 
light scattering. PCS measures the scattered light intensity, 
fluctuated by the mobile molecules.78,79 PCS can be used 
to detect only nanoparticles; limitation arises with more 
considerable micro particles determination. In light 
scattering (LD), the diffraction angle of the particle radius 
is measured. Larger particles cause less scattering of light 
as compared to smaller particles. LD covers a broad range 
of particle size. Zeta potential of electrokinetic properties 
of particles is the ability of colloids to move under an 
electric field.80 The colloidal suspension can be stabilized 
by electric repulsion at higher zeta potential (e.g. more 
than 30 mV or less than -30 mV). Electric repulsion 
normally leads to less interaction and lower aggregation 
of particles.
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Crystallinity and lipid modifications 
The crystallization of solid lipid leads to gelling or expulsion 
of the incorporated drug, so this parameter needs to be 
critically evaluated. Crystallization behavior and kinetic 
energy of lipids after polymorphic modifications in the 
scattered state differ from their mass material.81 Basic 
methods which are used to analyze radiation geometric 
scattering from planes of crystal within a solid permitting 
degree of crystallinity to be assessed with X-ray diffraction 
and differential scanning calorimetry (DSC).6,7,82 DSC 
works on the fact that different lipids modifications have 
different melting points and melting energy.5 Infrared 
Radiation spectroscopy and Raman spectroscopy both 
techniques are used to find out the structural properties 
of lipids.83

( )002 100 1
002

I IamCrI x
I
−

= − − −

Where CrI is the relative degree of crystallinity, I002 
is the maximum intensity (in arbitrary units) of the I002 
lattice diffraction and lam is the intensity of diffraction in 
the same units at 28 = 18°.84

Powder X-ray diffraction 
X-ray is a result of constructive interference between the 
monochromatic X-rays and sample x-rays are generated 
by cathode tube filtered to produce the monochromatic 
waves and directed towards the sample. 85,86

Entrapment efficiency and loading capacity 
Lipid and aqueous phase separation is the key parameter to 
determine the amount of drug entrapped per unit weight 
of lipid nano-carrier. Ultrafiltration,87 Centrifugation 
filtration,88 and dialysis89 are employed for the separation. 
Drug loading (%DL) capacity of lipid nanoparticles 
depends on various factors like; solubility and polymorphic 
state of lipid material.90 The high lipid solubility of the 
drug is the requirement for adequate loading capability to 
be achieved. The drug solubility in lipid must be higher 
than desired because it decreases during the cooling step 
of the process. Mono and diglyceride components of used 
lipid facilitate the drug solubilization. Lipids that form 
the crystalline particles with defined lattice leads to drug 
expulsion.36,45,91 zur Mühlen et al have studied the effect 
of drug loading and drug incorporation over the release 
profile and lipid matrix structure of SLNs with three 
model drugs (tetracaine, etomidate, and prednisolone). 
In the first two drugs (tetracaine and etomidate) 10% 
drug loading was achieved with Compritol 888 ATO, but 
prednisolone SLNs with cholesterol and compritol could 
incorporate only up to 3.6% and 1.67% respectively.46 
Generally only 5-10% drugs can usually be incorporated 
despite this fact as in the case of ubidecarenone a 
coenzyme Q10, 40% drug loading was reported and more 
than 50% higher concentration can also be incorporated 

in the dispersed phase.92

Morphological characterization 
Direct imaging (shape) and dimensional analysis (size) 
of nanoparticles can be accomplished by transmission 
electron microscope (TEM) and scanning electron 
microscope (SEM) methods because of the higher 
resolution power and pace. Transmission electron 
microscopy has a higher resolution power than SEM 
because of its electron energy at above 100 KeV.93,94 TEM 
allows visualization of nanoparticles after freeze fracturing 
and freeze substitution.95,96Atomic force microscopy has 
drawn attention in imaging, for instance, imaging of 
fibrinogen polymerization, imaging of growing infection 
in an infected cell, and imaging of in-vitro degradation 
of polymer surfaces and polymer nanoparticles were 
performed.6,7

Structure and drug distribution of SLNs
To find out the qualitative nature and size of nanoparticle 
nuclear magnetic resonance can be used. The selectivity 
of this method is due to chemical shift which gives the 
sensitivity to the molecular mobility which provides 
physicochemical properties of components within the 
nanoparticles.45

In vitro drug release study 
From the lipid matrix, the drug release occurred by the 
diffusion mechanism. The critical factors influencing 
drug release from SLNs are the method of preparation, 
drug solubility in the lipid, drug/lipid interactions, type of 
surfactant, composition of lipid matrix, and particle size. 
The in-vitro release profile helps to uncover the mechanism 
of drug release and its kinetic behavior.95,96 Typically SLNs 
show biphasic release profile, burst release followed by 
controlled. Immediate release effect was observed in 
SLNs during the beginning of release profile because the 
adherent drug on the SLNs surface will disperse from the 
nanoparticle, after that the lipid matrix starts to degrade 
and release the drug in a controlled manner.46

Dialysis tubing
In the pre-washed dialysis tubing, the stable lipid 
nanoparticle dispersion may be hermetically set. At room 
temperature the dialysis sac dialyzed with an appropriate 
medium; The samples are at reasonable intervals pulled 
back from the dissolution medium, centrifuged, and 
observed for the drug content utilizing an appropriate 
analytical method.19,70 In the normal dialysis technique, 
samples are taken from the outer compartment to find 
out the drug release from the nanoparticles. However, in 
contrast, in reverse dialysis samples are taken from the 
inner compartment to analyze the release profile, and 
nanoparticles are placed in the outer compartment with 
agitation to minimize the unstirred water layer.19,64,97
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Delivery of SLNs by different route of administration 
Parenteral route of administration 
Parenteral administration is the most suitable and studied 
route to deliver the SLNs, particularly for targeted cancer 
therapy.98 For the efficient delivery of biotechnological 
products like protein and peptides parenteral route is most 
commonly preferred due to their enzymatic degradation 
in the gastrointestinal tract.36 The injectable SLNs that 
have been studied so far were encapsulated with different 
therapeutic classes of drugs like anticancer agents, 
imaging agents, anti-parkinsonism, antibiotics, etc. First 
in vivo study of SLNs loaded with anticancer drugs was 
carried out by Yang et al. They used camptothecin as an 
anti-cancer drug and studied its anticancer activity with 
SLNs, administered by Intravenous injection. The author 
concluded that SLNs have a higher residence time in 
the brain, heart, and reticuloendothelial cells.99,100 After 
intravenous administration, doxorubicin-loaded stealth 
SLNs were detected only in the brain. On the other hand, 
after the injection of non-stealth stable lipid nanoparticles 
in rabbit mononuclear tissues (liver, lungs, spleen, kidney, 
and heart), the volume of doxorubicin present was always 
smaller.101 Wang et al reported the chitosan nano layered 
cisplatin loaded SLNs to enhance cisplatin’s anti-cancer 
activity for the treatment of HeLa cell carcinoma. Results 
showed that the incorporation of cisplatin in solid lipid 
leads to an increase in its activity as evident from MTT 
cell assay. Data suggests that SLNs formulation is a better 
choice for cervical cancer.102

Oral route of administration 
The lipid structure of SLNs makes it suitable and 
interesting for the oral route of administration to increase 
the bioavailability by protecting the drug from chemical 
as well as enzymatic degradation, thereby delaying the in 
vivo metabolism.103 Aqueous dispersion or conventional 
dosage forms, such as pellets, capsules, or tablets, are the 
oral dosage forms of SLNs. The conditions of gastric parts 
lead to particle aggregation due to the high concentration 
of acid and ionic strength present in the stomach.50,104 
Along with this fact influence of stomach and pancreatic 
lipase on SLNs degradation remains a question. Sarmento 
et al developed insulin-loaded SLNs for oral drug delivery 
by modified solvent emulsification evaporation method. 
The investigator noted that the hypoglycemic effect was 
observed in diabetic rats after oral administration of 
insulin-loaded SLNs and also it could be said that SLNs 
can promote the oral absorption of insulin.105

Transdermal route of administration
The highest amount of lipid is found in the uppermost 
(epidermis) layer of the skin; therefore, All lipid 
nanoparticles quickly bind themselves to the surface of 
the skin and facilitate lipid exchange between the stratum 
corneum’s outer layers; and for topical and transdermal 
distribution, the carrier appears promising.46,106 For the 

effective delivery of SLNs carrier to the skin, lipid amount 
must be kept at a low level.9 A drug which undergoes the 
first-pass metabolism with high molecular weight is an 
ideal candidate for transdermal drug delivery. This route 
can provide drug release up to one week in a controlled 
manner.107 Kurakula et al formulated and optimized 
avanafil (AVA) loaded SLNs with subsequent loading into 
hydrogel films for the transdermal delivery of AVA. The 
results suggested that transdermal drug delivery of AVA 
can be used as an alternative to peroral dosage form with 
increased bioavailability.108

Nasal route of administration 
The nasal route is a great alternative route for the systemic 
delivery of the drug, when it is restricted by the I.V. 
route, because of the higher surface area and presence of 
porous epithelial layers.109 Nasal drug delivery system is 
an effective technique because of the following reasons: 
(a) Nose has a larger surface area for absorption of drugs 
due to the microvilli present on the surface of the nose 
(b) the subepithelial layer of the nasal mucosa is highly 
vascularized, and the blood flows directly from nose 
to systemic circulation.110 SLNs could be an efficient 
delivery system for the treatment of CNS diseases like 
Parkinson’s and Alzheimer’s diseases. CNS bioactive 
compounds have the limitations like hydrophobicity, 
poor intestinal solubility/absorption, poor bioavailability, 
less effectiveness, and limitation to cross BBB (blood-
brain barrier). To overcome all these limitations, the 
nanotechnology-based nasal route approach proposed the 
appropriate field for research.111-114 Md et al have prepared 
bromocriptine (BRC) loaded chitosan nanoparticles 
(CS NPs) intended for the nose to brain delivery. The 
brain/blood ratio of BRC solution (i.n.), BRC loaded CS 
NPs (i.n.) and (i.v.) were found to be 0.47 ± 0.04, 0.69 ± 
0.031, and 0.05 ± 0.01 respectively. The drug transport 
percentage and drug targeting efficiency for BRC loaded 
CS NP after the intranasal route was 84.2% ± 1.9% and 
6.3 ± 0.8 respectively, which is very promising. Favorable 
results are suggestive of the direct nose to brain transport 
bypassing the BBB as compared with BRC solution i.n. 
and i.v.115 Gupta et al recently reported the SLNs of non-
nucleoside reverse transcriptase inhibitor efavirenz, used 
in HIV infections via intranasal delivery. Promising 
pharmacokinetic studies showed 70 times better relative 
bioavailability for the efavirenz loaded SLNs dispersion via 
i.v. route as compared to the orally administered powder 
drug which indicates its potential towards the complete 
eradication of HIV in infected patients.116 Fatouh et al 
adopted a nasal route to avoid the first-pass metabolism of 
agomelatine to increase the bioavailability of the drug and 
to achieve the targeted nose to brain delivery. Results are 
supported with the data like peak plasma concentration, 
AUC (0-360 minutes), and absolute bioavailability as 
compared to that of the marketed oral product (Valdoxan®) 
with the values of 759.00 ng/mL, 7805.69 ng⋅min/mL, and 
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44.44%, respectively.117

Pulmonary administrations 
Among the pharmaceutical researches, pulmonary drug 
delivery is one of the most explored delivery systems. 
When a foreign particle enters in the lung, macrophages 
attack that particle and try to damage it. To prevent 
such damage, the most effective approaches include a 
stealth approach such as PEGylation or the usage of the 
endogenous compound which occurs in lung dipalmitoyl 
phosphatidylcholine (DPPC).118 Ghanshyam et al reported 
triamcinolone acetonide loaded SLNs dry powder 
inhaler.119 Bakhtiary et al demonstrated the formulation 
of dry powder inhaler of erlotinib (ETB)-loaded SLNs 
through hot homogenization method with compritol 
888 ATO® and Tween 80 as the surfactant. The advanced 
formulation showed <100 nm particle size, PDI 0.367, and 
78.21% encapsulation efficiency. Higher cytotoxicity was 
found with A549 cells. Finally, spray-dried microparticles 
with 1-5 µm aerodynamic size were produced for deep 
lung delivery.120

 
Ocular route of administration
The eyes are among the most sensitive organs of our 
body, and hence drug delivery to eye tissues is especially 
dangerous.16 SLNs displayed outstanding optical 
conveyance penetration properties. The discharge of 
the drug may be assisted or regulated into the ocular 
mucosa, which in contrast to conventional ophthalmic 
arrangements increased the pre-corneal maintenance 
time of the medication. The nanoscopic size of SLNs does 
not bring out any obscured vision. SLNs went for visual 
conveyance ought to need to meet explicit criteria, similar 
to visual safety (Draize rabbit eye test), sterility, isotonicity, 
and pH of suspension (like lachrymal liquid).121 Chetoni 
et al had developed tobramycin (Tobra) loaded SLNs for 
ophthalmic treatment. The author had found profound 
results as compared with Tobral® commercial preparation. 
In aqueous humour tobramycin concentration is reported 
to increase by two and fivefold (P < 0.01) after 1 and 3 
hours respectively. Due to small particle size and high 
viscosity, accumulation of the drug in the retina even 
after 1 hour was 17.2 μg/g which is three times more than 
that achieved with instillation (4.74 μg/g).122 Tatke et al 
developed triamcinolone acetonide-loaded 

SLNs in Situ Gel (TA-SLN-IG) for enhanced topical 
ocular delivery. The rheological and trans-corneal 
permeability for TA-SLN and TA-SLN-IG was 10.2 
and 9.3 folds higher as compared to TA-control 
along with this higher tear concentration of 13.3 μg/
mL at 2 hours is found which reflects an enhanced 
precorneal residence time (Table 4).123

SLN: carrier for biological drug
The biological drugs do not hold the required 

physicochemical properties to get absorbed and enter 
target cells; therefore, there is a strict need for the delivery 
system (carrier) to overcome the hurdles of conventional 
delivery systems and to improve drug performance.

SLNs as a gene vector carrier
In recent days gene delivery is considered an attractive 
therapeutic technique that utilizes viral and non-viral 
vectors. Because of the stability and safety profile, non-viral 
vectors are more commonly used as a vector to transfer 
gene. Non-viral gene easily passes through biological 
barriers as compared to viral vectors.148,149 Botto et al 
recently reported the potential of cationic SLNs (cSLNs) 
as non-viral vectors for shNUPR1 plasmid delivery in 
Hepatic cell Carcinoma gene therapy. The author also 
obtained the highest in vitro transfection efficiency and 
biocompatibility for cSLNs, so they proposed cSLNs as an 
excellent transfection vector for HCC gene treatment.150 

Bondi et al focused on the suitability of SLNs as a 
carrier (non-viral) for the delivery of genes. Promising 
results showed that SLNs were successfully developed 
using the microemulsion method and they can bind 
efficiently with DNA, and this type of vector can be used 
frequently due to its safety, and it can efficiently deliver 
DNA by maintaining the efficacy.151 Penumarthi et al152 
demonstrated the formulation of DNA-SLNs complex for 
non-viral delivery of plasmid DNA to dendritic cells. Large 
particle size (758.7 nm) was reported due to the strong 
electrostatic interaction between negatively charged 
DNA and positively charged SLNs. The most efficient 
proportions for the formation of such complex were 1:10 
(DNA: SLNs). The cytotoxicity of 10 μg/mL DNA–SLNs 
complexes was significantly low as compared to plain 
SLNs over 72 hours and cell viability, which might be due 
to the increase in cell division by lipids available from 
nanoparticles. Development of protamine (P) attached 
DNA loaded cholesteryl oleate SLNs (P:DNA: CO-SLNs) 
were recently reported by Limeres et al153 to deliver the 
non-viral vector nucleic acid delivery. They found the 
suitable proportion 2:1:7 of P:DNA: CO-SLNs for efficient 
delivery and reported that the presence of protamine 
facilitates the binding efficiency and nucleic acid delivery 
to the cytoplasm. In another study, DNA delivery by the 
incorporation of cationic lipid (Precirol ATO and stearyl 
amine) in SLNs was achieved by Carrillo et al.154 DNA 
delivery via cationic SLNs. Authors had found that at 1: 
1.25 ratio of stearylamine: poloxamer, SLNs were smaller 
in size but carry higher zeta potential (342.3 ± 0.076 nm, 
43.98 ± 1.58). The most efficient binding found from 
15:1–5: 1 ratio of SLNs: DNA and lyophilization with the 
5% trehalose cryoprotectant does not alter the quality of 
the product. Yu et al155 has developed the surface modified 
with mannan, phosphatidylethanolamine-grafted DNA 
loaded SLNs for the targeted gene delivery. Targeting 
potential had been checked with MTT assay in RAW 264.7 
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cells and found the least cytotoxicity with Man-SLNs and 
highest transfection efficiency with Man-SLNs–DNA. 
The results proposed Man-SLNs-DNA as a promising 
non-viral vector with efficient active targeting potential 
for gene delivery. 

SLN as a potential new adjuvant for vaccines
An adjuvant is required for subunit and single antigen-
based vaccines to provide sufficient immunogenicity. 
Adjuvant helps to reduce the frequency of immunization 
and the antigen amount. Emulsion-based adjuvant 

Table 4. Various research findings of SLN formulations with their lipid, method of preparation, route of administration

Drug
Route of 

administration
Lipid Size

%Entrapment 
Efficiency

Reference 

Curcumin I.V Compritol 888 ATO 9.51nm - 124

CdSEe/ZnS I.V - - - 125

- I.V Stearic acid 159-239 nm 126

Doxorubicin I.V Stearic acid 80-90 ± 5 nm 101

Paclitaxel (PTX) and TOs-Cisplatin I.V Glyceride monostearate 108.6 ± 3.1 nm 90.3 ± 3.2% 127

Methotrexate (MTX) I.V Stearyl amine 174.51± 5.1 nm 84.3 ± 1.24 % 128

Nitrendipine (NDP)
I.V and 

Intraduodenal
Trimyristin, tripalmitin, tristearin, 

soy phosphatidylcholine 95%
101.9 ± 3 nm 99.8 ± 0.23 % 129

Idebenone I.V. route Cetyl palmitate 30 -95 nm 66

Repaglinide (RG) Oral Stearic acid
360± 2.5 nm (Solvent 
injection) 281±5.3 nm

(Ultrasonication)
62.14 ± 1.29% 121

Carbamazepine Oral
Tristearin,

Phospholipon 80 H
168±1.8 nm 62.14 % 130

Elvitegravir Oral Gelucire 44/14 151.0±2.4- 199.1±2.7 nm 89.7±0.27% 131

Insulin Oral Cetyl palmitate 361±30 nm 46±6 % 105

Ramipril Oral
Glyceryl monostearate, glyceryl 

monooleate
104-334 nm 72.5 ± 86.40% 132

Glibenclamide (GLI) Oral Precirol and compritol 105.1±2.9-183.1±3.2 nm 80±5% 133

Carvedilol (CVD) Oral Precirol ATO5
20±0.009 –
58±2.09 nm

78±5.17-94±3.71% 134

Buspirone HCl Oral Cetyl Alcohol 345.7 nm ---- 135

Donepezil (DPL) Intranasal Glyceryl monostearate 121.0 nm 67.95% 136

Agomelatine Intranasal
Glyceryl tripalmitate, Gelucire 

43/01, Glyceryl tristeratae, Stearic 
acid, Precirol, and Galeol

220.90 ± 1.55-515.30±2.40 nm
58.19± 8.10-93.68 

±3.4%
117

Rifabutin (RFB) P.A
Glyceryl dibehenate, glyceryl 

tristearate
92 ± 1 nm 91.2±3.6% 137

Ethambutol (EMB) P.A Compritol 56.25±2.05- 81.86±3.20 nm
98.16±0.66-
99.04±0.4%

138

Triamcinolone acetonide P.A Soya lecithin 339.2 ± 1.85 nm 58.23±1.8% 119

Naringenin (NRG) P.A Glyceryl monostearate 98 nm 79.11% 139

Paclitaxel (PTX) P.A 140

Avanafil (AVA) T.D
Compritol 888, Cholesterol, Castor 

oil
86 nm 85.01% 108

Diclofenac Sodium (DS) T.D 89% 141

Triptolide(TPL) T.D Compritol 888 ATO 104 ± 1.82 nm 92.8± 8.52% 142

Ivermectin (IVM) T.D Palmitic acid 312.8 ±2.4 nm 98.48± 0.052% 143

Isoniazid(INH) O.D
Compritol 888:
Stearic acid(4:1)

316.5± 8.7 nm 65.2± 2.2% 144

Natamycin (NAT) O.D Precirol ATO5 21.8- 47.48 nm 41.06-83.2% 145

Cyclosporine O.D 355±11- 487±32 nm 71±1-100±1% 146

Alendronate P.A Compritol 888: <100 nm - 147

Triamcinolone Acetonide-(TA) O.D Stearic acid 80±11.1 nm 100% 122

T.D=Transdermal Delivery, O.D= Ocular Delivery, P.A = Pulmonary administration
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systems had been widely applied for the development 
of successful vaccines.53,156 Mishra et al explored the 
capacity of SLNs as a vector for the surface antigen of 
hepatitis B (HBsAg) by modifying the surface of SLNs 
for improvement of loading capacity and cellular uptake 
by subcutaneous route. By comparing the results with 
soluble HBsAg, SLNs, and mannosylated carrier, the 
author concluded that SLNs carrier showed better cellular 
uptake and it also induced more significant TH1 immune 
response.157 Stelzner et al have investigated the potential 
of squalene containing SLNs a promising adjuvant 
system for yeast vaccines. Supporting results revealed an 
excellent immune-stimulating effect that was comparable 
to that of commercially available (AddaVaxTM) adjuvant in 
terms of size, sterility as well as stability obtained. These 
data suggested squalene SLNs as an excellent adjuvant 
candidate that could be used in future vaccine trials.158

Protein and peptide drug delivery 
SLNs are based on dispersed phase technologies/ because 
of their hydrophilic nature, and many proteins are 
expected to be poorly encapsulated into the lipophilic 
matrix of the solid lipid core, leading to the partition of 
the aqueous phase during the preparation which can be 
further increased by the use of surfactants as emulsion and 
stabilizers.159 Gallarate et al68 concluded in the research 
that lyophilic ion coupling of leuprolide and insulin 
permitted the entrapment of these molecules in SLNs. As 
demonstrated with leuprolide stoichiometry of the ion 
pair could be used as a determinant for encapsulation 
efficiency. Different peptide and protein also used in 
treatment of various cancer with SLNs which offers 
various advantages like low toxicity, high bioavailability 
of and can incorporate both hydrophilic and hudrophobic 
drug. 160

Ezzati Nazhad Dolatabadi and Omidi161 in his review 
had discussed the various aspects of targeted delivery 
of drug and gene with DNA and RNA. Authors had 
concluded that cationic SLNs surface DNA loaded and 
decorated with tumor-specific target showed an improved 
therapeutic targeted potential for drug and gene delivery. 

Surface engineered solid lipid nanoparticles
New approaches and polymers had been reported 
to modify the surface of the SLNs with target active 
moieties which improve biocompatibility, stability, and 
target ability. Recently Arana et al modified the SLNs 
with phosphatidylethanolamine polyethylene glycol 
(PE–PEG) and observed that the presence of PE–PEG 
improved targeting ability in an oral adenocarcinoma 
cell line and concluded that surface modification with 
PE–PEG improves the efficiency and discriminates the 
distribution of the SLNs-loaded drug in comparison 
to non-coated SLNs.162 Cho et al developed Tween 

80-emulsified and TPGS 1000-emulsified tristearin-
based lipidic nanoparticles and by comparing both the 
formulations they concluded that the intestinal absorption 
and relative oral bioavailability of docetaxel in rats were 
further improved in TPGS 1000-emulsified SLNs as 
compared to Tween 80-emulsified SLNs, probably due 
to better inhibition of drug efflux by TPGS 1000, along 
with intestinal lymphatic uptake.163 Zhou et al developed 
hyaluronic acid-coated solid lipid nanoparticles (HA-
SLNs) of prednisolone(PD) HA-SLNs/PD. In mice with 
collagen-induced arthritis (CIA), the developed HA-SLNs/
PD particles were injected through I.V and particles get 
accumulated in affected joint tissues only. HA-SLNs/PD 
showed increased circulation time and preserved bones 
and cartilages better than free drug or drug encapsulated 
in SLNs without HA. Promising results suggest that 
encapsulating PD in HA-coated SLNs may present as an 
excellent carrier for treating inflammatory disorders.164 

Some of the tailored surfaces of SLNs with active moieties 
are enlisted in Table 5.

Current scenario of patent for SLNs
Rationally designed, ease of surface tailoring, long-term 
stability, feasible scale-up potential, and promising in vivo 
result studies with SLNs have resulted in a large number 
of patents being filed. Diorio and Lokhnauth received 
a patent of curcumin SLNs, and the inventor claimed 
solid lipid particles comprising of a hydrophobic matrix 
from 5 wt. % to about 30 wt. % of curcumin, wherein 
lipid hydrophobic matrix is substantially free of water 
and curcumin loaded SLNs had an average particle size 
diameter ranging from 100 um to 1500 um and lipid 
matrix melting range from 15°C to 85°C and 30°C to 45°C 
to get the stable SLN formulations.173 A summary of some 
patents of SLNs is given in Table 6. 

Conclusion and Future Prospects
The SLNs have the potential to maintain high stability 
during their storage period. A varied range of lipids 
(oils) and fatty acids are accessible for tuning the release 
kinetics. SLNs are very flexible lipid carriers that can be 
easily tailored with the terminal groups of solid lipid to 
attain efficient improvement for a given treatment. Drug 
expulsion and targeting problems can be efficiently 
addressed by surface modification. SLNs are not only 
used for treatments, imaging agent or diagnostic agent 
potential are also explored. A front line of research 
should merely be focused on the development of surface-
modified SLNs for future perspectives. It would have 
great potential in imaging, active and specific delivery 
in various tissue regions. Researchers have already filed 
and received many patents related to SLNs, and young 
researchers can anticipate more patented SLNs-based 
(surface-modified SLN) delivery systems soon for the 
treatment and diagnosis of various diseases especially for 



SLNs: effective drug delivery

Advanced Pharmaceutical Bulletin, 2022, Volume 12, Issue 1 27

targeting by tailoring the surface. If properly explored, a 
very well-designed, SLNs seems to be a promising carrier 
that may open a new benchmark in treatment, diagnosis, 
and as a carrier for biological drugs.
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