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Introduction
Methimazole, carbimazole (prodrug of methimazole) 
and propylthiouracil are three thionamide compounds 
used in hyperthyroidism therapy.1 Methimazole is one 
of the main therapy option for Graves’ disease. Thus, 
methimazole is one of the options that could be safely 
use in both adults and children.2 Adverse effects such as 
hypersensitivity, decrease in the number of leukocyte, 
agranulocytosis, gastrointestinal symptoms and hepatic 
dysfunction can occur in patients with methimazole 
treatment. Furthermore, the patients with acute 
pancreatitis induced methimazole reported abdominal 
pain, increased pancreatic enzyme levels and imaging 
findings like pancreas swelling in case-reports.3-6 Acute 
pancreatitis was added to the list of adverse effects of 
methimazole based on six case reports in 2019; also, 
methimazole product information was changed as 
including acute pancreatitis with European Medicine 
Agency (EMA) warning.1 

Drug induced acute pancreatitis occurs rarely; 
however, it could be life threatening.7 One of the main 
molecular mechanism underlying acute pancreatitis is 
oxidative stress. The increased cellular reactive oxygen 
species (ROS) causes the death of pancreatic cells.8 It 

has been reported that cellular calcium level changes, 
mitochondrial membrane permeability changes, 
endoplasmic reticulum (ER) stress, unfolded protein 
response (UPR), apoptosis and autophagy are main 
underlying molecular mechanisms of acute pancreatitis 
pathogenesis. Pancreatic cells are under high risk of ER 
stress due to its higher protein synthesis capacity. During 
the ER stress in acinar cells, the UPR system is activated to 
restore cellular homeostasis. 

The three functional pathways of get involved with three 
main pathways such as ERN1, activating transcription 
factor 6 (ATF6) and protein kinase RNA-like ER kinase 
(PERK) pathways. Glucose-regulated protein 78 (Grp78), 
Grp90 and heat shock protein 90 (Hsp90) are the main 
regulator of UPR signaling. Growth arrest- and DNA 
damage-inducible gene 153 (DDIT3) is the downstream 
effector protein regulating gene expression in the cell 
during UPR signaling.9 ERN1 induction in the pancreas 
cells for different reasons may cause cell death.10 One of 
the key factor for severity of pancreatitis is the increased 
pancreatic cell death. caspase 12, one of the important 
cytoplasmic caspase, forms a link between ER stress and 
apoptosis. When caspase 12 activates UPR signaling via 
ER stress, it in turn activates important caspase 9 and 
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Abstract
Purpose: Methimazole is an anti-thyroid agent, especially as main therapy option for Graves’ 
disease in children and adults. Drug induced pancreatitis is one of the known adverse effect 
of methimazole mentioned in case reports. However, the detailed molecular mechanisms of 
methimazole-induced pancreatitis are still unclear. In this study, the aim is to investigate the 
adverse effect of methimazole on pancreas cell stress mechanism and apoptosis.
Methods: Cytotoxicity was evaluated in human pancreas/duct (PANC-1) cell line. Total 
oxidant (TOS) and antioxidant status (TAS) for oxidative stress index, glutathione (GSH) level 
and endoplasmic reticulum (ER) stress biomarkers were evaluated by ELISA. Reactive oxygen 
species (ROS) levels and apoptosis were evaluated by flow-cytometer. 
Results: The 30% inhibition rate concentration (IC30) value was determined as 53 mM in PANC-
1 cells. The exposure concentrations were in the range of 0-40 mM for 48 hours. Methimazole 
might induce cellular stress conditions. ROS production increases depending on concentration, 
and this increase shows parallelism with the increase in ER stress biomarkers such as TOS, 
ERN1 and CASPASE12. Conversely, there was no significant difference between control and 
exposure groups in terms of apoptosis. 
Conclusion: In conclusion, methimazole might have triggered the mechanisms of inflammation 
or autophagy in the pancreatic cells. However, there is still a need for in vitro and in vivo studies 
including other cellular parameters related to apoptosis. 
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caspase 3 resulting in apoptosis.11,12 
The underlying molecular mechanism of methimazole 

induced acute pancreatitis has been not clarified yet. Thus, 
in this study, we aimed to observe toxic effect mechanism 
of methimazole in human pancreas duct epithelioid 
carcinoma cells, by assessing the cellular cytotoxicity, 
oxidative stress, ER stress and apoptosis. PANC-1 cells 
have optimal cell proliferation, gene expression and 
adhesion profiles to study on pancreas functions and 
these cell types were used in many studies.13-16 

Materials and Methods
Methimazole was purchased from Chemie Uetikon 
GmbH (Lahr, Germany). Human pancreas/duct (PANC-
1) cell line (CRL-1469) was obtained from the American 
Type Culture Collection (ATCC, Virginia, USA). ELISA 
kits for total antioxidant status (TAS), total oxidant status 
(TOS), ERN1, DDIT3, Grp78, Hsp90, and caspase12 
from Elabscience Biotechnology Co. Ltd (Texas, USA). 
Glutathione (GSH) Elisa Kit was obtained from YH 
Biosearch laboratory (Shanghai, China). FITC Annexin V 
Apoptosis Detection Kit with propidium iodide (PI) was 
from BioLegend (CA, USA). The cell culture chemicals 
and all other cell culture supplements were from Multicell 
Wisent (Quebec, Canada).

The PANC-1 cells were nourished in Dulbecco’s 
modified eagle medium: nutrient mixture F-12 (DMEM 
F-12) media include 10% fetal bovine serum (FBS) and 
100 U/100 μg/mL penicillin/streptomycin at 37°C in 
a humidified incubator with 5% CO2. For cytotoxicity 
assessment, the methimazole concentrations were in the 
range of 0-200 mM for 48h exposure. The medium was 
used for control. After 48 hours exposure, the optical 
densities (ODs) were measured at 590 nm by a microplate 
spectrophotometer reader (Epoch, Germany), and IC30 
was calculated. 

Considering IC30 value, the cells were exposed to 20, 30 
and 40 mM methimazole for 48 hours with control group 
for oxidative stress, ER stress and apoptosis evaluation. 
All assay was done in triplicates and performed in three 
independent days.

The cellular ROS generation was assessed by 2ʹ,7ʹ-
dichlorodihydrofluorescein diacetate (H2DCF-DA) assay 
with flow-cytometer.17,18 The cells (1 × 105) were seeded in 
6-well plates, and incubated for 24 hours. The fluorescence 
intensities were measured with ACEA NovoCyte flow-
cytometer (San Diego, CA, USA) at 488 nm. The results 
were expressed as the percentage of median fluorescence 
intensity. The GSH, TAS and TOS levels were measured 
by Elisa kits according to manufacturer’s instructions. 
The GSH levels were expressed as μmol/104 cell. The 
TAS and TOS levels were expressed as U/mL. The 
ERN1, DDIT3, Grp78, Hsp90 and caspase12 levels were 
assessed with Elisa kits according to the manufacturer’s 
instructions. The results were expressed as ng/mL. 
Annexin V Apoptosis Detection Kit with PI was used to 

investigate the apoptosis/necrosis pattern of the cells by 
flow-cytometer ACEA NovoCyte flow-cytometer at 488 
nm according to manufacturer’s instructions. The results 
were expressed as the percent of the total cell amount.

For the statistically analysis, H2DCF-DA fluorescence 
were detected from the areas on the FSC/SSC graph 
that obtained from the cells and analysis was performed 
with the NovoExpress software computer program. 
The presence of free oxygen radicals was expressed as a 
percentage of the total cell amount (M2%). TAS, TOS, 
ERN1, DDIT3, Grp78, Hsp90 and caspase 12 results 
statistical analysis were performed with one-way ANOVA 
post hoc Dunnett’s t test by using SPSS version 20.0 (SPSS 
Inc., Chicago, Illinois, USA), and the results were given as 
mean ± standard deviation (SD). P ≤ 0.05 was the level of 
significance. 

Results and Discussion
Acute pancreatitis’ annual incidence has a range of 4.9-
73.4 cases/100 000 people and the mortality rate is 1.5-
4.2% in epidemiological studies. This rate increases up 
to 30% depending on the severity of pancreatitis.19,20 
It is important to determine the etiological causes of 
acute pancreatitis for appropriate treatment and follow-
up. The most common causes of acute pancreatitis are 
biliary, alcohol, hypertriglyceridemia, hypercalcemia, 
drug-related, autoimmune, hereditary/genetic and 
anatomical anomalies.21 The annual incidence of drug-
induced acute pancreatitis is 0.1-5%. More than 500 drugs 
triggering acute pancreatitis were listed by World Health 
Organization (WHO) and the number is rising in each 
passing year. The mechanisms of drug-induced acute 
pancreatitis are generally based on case reports, case-
control studies, animal studies, and other experimental 
data. The potential mechanisms for drug-induced acute 
pancreatitis include pancreatic duct narrowing, cytotoxic 
and metabolic effects, accumulation of toxic metabolites 
or mediators, and hypersensitivity reactions. However, 
the mechanism of drug induced acute pancreatitis has not 
been clarified yet. Various methods have been proposed 
to assess the causality in drug-induced acute pancreatitis. 
Currently, the drug-induced pancreatitis classification 
system is widely used for uniform assessment of 
causality in pancreatoxicity.22-27 There are limited 
methimazole induced acute pancreatitis case reports 
in the literature.4-6,28-30 However, this is the first study 
to evaluate oxidative and ER stress mechanisms role in 
methimazole induced acute pancreatitis The cytotoxic 
effect of methimazole on the hepatocytes was evaluated 
by Heidari et al,31 isolated from male Sprague-Dawley 
rats, for 2 hours exposure in the range of 1-15 mM. A 
concentration-dependent cytotoxic effect was detected in 
hepatocytes isolated from rats with trypan blue assessment 
and the IC50 value was found as 10 mM. In the present 
study, it was observed that methimazole decreased the cell 
viability depending on concentration with 48h exposure 
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in PANC-1 cells. IC30 value of methimazole was 53 mM 
(Figure 1).

One of the important mechanism that play a key role 
in the pathogenesis of acute pancreatitis is oxidative 
stress-related cell death. The severity of pancreatitis is 
related with oxidant-antioxidant balance in the early 
phase of disease.8,32 In the study, methimazole increased 
ROS production levels in all concentrations compared to 
control group; however, the value of significance was seen 
only in 40-mM concentration. The rate of ROS production 
increase in 20, 30 and 40 mM concentrations were 2.2, 
3.3 and 5.3 fold, respectively, and there was a significant 
difference only in 40-mM concentration (P  <  0.05). 

However, the TOS levels increased significantly at only 40 
mM (2.2-fold; P  <  0.05). On the other hand, there was no 
significant difference as compared with control group in 
terms of the GSH and TAS levels (Figures 2 and 3). 

It has been reported that the producing reactive 
metabolites play important role in methimazole induced 
liver injury. Heidari et al31 reported that methimazole 
caused a significant decrease in GSH levels in hepatocytes 
isolated from Sprague-Dawley male rats (P  <  0.05). In 
addition, methimazole increased ROS levels 1.8-fold 
compared to the control group at 10 mM (P  <  0.05). 
In another study,33 methimazole induced serious liver 
damage and GSH depletion induced significantly (2.5-
fold) at 200 mg/kg in Swiss albino mouse (P  <  0.05). 
Vickers et al34 compared 8 drugs, including methimazole, 
in an ex vivo 3D multicellular human liver section model. 
They observed that methimazole increased GSH levels by 
15%-37% at 24 hours, 11%-49% at 48 hours and 30%-49% 
at 72 hours at 500 μM. Kobayashi et al35 found there was 
a 1.5-fold significant decrease in the amount of GSH in 
the hepatic tissue in BALB/c female mice 6 hours after 
exposure to 450 mg/kg oral methimazole. Niknahad et 
al36 observed a significant increase in ROS levels in the 
liver mitochondria isolated after exposure to ≤ 400 mg/
kg methimazole in BALB/c male mice (P  <  0.001). In vivo 
evaluation revealed that the amount of mitochondrial 
ROS was higher compared to control animals (P  <  0.001). 

Figure 1. Cell viability inhibition effects of methimazole in PANC-1 cells 
according to MTT results for 48 h exposure. The cell viability decreased 
methimazole concentration dependent

Figure 2. ROS production and GSH level in methimazole treated PANC-1 cells for 48h. ROS production level significantly increased in 40 mM group 
compared to control (A). There was no significant difference for GSH parameters between control and exposure groups (B) (*P  <  0.05)

Figure 3. TAS (A) and TOS (B) levels in methimazole treated PANC-1 cells for 48 h (*P  <  0.05)
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In our study, GSH amounts were 3.31 and 3.24 μmol per 
104 cells at 20 and 40 mM concentrations in PANC-1 
cell lines (P  >  0.05). A significant increase (5.3-fold) was 
found in the ROS level at 40 mM (P  <  0.05) compared to 
control group.

In the present study, no significant difference was 
found between groups in parameters of DDIT3, Hsp90 
and Grp78. In 40 mM group, ERN1 and caspase 12 levels 
significantly increased in the order of 4.7- and 1.4-fold, 
respectively. We suggest that methimazole may induce 
ER stress pathway in pancreas cells via ERN1 pathway 
(Figure 4). Although ROS level and ER stress parameters 
increased in 40-mM concentration methimazole group 
in PANC-1 cells, apoptosis was not induced. Moreover, 
there was no significant difference between the groups for 
apoptosis parameter (Figure 5). Drug-induced ER stress 
not only triggers apoptosis mechanism but also induces 
cellular mechanisms of inflammation and autophagy.37 
This is the first study to evaluate methimazole treatment 
effects on ROS, ER stress and apoptosis in pancreas 
cells. According to the results of our study, methimazole 
induces ER stress mechanism via ERN1 pathway that 
could be associated with pancreatitis. However, cell death 

was not induced. Given that the changes in autophagy 
and inflammation markers were not examined in this 
study, the last step leading to pancreatitis in pancreatic 
cells could not be clarified.

Conclusion
In this study, we evaluated the toxicity of methimazole 
in PANC-1 cell line through oxidative stress and 
endoplasmic reticulum stress parameters. According to 
cell viability study result, the IC30 value of methimazole 
was calculated as 53 mM for 48 hours. ROS, TOS, ERN1 
and CASPASE12, cellular stress pathways biomarkers, 
levels increased with methimazole. However, it was 
observed that although cellular stress markers increased, 
apoptosis was not induced in cells. These results suggest 
that the effect of methimazole on the pancreas is not 
mediated by induction of apoptosis. In summary, the 
data obtained from our study, in which basic evaluations 
were made for elucidating the mechanisms underlying the 
risk of methimazole induced acute pancreatitis, need to 
be supported by further in vitro and in vivo studies that 
determine the relationship between methimazole and its 
metabolites with the risk of pancreatitis.

Figure 4. ER stress parameters in methimazole treated PANC-1 cells for 48h. (A) ERN1, (B) DDIT3, (C) HSP90, (D) Grp78, (E ) Caspase 12 (*P  <  0.05)
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