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Introduction
Since the first reports of unexplained respiratory infections 
in Wuhan, China, at the end of December 2019, the world 
has faced one of the worst pandemic crises. From an 
initial 4000 reported deaths in China, the fatal cases of 
SAR-CoV-2 infection jumped to more than 4.28 million 
worldwide by mid-August 2021.1 In Brazil, the situation 
is deeply worrying, with 20 416 183 confirmed infections 
and more than 570 000 fatal cases, in mid-August 2021.2,3

COVID-19, caused by SAR-CoV-2, proved to be more 
than a severe respiratory infection; it involves a number 
of symptoms, from cough to cardiac and central nervous 
system (CNS) manifestations.4,5

SARS-CoV-2 infection develops a physiopathology 
comparable to that of SARS-CoV. This infection results in 
an aggressive inflammatory response provoking damage 
to the airways,6 and may lead to an exacerbated signaling 
mediated by cytokines from the immune system, ending in 
a phenotype named “cytokine storm”.5 This can result in 

death in about 28% of COVID-19 cases,5 since the “cytokine 
storm syndromes” correspond to hypercytokinemia and a 
hyperinflammatory process. An increase in interleukins 
such as monocyte chemoattractant protein 1, macrophage 
inflammatory protein 1-α, granulocyte-colony stimulating 
factor, interferon-γ (INF-γ) inducible protein 10, and 
tumor necrosis factor,7,8 are observed, leading to a lethal 
and fulminating outcome.9

However, the assumption that COVID-19 ends with the 
symptoms, and the avoidance of mortality, have subsided 
with increasing reports of persistent and prolonged 
effects, recognized as post-COVID-19 (or post-acute-
COVID-19) syndrome.10,11

Upon entering the host cells, the virus needs the surface 
receptors angiotensin-converting enzyme 2 (ACE2),12 and 
TMPRSS2.13 Even though ACE2 is significantly expressed 
in the type II alveolar cells of the lungs, studies have 
demonstrated levels of SARS-CoV-2 receptor expression 
in different tissues and cells, such as the upper esophagus, 
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Abstract
Purpose: The emergence of the COVID-19 pandemic has led to the search for potential 
therapeutic responses for various aspects of this disease. Fruits of Pterodon emarginatus Vogel 
(Fabaceae), sucupira, have been used in Brazilian traditional medicine because of their anti-
inflammatory properties, which have been proven in vivo, in vitro, and in silico. Therefore, the 
aim of this work is to evaluate P. emarginatus oleoresin and isolated diterpenes by in vitro anti-
inflammatory models.
Methods: In this study, the mechanisms underlying the anti-inflammatory activity of P. 
emarginatus oleoresin and vouacapanes 6α,19β-diacetoxy-7β,14β-dihydroxyvouacapan (V1), 
6α-acetoxy-7β,14β-dihydroxyvouacapan (V2), and methyl 6α-acetoxy-7β-hydroxyvouacapan-
17β-oate (V3) were investigated in HaCaT cells. 
Results: Oleoresin, V2, and V3 inhibited phospholipase A2 (30.78%, 24.96%, and 77.64%, 
respectively). Both vouacapanes also inhibited the expression of COX-2 (28.3% and 33.17%, 
respectively). The production of interleukin 6 (IL-6) was inhibited by oleoresin by 35.47%. 
However, oleoresin did not interfere with Nrf-2 expression or IL-8 production. 
Conclusion: The results support the ethnomedicinal use of P. emarginatus oleoresin as an 
anti-inflammatory herbal medicine, and also highlight P. emarginatus oleoresin and isolated 
vouacapanes as an attractive therapeutic approach for COVID-19 through the reduction 
or chronological control of the inflammatory mediators IL-6, cyclooxygenase-2 (COX-2), 
phospholipase A2, and INF-y (indirectly) during the SARS-CoV-2 infection process.
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stratified epithelial cells, kidney cells, urothelial cells, 
enterocytes, and cardiomyocytes, which supports cellular 
outspreading of SARS-CoV-2 infection.14 Consequently, 
COVID-19 is not only limited to respiratory disorders 
but also to kidney, liver, heart, and gastrointestinal tract 
illnesses.15 Interestingly, ACE2 expression is significantly 
higher in keratinocytes,16 suggesting that this kind of cell 
can be infected. 

Once inside the cells, the productive replication and 
discharge of the new virus undergo an inflammatory 
process due to the release and recognition of damage-
associated molecular patterns. The details of the infection 
and hyper-inflammation processes have recently been 
elucidated. In the lung, alveolar macrophages signal 
pro-inflammatory cytokines and chemokines, including 
interleukin 6 (IL-6), phospholipases A2, cyclooxygenase-2 
(COX-2), and IFN-γ. These messengers attract 
immune system cells to the site of infection, promoting 
inflammation and a pro-inflammatory feedback loop. 
The accumulation of immune cells in the lungs causes the 
overproduction of pro-inflammatory cytokines, which 
eventually damages the lung infrastructure. The resulting 
cytokine storm may spread to other organs, causing 
multi-organ damage.8

Research groups are endeavoring to find drugs to 
treat COVID-19, and in addition to vaccines, already 
used drugs, natural products, and traditional medicines 
(mainly Chinese) have been trialed.17-20 However, only a 
few promising agents have been found to treat infections 
caused by SARS-CoV-2.21

Brazil’s biodiversity has been claimed to be a potential 
source of new drugs. With more than 40 000 native plant 
species distributed in several biomes,22 the traditional use 
of herbal medicines is prevalent throughout the country. 
Pterodon emarginatus Vogel (Fabaceae) is a native species 
largely used in traditional medicine, and “sucupira” 
fruits are available at the Brazilian medicinal flora 
market.23 This species was included in the manuscripts 
and publications of George Gardner (1812–1849), and 
Saint-Hillaire (1779-1853),24,25 which described the use of 
the essential oil of Pterodon fruits for toothaches. Several 
ethnomedicinal surveys around Brazil have highlighted 
the use of sucupira as an anti-inflammatory remedy. 

In the Southeast region, hydroalcoholic “garrafada” (a 
traditional maceration, usually with cachaça as solvent) 
of Pterodon fruits has been used in popular medicine 
for inflammation, mainly in cases of rheumatism, sore 
throat, bronchitis, and asthma26; in the Northeast region, 
a decoction of Pterodon fruits has been used for its anti-
inflammatory and depurative properties.27

The chemistry of P. emarginatus has been well 
established. Isoflavones and diterpenes (vouacapane-type) 
are the main components of oleoresin.28-34 Vouacapane 
diterpenoids are low-to-medium polarity secondary 
metabolites. Studies suggested the vouacapane skeleton as 
the main pharmacophore, supported by pharmacological 
investigations of isolated compounds, as well as P. 
emarginatus oleoresin-derived vouacapane diterpenoids.32 
Chemoinformatic and in vivo investigations suggested 
the thermodynamic feasibility of P. emarginatus-derived 
vouacapane diterpenoid docking in both human and 
murine COX-2,28 as well as a possible impairment of 
pro-inflammatory mediators from the prostaglandin E2 
(PGE2) pathway,35 which might indicate the involvement 
of diterpenoid derivatives in the reported P. emarginatus 
oleoresin antinociceptive and anti-inflammatory action.36

Given the importance of elucidating the 
pharmacodynamics of P. emarginatus products, the 
anti-inflammatory actions of oleoresin and vouacapanes 
6α,19β-diacetoxy-7β,14β-dihydroxyvouacapan (V1), 
6α-acetoxy-7β,14β-dihydroxyvouacapan (V2), and 
methyl 6α-acetoxy-7β-hydroxyvouacapan-17β-oate (V3) 
(Figure 1) were evaluated in HaCaT human keratinocytes 
exposed to UVA radiation or 5-fluorouracil (5-FU). 
Therefore, different targets were evaluated, including 
modulation of COX-2, NRF2, and IL-6, as well as the 
production of IL-8, IL-1β, IL-10, tumor necrosis factor 
(TNF), and IL-12p70. The inhibition of phospholipase A2 
by oleoresin and the three isolated vouacapanes were also 
evaluated.

Materials and Methods 
Reagents and solutions
Dulbecco’s modified Eagle’s medium (DMEM), nutrient 
mixture F-12 (Ham’s F-12), 5-fluorouracil (5-FU), 
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium 

Figure 1. Vouacapanes isolated from Pterodon emarginatus Vogel (Fabaceae). 6α,19β-diacetoxy-7β,14β-dihydroxyvouacapan (V1), 6α-acetoxy-7β,14β-
dihydroxyvouacapan (V2), and methyl 6α-acetoxy-7β-hydroxyvouacapan-17β-oate (V3)
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bromide (MTT), 2,7-dichlorofluorescein diacetate 
(DCFH-DA), Triton X-100, protease inhibitor cocktail, 
bicinchoninic acid protein assay kit, bovine serum 
albumin (BSA), and Hanks’ balanced salt solution (HBSS) 
were purchased from Sigma-Aldrich (St. Louis, USA). 
BD Cytofix/Cytoperm™ solution and BD cytometric bead 
array (CBA) human inflammatory cytokine kit (catalog 
no. 551811) were obtained from BD Biosciences (San Jose, 
USA). Fetal bovine serum (FBS), penicillin/streptomycin 
solution, Hoechst 33 342, and TrypLE™ expression were 
acquired from Invitrogen/Life Technologies (Carlsbad, 
USA). Dimethyl sulfoxide (DMSO) and Tween-20 were 
obtained from Vetec (Rio de Janeiro, Brazil). Alexa Fluor 
488-conjugated anti-human nuclear factor erythroid 2–
related factor 2 (NRF2) (EP1808Y) antibody was acquired 
from Abcam Plc (Cambridge, United Kingdom). 
Phycoerythrin (PE)-conjugated anti-COX-2 (sc-7951) 
was acquired from Santa Cruz Biotechnology (Santa 
Cruz, CA, USA).

Plant material
Fruits of P. emarginatus Vogel (Fabaceae) were collected 
in Bela Vista de Goiás, Brazil in September 2007. A 
voucher was deposited at the Federal University of Goias 
(UFG) herbarium (number 27 155).

The oleoresin was extracted by cold pressing in a 
continuous mini-press (MPE-40 ECIRTEC, Bauru, São 
Paulo, Brazil), as previously described,30 with a yield 
of 30% weight. The oleoresin (OR) was stored at -20°C 
until analysis. The isolation of vouacapanes 6α,19β-
diacetoxy-7β,14β-dihydroxyvouacapan (V1), 6α-acetoxy-
7β,14β-dihydroxyvouacapan (V2) and 6α-acetoxy-7β-
hydroxyvouacapan-17β-oate (V3), as well as the structural 
elucidation, were also described in previous work.30,32 
For all in vitro evaluations, the concentration used was 
7.5 µg/mL (oleoresin), 19 µg/mL (V1), 13.8 µg/mL (V2) 
and 4 µg/mL (V3), defined according to the Cell Viability 
90% concentration (CV90) of each evaluated substance, 
determined by MTT cytotoxicity assay.37

Cell culture
HaCaT human immortalized keratinocytes were 
acquired from the Rio de Janeiro Cell Bank (Rio de 
Janeiro, RJ, Brazil). HaCaT cells were cultured in DMEM 
supplemented with 10% heat-inactivated FBS, penicillin 
(100 IU/mL), and streptomycin (100 μg/mL). Cells were 
cultivated in an incubator (Thermo Scientific Revco 
CO2 incubator, Waltham, USA) at 37°C in a humidified 
atmosphere of 5% CO2. The cells were harvested 
using TrypLE™ Express solution when they reached 
approximately 70% confluence. Cell number and viability 
were determined using the Trypan Blue exclusion method, 
employing the TC20™ automated cell counter (Hercules, 
CA, USA), according to the manufacturer’s instructions. 
Experiments were conducted when cell viability values 
were higher than 90%.37

5-FU preparation 
A stock solution of 5-FU (10 mg/mL) was prepared in 
DMSO according to established protocols,36 and kept in 
an ultrasonic bath for 10 minutes at room temperature. 
The stock solution was stored at -20°C and thawed 
immediately before use. For the cell-based assays, the 
5-FU solution was diluted in complete medium so that 
the final DMSO concentration did not exceed 0.4% (v/v). 

Cytotoxicity assessment
The cytotoxicity of oleoresin and vouacapanes on HaCaT 
cells was evaluated using an MTT reduction assay. Briefly, 
HaCaT cells were seeded in 96-well plates (1.5 × 104 
cells/well) and cultivated overnight for adhesion. After 
that, cells were exposed to decreasing concentrations of 
oleoresin and V1, V2, and V3 compounds (125–0.98 µg/
mL) for 24 hours. Then, the supernatant was discarded, 
and the cells were washed with 150 µL/well of phosphate 
buffered saline (PBS). Afterward, 100 µL of MTT 
solution prepared in DMEM (0.5 mg/mL) were added 
per well. The cells were then incubated for 3 h. Finally, 
the supernatant was discarded, and the formazan crystals 
formed were solubilized in 100 µL/well of DMSO under 
agitation, and the absorbance of the wells was determined 
using a spectrophotometer plate reader (Multiskan 
Spectrum, Thermo Scientific, MA, USA) at 560 nm. 
The experiments were conducted in triplicate, and cell 
viability was determined in comparison to the absorbance 
of the negative control (untreated cells). 

In vitro expression of COX-2 and NRF2
COX-2 and NRF2 activity assays were conducted 
according to standard protocol.28 Briefly, the test consisted 
of seeding HaCaT cells into 6-well plates (2.0 × 105 cells/
well) and incubated overnight. Cells were then pre-
treated with 1 mL/well of either oleoresin, V1, V2, and 
V3 for 24 hours, using the mentioned concentrations. 
5-FU (10 μg/mL) was added to each well, and the culture 
was incubated for an additional 24 hours. Cells were then 
collected using TrypLE™ Express solution, washed twice 
with PBS-BSA (0.1%, w/v), and centrifuged at 1500 rpm 
at 25°C for 5 minutes. Cells were then incubated with 
BD Cytofix/Cytoperm™ solution at 4°C for 20 minutes 
and then washed twice with PBS-Tween 20 (0.05, v/v). 
Cells were incubated with specific monoclonal antibodies 
(anti-NRF2 or anti-COX-2) and protected from light for 
30 minutes at room temperature. The cells were again 
washed twice with PBS-T20, centrifuged at 1500 rpm, 
25°C for 5 minutes, and suspended in 200 μL PBS for flow 
cytometry analysis.37

Cytokine measurement in HaCaT cells exposed to UVA 
radiation
HaCaT cells (7.5 × 104 cells/well) were seeded into 24-well 
culture plates and incubated overnight for adhesion. The 
cells were then pre-treated with oleoresin, V1, V2, or V3 (4 
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µg/mL) for 24 hours. Later, the supernatant was discarded, 
and the wells were rinsed with 1 mL of PBS solution, and 
500 µL of Hanks’ Balanced Salts Solution was added to 
each well. The assays were conducted in two plates, 
one protected from UVA radiation, and the other was 
subjected to 20 J/cm2 at Caron’s Photo-Stability Chamber. 
The cells were then treated with either oleoresin, V1, V2, 
or V3, and incubated for 12 h. After incubation, cells were 
washed twice with PBS (1 mL/well), and cell lysates were 
obtained using 250 μL/well of PBS solution containing 
0.5% (v/v) Triton X-100 and protease inhibitor cocktail. 
Cell lysates were stored at −80°C until analysis. Cytokine 
(TNF, IL-1β, IL- 6, IL-8, IL-10, and IL-12p70) levels were 
measured using the CBA method, using the BD CBA 
human inflammatory cytokine kit (BD Biosciences), 
according to the manufacturer’s instructions, using a flow 
cytometer (BD FACSCanto II, BD Biosciences, San Jose, 
CA, USA). The level of cytokine (pg) was expressed as 
a ratio of total protein content (mg), determined with a 
bicinchoninic acid protein assay kit (Sigma-Aldrich, St. 
Louis, USA) using BSA as a standard, in accordance with 
the manufacturer’s instructions.37

In vitro inhibition of phospholipase A2
The inhibitory activity towards phospholipase A2 was 
determined using the EnzChek Phospholipase A2 
Assay kit (Invitrogen). The manufacturer’s protocol 
was followed. Samples (oleoresin, V1, V2, and V3) were 
in the same concentrations evaluated in the cell-based 
experiments and were incubated for 10 min at 25°C. 
Phospholipase A2 was used as the positive control, while 
DMSO 0.15% was used as the negative control. All assays 
were conducted in triplicates.

Statistics analysis
The data are expressed as the mean ± standard error. 
Group comparisons were conducted using the Student’s 
t test. Statistical significance was set at P  <  0.05. For the 
cytotoxicity tests, the IC50 and CV90 values were obtained 
using non-linear regression.

Results and Discussion
Cell viability towards P. emarginatus oleoresin and 
vouacapane diterpenoids
To preliminarily evaluate the cytotoxicity of oleoresin and 
vouacapane diterpenoids, an MTT reduction assay was 
performed (Figure 2).

Results showed that oleoresin, V1, V2 and V3 were 
cytotoxic in a concentration-dependent manner, and 
the half-maximal inhibitory concentration (IC50) values 
obtained were 28.1 µg/mL, 70.0 µg/mL, 33.2 µg/mL and 
20.4 µg/mL, respectively. In parallel, the cell viability 90% 
(CV90) was determined for each tested sample (oleoresin, 
V1, V2 or V3) as 7.5 μg/mL, 19.0 μg/mL, 13.8 μg/mL and 
4.0 μg/mL, respectively (Figure 2A, 2B, 2C, and 2D).

Regarding the toxicity of vouacapane diterpenoids, 
the literature reports that some cell lineages, such as 
murine cells (3T3), are susceptible to damage upon their 
administration at IC50 ranging from 63.0 to 95.2 nmol/mL 
(i.e., 22.83 µg/mL to 34.33 µg/mL),38 which nonetheless 
implies the importance of a preliminary cytotoxicity 
investigation in order to proceed with pharmacological 
and immunologic studies.32,39,40

Anti-inflammatory investigation of P. emarginatus 
oleoresin and vouacapane diterpenoids
In vitro expression of COX-2 and NRF2
COX-2 is an important enzyme involved in prostanoid 

Figure 2. HaCaT cell viability after exposure to P. emarginatus oleoresin (A), V1 (B), V2 (C), V3 (D). Cells were exposed to decreasing concentrations of oleoresin 
and V1, V2, and V3 compounds (125 – 0.98 µg/mL) for 24 hours, and cell viability was determined using the MTT reduction assay
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biosynthesis. Its expression is intimately related to the onset 
as well as the inflammatory response development.41,42 
On the other hand, NRF2 is a transcription factor 
activated in response to oxidative stress conditions, 
which can trigger inflammatory alterations, and it is an 
important contributor to this process since it promotes 
the recruitment of inflammatory cells and regulates the 
NLRP3 inflammasome.43 Therefore, P. emarginatus 
oleoresin and its main vouacapane diterpenoids were 
investigated for their influence on the cellular expression 
of COX-2 and NRF2 (Figures 3 and 4).

As can be seen in Figure 3, vouacapanes V2 and 
V3 inhibited COX-2 expression by 28.3 ± 4.72% and 
33.17 ± 4.57%, respectively. Oleoresin did not significantly 
inhibit COX-2 expression in the present study. Regarding 
NRF2 expression, none of the tested compounds exhibited 
a statistically significant difference from the control group 
(Figure 4).

Considering the capacity to interact with COX-2, 
chemoinformatic and in vivo investigations suggested the 
thermodynamically feasible binding of P. emarginatus-

derived vouacapane diterpenoids to both human and 
murine COX-2,28 as well as other pro-inflammatory 
targets.35 Notwithstanding, our results showed that 
the isolated compounds V2 and V3 inhibited COX-2 
expression, while P. emarginatus oleoresin did not promote 
the same effect. Although the results are seemingly 
paradoxical given that the oleoresin contains V2 and V3, 
literature states that the synergism between compounds in 
natural products may enhance or hinder their biological 
activities, which suggests that the compounds in the 
oleoresin may hinder its COX-2 expression inhibitory 
effects.44-46 In parallel, we did not observe modulation of 
the NRF2 pathway by P. emarginatus oleoresin, as well 
as by vouacapane diterpenoids, demonstrating that these 
substances do not act through regulation of cell redox 
status and activation of antioxidant defenses. 

Cytokine measurement in HaCaT cells exposed to UVA 
radiation
Cytokines are noteworthy compounds whose activity is 
closely related to all processes in an inflammatory reaction. 
In this context, compounds such as IL-1β, IL- 6, IL-8, IL-
10, IL-12p70, and TNF-α may promote diverse responses, 
ranging from cell migration to apoptosis.47-49 Therefore, in 
order to shed light on the anti-inflammatory properties of 
P. emarginatus oleoresin and its main phytoconstituents, 
pro-inflammatory cytokines were tentatively determined 
by flow cytometry. 

Although the method employed herein is a standard 
protocol for cytokine determination, TNF-α, IL-10, and 
IL-12p70 levels were below the detection limit, and IL-
1β expression was not altered after exposure to UVA. 
Therefore, only the IL-6 and IL-8 results are depicted in 
Figure 5 (A and B).

The results showed that UVA exposure increased IL-6 
and IL-8 expression in HaCaT cells, and the oleoresin 
inhibited IL-6 expression by 35.47 ± 4.6% in comparison 
to UVA  +  control, while IL-8 did not display statistically 
significant variation. Furthermore, oleoresin displayed 
higher inhibitory activity toward IL-6 expression than its 
isolated diterpenoid compounds (Figure 5A). Although 
there was no statistical significance, it is interesting to 
note that V1 and V2 promoted an increase in IL-6 and 
IL-8 production after exposure to UVA radiation. This 
probably occurred because of the photoreactivity of V1 
and V2, which has not been previously investigated and 
can be a limitation for evaluation using the proposed 
model. However, alterations in IL-6 production triggered 
by oleoresin treatment encouraged further investigation 
regarding cytokine modulation by P. emarginatus. 

IL-6 is an important signaling molecule involved 
in inflammation and programmed cell death, and its 
inhibition is thought to promote anti-inflammatory 
effects. This suggests that the inhibition of IL-6 promoted 
by oleoresin may play a role in the anti-inflammatory 
properties of this P. emarginatus derivative, even though 

Figure 3. Effects of Pterodon emarginatus oleoresin (OR) or isolated 
vouacapanes on the expression of COX-2. HaCaT cells were pretreated 
with OR (7.5 µg/mL), V1 (19 µg/mL), V2 (13.8 µg/mL) or V3 (4 µg/mL) for 
24 h. After that, cells were treated with the same samples cited above and 
concomitantly exposed to 5-FU (10 μg/mL) for an additional 24 h. Cells were 
then analyzed by flow cytometry. Each bar represents the mean ± SD of three 
independent experiments. (#P  <  0.05 vs control, * P  <  0.05 vs. 5-FU)

Figure 4. Effects of Pterodon emarginatus oleoresin (OR) or isolated 
vouacapanes on the expression of Nrf-2. HaCaT cells were pretreated with 
OR (7.5 µg/mL), V1 (19 µg/mL), V2 (13.8 µg/mL) or V3 (4 µg/mL) for 24 
h. After that, cells were treated with the same samples cited above and 
concomitantly exposed to 5-FU (10 μg/mL) for an additional 24 h. Cells 
were then analyzed by flow cytometry. Each bar represents the mean ± SD 
of three independent experiments. (#P  <  0.05 vs control)
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IL-8 did not show statistically significant variation in 
its inhibition between the tested samples. In this sense, 
it can be implied that P. emarginatus oleoresin anti-
inflammatory activity involves immunomodulation 
through IL-6 inhibition.

In vitro inhibition of phospholipase A2
Given the critical role of phospholipase A2 in 
inflammation, P. emarginatus oleoresin and the isolated 
vouacapane diterpenoids had the capacity to inhibit this 
macromolecule (Figure 6).

Oleoresin, V2, and V3 inhibited phospholipase A2 
activity by 30.78 ± 2.69%, 24.96 ± 7.72%, and 77.64 ± 8.1%, 
respectively. However, V1 did not significantly inhibit 
this enzyme. All comparisons were made using DMSO 
0.15% as a control (Figure 6).

The literature reports that many Fabaceae species 
have anti-inflammatory diterpenoids whose therapeutic 
target may include phospholipase A2.50,51 This enzyme is 
responsible for fatty acid cleavage, rendering arachidonic 
and lysophosphatidic acid, which are nonetheless 
involved in the metabolic signaling of inflammation.52 As 
the anti-inflammatory properties of the oleoresin are well 
recognized in Brazilian folk medicine,53,54 the significant 
inhibition of phospholipase A2 by this compound is a 
remarkable finding. Moreover, given that V2 and V3 also 
promoted inhibition (V3 being the highest among the 
isolated compounds), our results suggest that vouacapane 
diterpenoids are involved in the anti-inflammatory action 
of P. emarginatus oleoresin.

Pterodon emarginatus oleoresin and isolated 
vouacapanes as an anti-inflammatory therapeutic 
approach for COVID-19.
Since COVID-19 pathophysiology is associated with an 
inflammatory process that can result in severe damage, 
the use of anti-inflammatory drugs should be a primary 
approach.55 However, the use of non-steroidal anti-

inflammatory drugs (NSAIDs) is still controversial.56-58

Acute respiratory tract infections are associated with an 
increased chance of stroke and myocardial infarction,59 
and the use of NSAIDs such as ibuprofen, naproxen, 
and diclofenac has been associated with higher rates 
of cardiovascular emergencies, concomitantly with the 
nature of the infection process.60,61 In this context, few 
options remain to handle the inflammatory effects. 
Furthermore, NSAIDs cause nephrotoxicity, which is 
more likely among the patient groups to be severely 
affected by COVID-19.56 Hence, further studies on the 
effect of anti-inflammatory drugs in clinical use and 
new therapeutic approaches with anti-inflammatory 
properties against COVID-19 are pivotal.

Generally, the principal mechanisms of NSAID action 
are inhibition of COX-1 and COX-2.60 However, the anti-
inflammatory effects are due to COX-2 inhibition. COX-
2 plays an important role in the inflammatory process 
triggered by influenza virus infection.62 Presumably, a 
similar process is associated with COVID-19 disease, 

Figure 5. Effects of Pterodon emarginatus oleoresin (OR) or isolated vouacapanes on the production of IL-6 (A) and IL-8 (B). Inhibitory effect on IL-6 or IL-8 
production in control and tested groups exposed to UVA radiation (20 J/cm2) and pre-treated with OR (7.5 µg/mL), V1 (19 µg/mL), V2 (13.8 µg/mL) or V3 (4 
µg/mL) for 24 h. Cytokines were quantified using the Cytometric Bead Array method. Each bar represents the mean ± SD of three independent experiments. 
(#P  <  0.05 vs UVA- control, * P  <  0.05 vs. UVA  +  control)

Figure 6. Effects of Pterodon emarginatus oleoresin (OR) or isolated 
vouacapanes on the inhibition of Phospholipase A2 (PLA2). Isolated PLA2 
were incubated with OR (7.5 µg/mL), V1 (19 µg/mL), V2 (13.8 µg/mL) or 
V3 (4 µg/mL) for 10 minutes. PLA2 activity was measured in a fluorimeter, 
according to instructions of EnzChek Phospholipase A2 Assay-kit. Each bar 
represents the mean ± SD of three independent experiments. (*P  <  0.05 vs. 
control)
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especially when considering the induction of pro-
inflammatory cytokine storms, notably similar to 
other pathogenic viruses in humans.63 COX-2 selective 
inhibition displays divergent responses in the lung, varying 
according to kinetics; the recruitment of inflammatory 
cells into the pleura in 2 hours is limited. However, there is 
an increase in pleural inflammation within 48 hours.64 In 
addition, the expression of interleukins associated with an 
adaptive immune response was modulated during the use 
of NSAIDs, and IL-4 levels were inhibited,65 jeopardizing 
the early production of IFN-γ by innate immune cells, 
which represent an effective strategy for defense against 
viruses.66 The secretion regulation of this inflammatory 
mediator is complex and needs to be finely regulated. Our 
data indicate that the innovative molecules V2 and V3 
vouacapanes are competent to inhibit COX-2 expression 
by 28.3% and 33.17%, respectively. Nonetheless, there was 
no total inhibition, which could be considered in studies 
to control exacerbated inflammatory processes, which 
require adjustments, as seen in the SARS-CoV-2 infection 
process.

Interestingly, a meta-analysis showed that IL-6 
concentrations were 2.9-fold higher in patients with 
complicated COVID-19 in comparison with patients 
with the non-complicated disease.67 Therefore, this 
cytokine may be a prognostic marker to be considered.68 
Additionally, the use of tocilizumab and its inhibitory 
effect on IL-6 appears to be an effective and safe approach 
for a preliminary investigation.67 In our study, we observed 
that oleoresin was able to inhibit IL-6 production by 
35.47%, and considering that the cytotoxicity evaluation 
demonstrated the use of these compounds to be safe, a 
more in-depth investigation of the possible reducing 
action of these compounds on the inflammatory effects 
resulting from COVID-19 and increased IL-6 should be 
considered. 

An in vivo study of other coronaviruses, including 
SARS-CoV and MERS, demonstrated that age-dependent 
increase of phospholipase A2 (PLA2) group IID 
(PLA2G2D) in the lungs contributed to more harmful 
outcomes in mice infected with severe acute respiratory 
syndrome-coronavirus.69 The authors reported that 
oxidative stress, via lipid peroxidation, was found to induce 
PLA2G2D expression in mice and human monocyte-
derived macrophages. Therefore, it is rational to presume 
that guided inhibition of a specific type of phospholipase, 
such as PLA2G2D, in the lungs of elderly patients with 
severe respiratory infections, would undoubtedly be a 
promising therapeutic approach. Considering oleoresin 
and the vouacapanes V2 and V3 inhibited phospholipase 
A2 activity by 30.78%, 24.96%, and 77.64%, respectively, 
and could have a negative role in SARS-CoV-2 clinical 
outcome (Figure 6), a knowledgeable comprehension of 
the inhibition mechanism of this phospholipase may, in 
the future, allow modeling to selectively inhibit a specific 
class, such as PLA2G2D, which could result in a safe and 

efficient approach; however, this is still a speculative idea 
that requires further studies.

Corroborating our hypothesis of a therapeutic 
approach, several studies have demonstrated the use of 
pharmaceutically active natural products as a promising 
strategy to prevent the worsening of COVID-19. Natural 
products are well recognized for their antiviral, anti-
inflammatory, and immunomodulatory properties. 
Regarding the inflammatory response, it was observed 
that the administration of kaempferol reduced serum 
levels of TNF-α and IL-1β, and that these compounds can 
block a cation-selective channel expressed in the infected 
cell by SARS-CoV.18 A review showed the applicability of 
different herbal medicines traditionally used in China, 
with potential for the treatment of COVID-19-related 
acute respiratory syndrome. In vitro and in silico analyses 
are being carried out, and promising results have been 
described.70 

Moreover, diterpenes have been evaluated not only as 
anti-inflammatory agents, but also as antiviral agents.71,72 
The antiviral activity seems to combine two mechanisms: 
i) protease inhibition, with the interaction ligand-receptor 
changing the protein conformation and thus stopping 
virus replication; ii) interference in virus entry into the 
cell.72,73

Therefore, P. emarginatus Vogel has tremendous 
therapeutic potential, and studies have proven that these 
terpenes are the main compounds responsible for the 
biological activity attributed to the species, such as anti-
inflammatory and analgesic activities, among others.31,74

Conclusion
In the current COVID-19 context and its dangerous 
inflammation, followed by organ failure, the anti-
inflammatory properties of P. emarginatus oleoresin 
and isolated vouacapanes reported in this study could 
offer an attractive therapeutic approach for COVID-19 
and post-COVID-19 symptoms. The reduction or 
chronological control of the inflammatory mediators 
IL-6, COX-2, phospholipase A2, and INF-γ (indirectly) 
during the SARS-CoV-2 infection process is an exciting 
route to be investigated. In addition, since the options of 
clinical NSAIDs may be at risk of aggravating the patient’s 
condition, covering treatment methodologies is necessary 
and desirable.
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