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Introduction
Prostate cancer is the second most frequent type of cancer 
among men in the world.1 The incidence rate of this type 
of malignancy varies worldwide and it is considered the 
leading cause of mortality in men. According to the Global 
Cancer Observatory: Cancer Today (GLOBOCAN), in 
2020, there were estimated 1 414 259 (7.3%) incidences 
occurred across countries, with a number of mortalities 
estimated 375 304 (3.8%).2 This situation reflects how 
prostate cancer has become a major health problem on a 
global scale.

Treatment options available for prostate cancer 
in the early stages of the disease progression mainly 
rely on surgery, external beam radiation therapy, 
and brachytherapy,3 while other treatments such as 
hormone therapy, chemotherapy, and radiation therapy 
administered alone or in combination, are usually 
considered for the treatment of malignant metastases 
or as additional therapies in the early stages of prostate 
cancer.3,4 Androgen-deprivation therapy is emerging as 

the first-line treatment for advanced prostate cancer.5-7 
However, in most cases, there can be clinical and 
biochemical progression of this cancer and this condition 
is termed metastatic castration-resistant prostate cancer 
(mCRPC).8,9 The most common treatment options at 
this stage include docetaxel, sipuleucel-T, abiraterone 
and radium-223 (XofigoTM).9,10 However, this approach 
is known to lead to suboptimal results.11 Recently, the 
poly(ADP-ribose) polymerase inhibitors, such as olaparib 
and rucaparib have been evaluated in phase 2 clinical 
trials as novel therapy for mCRPC with tumors lacking 
homologous recombinant repair.12 Olaparib and rucaparib 
have been approved and shown to be effective in mCRPC 
patients with BCA1/2 abnormalities.12 Despite the 
progress and emergence of various therapeutic methods, 
an effective treatment approach with minimal side effects 
for mCRPC is still needed.

The serum prostate-specific antigen (PSA) screening 
test and the digital rectal examination are widely used 
methods to detect the pathology of prostate cancer.11 PSA 
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Abstract
Prostate-specific membrane antigen (PSMA) represents a promising target for PSMA-
overexpressing diseases, especially prostate cancer-a common type of cancer among men 
worldwide. In response to the challenges in tackling prostate cancers, several promising PSMA 
inhibitors from a variety of molecular scaffolds (e.g., phosphorous-, thiol-, and urea-based 
molecules) have been developed. In addition, PSMA inhibitors bearing macrocyclic chelators 
have attracted interest due to their favorable pharmacokinetic properties. Recently, conjugating 
a small PSMA molecule inhibitor-bearing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic 
acid (DOTA) chelator, as exemplified by [177Lu]Lu-PSMA-617 could serve as a molecular 
imaging probe and targeted radioligand therapy (TRT) of metastatic castration resistant prostate 
cancer (mCRPC). Hence, studies related to mCRPC have drawn global attention. In this review, 
the recent development of PSMA ligand-617-labeled with 177Lu for the management of mCRPC 
is presented. Its molecular mechanism of action, safety, efficacy, and future direction are also 
described.

Article History:
Received: June 23, 2022
Revised: February 4, 2023
Accepted: April 24, 2023
epublished: April 29, 2023

Keywords:
Prostate cancer, Metastatic-
castration resistant prostate 
cancer, Lutetium-177, PSMA-
617, Radioligand

Article info

TUOMS
PRE S S

https://doi.org/10.34172/apb.2023.079
https://apb.tbzmed.ac.ir
https://orcid.org/0000-0003-4819-5620
https://orcid.org/0000-0003-2802-0452
https://orcid.org/0000-0002-3725-6427
https://orcid.org/0000-0002-0452-1984
https://orcid.org/0000-0001-8428-2030
https://orcid.org/0000-0001-9092-2508
mailto:titi016@brin.go.id
http://crossmark.crossref.org/dialog/?doi=10.34172/apb.2023.079&domain=pdf&date_stamp=2023-11-01


Ritawidya et al

Advanced Pharmaceutical Bulletin, 2023, Volume 13, Issue 4702

level cut-off of 4.0 ng/mL has been used to decide the 
need for prostate biopsies.13 While transrectal ultrasound 
(TRUS)-guided multiple systematic transrectal biopsies 
are typically performed for the diagnosis purposes 
by obtaining the tissue sample from the gland for 
histopathological or cytological examination.4 Several 
imaging techniques, such as magnetic resonance imaging 
(MRI) and positron emission tomography (PET) play 
a pivotal role in the management of prostate cancer, 
especially for early detection and localization, (re-)staging, 
whole-gland and focal therapy, active surveillance, and 
detection of recurrence.14,15 In addition to PET, the 
single-photon emission computed tomography (SPECT) 
modality enables nuclear diagnostic imaging in prostate 
cancer. Consequently, the advancement of PET and 
SPECT modalities led to the necessity of efficient imaging 
agents or radiopharmaceuticals probes that would enable 
the detection of prostate cancer. 

Prostate-specific membrane antigen (PSMA) is a 
type II transmembrane glycoprotein (~100 kDa) highly 
expressed in prostate cancer16 and upregulated in poorly 
differentiated, metastatic, and hormone-refractory 
carcinoma, castration-resistant prostate cancer.17 In 
addition, organ-minimally expressing PSMA can be 
found in various organs, including the brain, kidney, 
salivary gland, and intestine.18 PSMA is known to possess 
neurocarboxypeptidase activities that degrade alpha-
linked glutamates from N-acetylaspartylglutamate19 in 
addition to its prominent role as folate hydrolase I.20 
PSMA also plays an important role in angiogenesis.21 
Accordingly, PSMA has recently gained growing interest 
as a promising target for diagnostic imaging and therapy 
of prostate cancer.1,22

Targeted radioligand therapy (TRT) is a selective or 
specific administration of a high dose of radiotoxicity to 
cancer cells without destroying the surrounding healthy 
cells.23,24 It typically employs targeting vectors such as 
proteins, peptides, carbohydrates, vitamins, antibodies, 
and aptamers.25 Metal-based small-molecule PSMA 
radioligands have shown a growing interest in TRT 
prostate cancer.26 A common strategy to develop PSMA-
specific based radiometal ligands is shown in Figure 1.27,28

A macrocyclic chelator 1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid (DOTA) is widely used in 
the field of radiopharmaceuticals, particularly for 
the complexation of trivalent (3 + ) ions such as the 
diagnostic PET radionuclide 68Ga and therapeutic 
radionuclides (177Lu and 90Y).26,28,29 The presence of linkers 
can connect two different moieties: a chelating agent 
and a pharmacophore.30 Complexation of DOTA and a 
trivalent radiometal resulted in a thermodynamically and 
kinetically stable binding.28 Furthermore, this approach 
allows that the theranostic concept in nuclear medicine, 
which defines ideal radiopharmaceuticals should be 
able to assemble the application for both diagnostic and 
therapeutic purposes when radiolabeled with a diagnostic 

and a therapeutic radionuclide, respectively.26,31 

PSMA
PSMA has emerged as a promising protein target for 
prostate cancer for both diagnosis and therapeutic 
purposes (e.g., radionuclide-based therapy or other 
therapeutic strategies including immunotoxins, immune 
cells retargeting, prodrug activation, PSMA vaccines, 
plasmid DNA, and adenoviral immunizations.30-32 This 
mechanism leads to the internalization of radionuclides 
into the cancer cells and eventually causes cell death33 as 
shown in Figure 2. The unique characteristics of PSMA 
make it an excellent marker for prostate cancer, mainly 
due to several characteristics including: 1) expressed in 
the prostate, 2) upregulated in all stages of the disease, 
3) overexpressed in disease progression or in metastases, 
4) intact on the cell surface as membrane glycoproteins, 
present and not released into the circulation, 5) internalized 
after ligand binding (receptor-mediated endocytosis), 6) 
associated with enzymatic activity.3,18,23

PSMA shares sequence similarities to a certain 
extent (~54%) with transferrin receptors,18,34 and 
therefore, like transferrin, PSMA undergoes receptor 
and ligand functions.18 Immunofluorescence analysis 
or immunoelectron microscopy shows that after ligand 
binding, the PSMA-antibody complex is internalized 
through clathrin-coated pits and enters the lysosomes.34

Radiolabeled PSMA 
A radiolabeled monoclonal antibody ProstaScintTM 
(Capromab Pendetide) is a murine IgG1 7E11-C5.3 
which is linked to a linker-chelator glycyl-tyrosyl-

Figure 1. General design of PSMA-targeted radioligand.27,28

Figure 2. Mechanism of receptor-mediated endocytosis upon radioligand-
based PSMA binding to PSMA.27
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(N’- diethylenetriaminepentaacetic acid)-lysine 
hydrochloride35 and it was developed to accurately 
diagnose, stage, and detect the new and recurrent prostate 
cancer.36 ProstaScintTM targets PSMA by binding to the 
intracellular domain (amino-terminus) of PSMA35 and 
areas of tumor necrosis.18 Accordingly, this radiotracer 
found limited use in nuclear medicine to diagnose prostate 
cancer.26 The development of monoclonal antibodies 
J591 that bind to the extracellular domain of PSMA has 
been reported in the literature. The J591 monoclonal 
antibody demonstrated high and specific binding against 
cell-adherent PSMA.37 In addition, J591 was the first 
PSMA-based humanized monoclonal antibody used 
in the clinical application.38,39 Several SPECT and PET 

tracer-based J591,40-42 as well as radioimmunotherapeutic 
agents have been developed.43 Some of the PSMA-specific 
radioligands studied so far are shown in Figure 3.

However, the nature of the monoclonal antibody, 
including slow clearance and low uptake, underlines the 
need for imaging to be performed several days after its 
administration to patients.39 Therefore, the waiting time 
between post-administration and the imaging time seems 
to hinder the potential application of this PSMA-targeted 
J591 monoclonal antibody.39,44 

Continued efforts to discover several specific-PSMA 
inhibitors with a higher affinity and specificity for PSMA 
led to various small molecule inhibitors. Small molecule 
PSMA inhibitors are typically zinc-binding compounds 

Figure 3. Some radiolabeled PSMA ligands
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incorporated into glutamate or glutamate isostere and 
are divided into three classes: 1) phosphonate, phosphate, 
and phosphoramide compounds; 2) thiols; and 3) ureas 
(Figure 4).45-47 The phosphorus-based ligands seem to be 
the gold standard that provide binding to binuclear zinc 
ions positioned in the active PSMA domain. However, 
the development of these ligands is limited by their 
high polarity properties. PSMA ligands bearing thiol 
functionality, on the other hand, could undergo disulfide 
bond formation, resulting in low metabolic stability. Thus, 
some urea-based PSMA ligands have been developed. 
These molecules display favorable binding affinity and 
stability with very efficient internalization into the cells.46-48

The first urea-based compound to target PSMA in 
the brain was designed by Kozikowski et al.49 To date, 
urea-based PSMA radiopharmaceuticals are the most 
sophisticated class which is commonly consisting of three 
parts, a binding motif (glutamate-urea-lysine [Glu-urea-
Lys]), a linker, and a radiolabeled moiety (usually a chelator 
or prosthetic groups) depending on the radionuclide.23

Liu et al evaluated the dependence of linker length 
on inhibitory potency, mode of inhibition, and in vitro 
imaging of three different fluorescent inhibitors.50 They 
found that choosing the right linker, along with its length, 
are such crucial considerations in the development 
of PSMA detection probes and therapy tracers that 
specifically target PSMA-overexpressing cells.50 

The discovery of new developed radioiodinated, 
123I-MIP-1072 and 123I-MIP-1095 (Figure 3) PSMA 
ligands based on urea scaffold have been reported in the 
literature.25,51-53 Despite the encouraging earlier clinical 
results, it appears that further attempts to optimize the 
efficacy and reduce the side effects of these radioiodinated 
ligands are warranted.30 As a result, the development 
of 123I-MIP-1072 and 123I-MIP-1095 has initiated the 
development of other PSMA-based urea binding motif 
radiopharmaceuticals eligible for prostate cancer.23 

The radiometal-based PSMA binding motif [Glu-Urea-
Lys] has shown a growing interest in the endoradiotherapy 
of prostate cancer.26 Due to its favorable coordination 
chemistry properties, the DOTA chelator can be used to 

conjugate several radiometals, including 177Lu and 68Ga, 
whereas the linker can connect two different moieties: 
chelator and pharmacophore.30 In 2014, a research group 
in Munich reported the development of the metabolically 
resistant 1,4,7,10-tetraazacyclododecane,1-(glutaric acid)-
4,7,10-triacetic acid (DOTAGA) chelator moiety based on 
their previously advanced affinity PSMA ligand [68Ga]
Ga-DOTAFfK(Sub-KuE)).54 In 2015, a research group 
in Heidelberg developed a DOTA-containing PSMA 
inhibitor, PSMA-617.30 This PSMA-617 contains three 
molecule entities, which are the pharmacophore (binding 
motif), glutamate-urea-lysine; the chelating agent DOTA, 
and a linker connecting these two moieties.30 The presence 
of a linker in peptide-based radiopharmaceuticals 
can improve metabolic stability and modulate the 
biodistribution.55 In addition, the linker plays an important 
role in bridging between a chelator and a pharmacophore; 
thereby maintaining peptide affinity for the receptor and 
avoiding the steric hindrance.56 The linker can trigger 
multiple effects by modulating the size, shape, solubility, 
stability, and molecular weight of the chemical structure, 
which positively aids the overall radiopharmaceutical 
behaviours.57 Benesová et al investigated the influence 
of chemically modified linkers on PSMA targeting and 
the pharmacokinetic profile, including PSMA inhibitory 
activity, cellular internalization, and biodistribution 
properties of a series of DOTA-PSMA small molecules.58 
The study approach led to a more accurate and rational 
structure-activity relationships design of a new specific 
PSMA-based glutamate-urea motif, resulting in a 
promising DOTA-PSMA conjugate that can potentially 
be radiolabeled for theranostic application of prostate 
cancer.58 

Numerous attempts have been made by the scientific 
community to develop various PSMA radionuclides 
based on PSMA ligands. Of several radiolabeled ligands 
reported in the literature, the radiopharmaceutical 177Lu-
PSMA-617 has been one of the most extensively studied 
PSMA radioligands for both prostate cancer imaging and 
therapy. Phase III clinical trials of radioligand VISION 
(177Lu-PSMA-617, NCT03511664) is currently being 
conducted.59 Accordingly, the presence of extensive 
knowledge, experience, and information related to this 
radiopharmaceutical leads us to develop an “in-house” 
PSMA-617-based-radioligand devoted to the management 
of metastatic prostate cancer in Indonesia. In this review, 
the recent development of PSMA ligand-617-labeled 
with 177Lu for the management of mCRPC is presented. 
Its molecular mechanism of action, safety, efficacy, and 
future direction are also described. 

Recently, 177Lu-PSMA-617 (Figure 5) was a novel 
promising radiopharmaceutical for nuclear imaging and 
TRT that is reported to be safe and can prolong overall 
survival in mCRPC patients.60-64 The development of this 
urea-based small PSMA inhibitor labeled with a beta 
particle-emitting radionuclide (Lu-177) was initially Figure 4. Lys-urea-Glu (K-u-E) binding motif
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performed by a research group from the German Cancer 
Research Center (Deutsche Krebforschungszentrum, 
DKFZ) and its collaborating partner, the University 
Hospital of Heidelberg Germany in 2015.30 

The PSMA-617 ligand was synthesized by the solid 
phase peptide method as described in the previous 
literature.65 Small peptides represent several advantages 
over monoclonal antibodies, including high penetration, 
better pharmacokinetics, high affinity and specificity for 
the target site.66,67 These features often resulted in a higher 
target-to-non-target ratio, which is important for both 
imaging and the successful therapeutic application of 
absorbed dose.68 

This custom-designed DOTA containing the small 
PSMA inhibitor PSMA-617 was reported to be successfully 
radiolabeled with 177Lu in a small amount (0.5 mg, 0.5 
nmol) in sodium acetate buffer, pH 5 with an excellent 
radiochemical yield ( > 99%).30 The preparation of 177Lu-
PSMA-617 is also described in the literature.69 The 177Lu-
PSMA-617 prepared “in-house” by our group resulted in 
a comparable radiochemical yield of more than 99% (data 
not reported), which is consistent with that reported in 
the literature. 

177Lutetium radionuclide 
Therapeutic radionuclides fall into three classification 
groups, namely beta particles (β-), alpha emitter (α), and 
Auger electron.70 Of these therapeutic radionuclides for 
targeted therapy, the beta particles emitter 177Lu has gained 

remarkable applications in recent years.70 
177Lu can be routinely produced in high activity 

levels with a high specific activity in a nuclear reactor 
available worldwide.70 Although 177Lu can be crafted in 
a particle-accelerating machine or cyclotron,71 nuclear 
reactor production via neutron activation is preferred. 
Two methods for 177Lu production via a nuclear reactor 
are available, including a direct method and an indirect 
method.72 The direct method production or carrier-
added approach employs enriched 176Lu as the irradiation 
target. While the latter one uses an enriched ytterbium 
(176Yb) target for irradiation.72,73 High specific activity of 
177Lu is of great importance for the application of TRT, 
especially for the production of various therapeutic 
radiopharmaceuticals based on peptides and antibodies.72 
The generator-based production of 177Lu from its long-live 
isomer 177mLu was reported.70,74 In addition to the generator 
radionuclide approach, the separation method of 177Lu 
from chemically and physically similar 177mLu based on 
the nuclear after-effect of nuclear decay was described.75

177Lu emits β- particles for therapeutic disease purposes 
and its γ emission is useful for SPECT imaging. The cross-
fire effect of 177Lu has pointed this radionuclide as a suitable 
radionuclide for targeted therapy of various malignant 
disorders.63,76 The physical and chemical properties of 
177Lu (t1/2 = 6.73 days, Eβmax = 497 keV, Eγ = 113 keV (6.4%) 
and 208 keV (11%)) makes it a favorable radionuclide for 
the development of therapeutic radiopharmaceuticals. Its 
β- particle energy (0.5 MeV maximum energy β-emission) 

Figure 5. Structure of 177Lu-PSMA-617 radioligand.
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allows the delivery of radiotoxicity specifically towards 
the tumors rather than the healthy tissue.77 The range 
of 177Lu penetration towards the tissue is appropriate 
for small tumors ( < 2 mm) and metastases compared 
to the longer penetration of yttrium-90 (12 mm), and 
may result in minimal kidney radiation exposure.77,78 Its 
cross-fire effect has become the important mechanism 
of the therapeutic outcome of radioligand therapy by 
destroying the surrounding cells of tracer-accumulating 
cells.79 Additionally, its lower gamma emission is sufficient 
for SPECT imaging allowing in vivo biodistribution 
imaging and pharmacokinetic studies as well as dosimetry 
measurements.72

Considerable interest in 177Lu applications has been 
growing since an established application 177Lu-DOTA-
TATE (Lutathera®) as a peptide receptor radionuclide 
therapy (PRRT) radiopharmaceutical for the treatment 
of somatostatin receptor-positive cancers, such as 
neuroendocrine tumors.80 Lutathera® is the first PRRT 
radiopharmaceutical and was approved by The European 
Medicines Agency (EMA) in 2017 and by The Food and 
Drug Administration (FDA) in 2018.80 Preparation of 
several radiopharmaceuticals based on 177Lu has been 
reported in previous studies.81–86 Recently, the potential 
application of 177Lu for therapy of another target receptor, 
such as the gastrin-releasing peptide receptor (GRPR) 
has been described.1,87,88 GRPR is overexpressed in a 
variety of cancers such as prostate cancer.24,89 Rousseau 
et al described the development of the GRPR-targeted 
radiopharmaceutical, 177Lu-NeoBOMB1, as a promising 
radiopharmaceutical for prostate cancer.87 The preclinical 
studies investigating the use of the antagonist GRPR 
NeoBOMB1 for theranostic usage with 68Ga and 177Lu 
were investigated.90 The findings showed that 177Lu-
NeoBOMB1 and 68Ga-NeoBOMB1 exhibited significant 
tumor uptake and favorable pharmacokinetic properties, 
and therefore can be potentially used as promising 
radiotracers for imaging and treatment of GRPR-positive 
cancers.90 Kurth et al reported the first human studies of 
another selective antagonist peptide towards GRPR, RM2-
labeled with therapeutic 177Lu radionuclide.88 177Lu-RM2 
has been found effective for treating mCRPC for patients 
with an insufficient amount of PSMA. Four patients 
who showed high GRPR expression on 68Ga-RM2 PET/
CT imaging received 177Lu-RM2. The results showed that 
177Lu-RM2 therapy was considered a safe treatment in 
terms of radiation safety for both patients and caregivers.88 
A promising therapeutic application of 177Lu-DOTA-
trastuzumab for the treatment HER-2-breast cancers was 
reported.91 The planar and SPECT/CT imaging results 
showed uptake at both the primary as well as the metastatic 
sites. In addition, the lack of localization of 177Lu-DOTA-
trastuzumab in negative HER-2 breast cancer patients 
indicates the specificity of this radiopharmaceutical for 
treatment of HER-2-positive breast cancer in the future.91 

Preclinical and clinical investigations of 177Lu
177Lu-PSMA-617 is characterized by its high radiolytic 
stability for at least 72 hours, a high inhibitory potency 
([Ki] = 2.34 ± 2.94 nM on LNCaP, Ki = 0.37 ± 0.21 nM 
enzymatically determined), and high internalization into 
LNCaP cells. In addition, the dynamic small PET imaging 
demonstrated high tumor-to-background contrast 1 hour 
p.i. The radiolabeled PSMA-617 also demonstrated rapid 
renal clearance and favorable pharmacokinetic properties, 
resulting in very high tumor-to-blood and tumor-to-
muscle ratios of 1058 and 529, respectively.30

Clinical studies were conducted to evaluate the potential 
of this novel radioligand as a radioendotherapeutic agent 
for prostate cancer. Several multicenters around the world 
have demonstrated the high response rate as well as the 
low toxicity achieved after therapy with this 177Lu-labeled 
PSMA-617.60-62,69,70,92-96

In general, the clinical studies investigating the efficacy 
and safety of 177Lu-PSMA-617 are based on retrospective 
studies in patients with metastatic castration-resistant 
prostate cancer who have failed three in-line therapies, 
including chemotherapy, second generation anti-
androgen and radium-223.64 Table 1 summarizes 
retrospective clinical trials with 177Lu-PSMA-617 in 
different multicenter.

An early report on side effects and the efficacy of this 
177Lu-PSMA-617 radiotherapeutic agent was published 
by Ahmadzadehfar et al.62 A total number of ten patients 
involved in this trial received only this radiolabeled agent 
as a single treatment. The PSA biochemical response was 
an indication of efficacy and was measured two months 
after treatment. The tolerability of the therapy was 
evaluated with regard to the occurrence of post-therapeutic 
symptoms and toxicities. Notably, seven patients had 
reduced PSA levels, with 50% of them experiencing a 
decreased PSA level ( ≥ 50%). No patients showed serious 
side effects during and after hospitalization. Following this 
promising initial result, a larger cohort of 24 patients was 
selected to undergo up to two cycles of 177Lu-PSMA-617 
radioligand therapy ranging from 4.1-7.1 GBq (mean 
of 6.0 GBq).60 Similar to the previous study, no patient 
showed side effects immediately after administration of 
177Lu-PSMA-617. Of 24 patients evaluated 2 months after 
the first cycle of 177Lu-PSMA-617, 19 patients (79.1%) 
showed decrease PSA level; 13/24 patients (PSA decline by 
more than 30%) and 41.6% experienced a PSA reduction 
more than 50%, while 5 patients demonstrated disease 
progression. Twenty-two of the 24 patients were recruited 
to undergo a second cycle, and 15 patients (68.2%) 
experienced a fall in PSA level, with 59% showing more 
than 50% PSA decline. The most common side effect in the 
first 2 days after injection was mild nausea (in 3 patients). 
In the same year, Kratochwil et al conducted retrospective 
studies in 30 patients.69 Each patient received 1-3 cycles 
of 177Lu-PSMA-617. Most patients experienced mild to 
moderate toxicity.69 
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PSMA labeled with alpha emitter for targeted alpha 
therapy (TAT) 
Alpha-labeled-PSMA-617 display a great potential for 
the treatment of metastatic prostate cancer. Therapeutic 
alpha-emitting radionuclides such as Ac-225, Tb-149, 
At-211, Bi-212 (lead-212), Bi-213, Ra-223, and Th-227 
have higher energy compared to beta particle-emitting 
radionuclides and a short penetration path length.97–99 
Therefore, they present a higher linear energy transfer. 
A high linear energy transfer of the alpha emitter can 
lead to the DNA double-strand break when interacting 
with nuclei. Consequently, compared to the beta 
emitter, TAT results in a more cytotoxic dose to cancer 
cells while keeping the dose to the surrounding healthy 
cells minimal.59,100 Kratochwil reported the first human 
studies of 225Ac-PSMA-617 in two patients who showed 
positive PSMA expression with PET/CT imaging of 68Ga-
PSMA-11.101 After 225Ac-PSMA-617 therapy, the patients 
showed significantly lower PSA levels and complete 
imaging responses. Despite the remarkable results of 
225Ac-PSMA-617 therapy, availability, isolation and 
separation chemistry for 225Ac, and stable targeting systems 
accompanied by a high labeling yield are still considered 
challenging issues.102 Therefore, the application of 177Lu-
PSMA-617 to treat mCRPC is of great interest. Despite 
the promising results of 225Ac-PSMA-617, only a limited 
number of clinical studies have been reported. The success 
of TAT-PSMA therapy also depends on the chelating 
agents, improved tumor uptake of linkers and targeting 
vectors, and reduced toxicity and progeny redistribution.59 
Because PSMA-TAT can potentially lead to xerostomia,101 
tandem beta (β-) emitting 177Lu-labeled PSMA may help 
reduce the occurrence of dose-limiting toxicity, including 
xerostomia.103 In addition, it can lower the 225Ac-PSMA-617 
and improve the effectiveness of 177Lu-PSMA-617.103 
Recently, Yadav et al studied the efficacy and toxicity of 
225Ac-PSMA-617.104 They reported the promising salvage 

therapy accompanied by minimal toxicity, indicating the 
great benefit possibility for mCRPC patients who have 
failed standard care, including 177Lu-PSMA-617.104 
 
Conclusion
177Lu-PSMA-617 is a promising radiopharmaceutical for 
diagnostic imaging and therapeutic of mCRPC. Due to its 
mild toxicities and suitable in vitro and in vivo properties, 
this radioligand possesses greater biomedical applications. 
Therefore, 177Lu-PSMA-617 could become the modality of 
choice for the management of prostate cancer in clinical 
settings, including oncology and nuclear medicine. 
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Table 1. Clinical studies of 177Lu-PSMA-617 in various multicenter

Toxicities PSA evaluation
Response

PSA decline ( ≥ 50%) (%)
Activity range

per cycle (GBq)
n References

Grade 3–4: anemia (10%); thrombocytopenia (4%); and 
leukopenia (3%)

2-4 wk after 45/99 (45%) 2-8 99 61

Grade 1 dry mouth (87%); grade 3 or 4 thrombocytopenia (13%) 3-4 wk after 17/30 (57%) 4.4-8.7 30 96

Grade 3-4 haemotoxicity, leucopenia grade 2 2 months 5/10 (50%) 4.1-6.1 10 62

Moderate acute haemotoxicities, grade 1 leucopenia (20%); 
grade 2 leucopenia (7%)

every 4 wk 13/30 (57%) 3.7-4.0 30 69

Mild nausea every 8 wk
cycle 1 10/24 (41.6%);

cycle 2 (59%)
4.1-7.1 24 60

Hemoglobin toxicity: grade 2(1) and grade 3(1)
2 wk, 4 wk, and 

3 months
Biochemical response: complete
2/31 (6%), partial 20/31 (64.5%)

Mean activity
5.069 ± 1.845

31 95

Grade 3 or 4 hematologic toxicity (4) (3.4%)
after one course 

of PRLT
46/80 (57.5%) 2.0-9.7 119 94

Grade 3 leukocytopenia (2) and grade 3 (1) anemia
4 wk after

3rd treatment
31/54 (58%) 7.4 54 92

Grade 3 leukocytopenia (2) every 2 wk 5/14 (36%) 6.0-8.0 14 93
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