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Introduction
Phytomedicines also called herbal medicines, are mixtures 
of plant metabolites containing pharmacologically active 
compounds with some healing and therapeutic properties. 
due to the benefits such as fewer adverse effects and low 
cost, herbal medicines have been used since ancient times 
as therapeutic agents in various diseases. In addition, over 
one-third of all FDA-approved new molecular entities are 
natural products and their derivatives.1,2 The first plant-
derived drug was painkiller morphine, with a mechanism 
of inhibiting the discharge of neurotransmitters from 
presynaptic neurons and was authorized for utilization 
in 1827.3 Later, many other products were developed, 
including paclitaxel, which is used today as an anticancer 
agent in ovarian, breast, lung, and other cancers and 
extracted from the pacific yew plant (Taxus brevifolia).4,5 

The significant steps to obtain herbal extracts or oils from 
plant materials generally include harvesting (to suppress 
plant metabolism at the right time), drying (to protect the 
active substance by inhibiting enzymes), size reduction 
(to increase the surface area and thus the improvement 
of solvent extraction) and extraction (in order to obtain 
therapeutic portion and omission of inert parts). Finally, 
the resulting extract can be traditionally formulated in 

various dosage forms such as solid, liquid, and semi-solid, 
or encapsulated in novel drug delivery systems such as 
liposomes, pyrosomes, polymeric NPs, etc.6-8

Despite the prominent pharmacological actions of herbal 
drugs in various diseases, several challenges, including 
pharmacokinetic drawbacks such as low bioavailability 
and limited absorption and physicochemical challenges 
like poor water and lipid solubility, large molecular size, 
and instability, can reduce their efficacy, primarily upon 
oral administration.9,10 An effective drug delivery system 
is needed to overcome the abovementioned barriers, 
reduce repeated administration, and increase patient 
compliance.11

In recent decades, nanotechnology-based delivery 
systems have received much attention in phytomedicine. 
The encapsulation of herbal drugs in nanocarriers and 
overcoming the above-mentioned limitations provides 
benefits such as improved solubility, protection from 
degradation, reduction of side effects, controlled 
release, and consequently optimal bioavailability and 
therapeutic efficacy.12-14 

This review outlines the challenges of phyto/
herbal medicines, including physicochemical and 
pharmacokinetic drawbacks. Different types of 
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Phytomedicine has been used by humans since ancient times to treat a variety of diseases. 
However, herbal medicines face significant challenges, including poor water and lipid solubility 
and instability, which lead to low bioavailability and insufficient therapeutic efficacy. Recently, it 
has been shown that nanotechnology-based drug delivery systems are appropriate to overcome 
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summarized, and common techniques for preparing nanocarriers used in herbal drug delivery 
are also discussed. Finally, a list of nanophyto medicines that have entered clinical trials since 
2010, as well as those that the FDA has approved, is presented.
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nanocarriers are also discussed as novel and efficient 
strategies in herbal drug delivery with the potential to 
overcome the above-mentioned challenges. Some of 
the common techniques used for the formulation of 
nanoparticles (NPs) have been reviewed. Therefore, an 
overview of FDA-approved nanophytomedicines as well 
as those being used in clinical trials since 2010, has been 
provided.

Herbal medicines: Challenges
Herbal medicines are a mixture of various ingredients 
with different physicochemical properties.15 In addition, 
poor gastrointestinal (GI) absorption and consequent 
low oral bioavailability of herbal drugs are due to 
various factors, including high molecular weight, poor 
solubility in GI fluids, limited permeability through 
cell membranes, degradation in the GI tract, hepatic 
presystemic metabolism, and P-glycoprotein (P-GP/
MDR1/ABCB1)]-mediated gut efflux.16,17 Therefore, the 
development and preparation of herbal formulations face 
various challenges.

Nanotechnology-based techniques have been developed 
to overcome the above-mentioned limitations and increase 
the bioavailability of herbal medicines.

Nanotechnology for herbal drug delivery
The importance of nanotechnology
Nanotechnology can be used to develop products 
with novel and improved actions and physicochemical 
properties particularly in the medical field.18 Nanocarriers 
protect their payload from degradation, improve 
bioavailability, reduce the therapeutic dose and side 
effects, and provide targeted therapy and controlled release 
of phytomedicine.19-21 Different classes of nanocarriers, 

including lipid-based NPs, polymer-based NPs, and 
inorganic NPs, have been used for drug delivery in 
phytomedicine, which will be discussed in detail below. A 
schematic of common nanocarriers is shown in Figure 1.

Lipid-based nanocarriers for herbal drug delivery
In addition to the benefits mentioned in the previous 
section, lipid-based NPs such as solid lipid nanoparticles 
(SLNs), liposomes, and phytosomes also have the 
advantages of biocompatibility and the ability to 
improve the aqueous solubility of poorly soluble herbal 
drugs.22 Lipid-based nanocarriers are prepared using 
various materials and methods depending on their 
target. Challenges like scale-up and physical instability 
such as aggregation must be considered in the choice 
of preparation method.23 Following the preparation of 
NPs, parameters such as size, morphology, and surface 
properties should be determined because they play an 
essential role in the cellular uptake and pharmacological 
effects of NPs.24

Liposomes are vesicular NPs which consist of concentric 
lipid bilayers made of amphipathic phospholipid molecules 
that assemble to create spherical structures in aqueous 
media and surround part of the solvent.25 In addition to 
increasing the solubility of the loaded drug, the liposome 
has been considered as a suitable carrier in herbal delivery 
in terms of its ability to load both hydrophilic and 
lipophilic drugs besides improving bioavailability and 
therapeutic efficacy.26,27 

In 1989, an Italian pharmaceutical and nutraceutical 
company, Indena, successfully generated complexes of 
phospholipids (phosphatidylcholine) and plant actives 
called Phytosome® and then patented the innovation.28 
Phytosomes (refer to Figure 1), also called phytolipid 

Figure 1. Schematic representation of common nanocarriers for herbal drug delivery
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delivery systems, are more stable than liposomes. 
Because, unlike liposomes, they have a chemical bond in 
their structure. Phytosomes increase the bioavailability 
of poorly soluble herbal medicines by increasing their 
absorption in GI. Some of the phytosomes comprising 
various phytoconstituents such as grape seed, hawthorn, 
Ginkgo biloba, milk thistle, ginseng, and green tea are 
commercialized in the USA.29,30 

In 1990, SLNs as colloidal NPs which containing lipids 
that are in solid state at room and body temperature 
were developed. SLNs have advantages such as excellent 
physicochemical stability and higher protection compared 
to other NPs such as liposomes and polymeric NPs. In 
addition, due to biocompatibility and small size (50 to 

1000 nm), it is possible to use SLN herbal formulations in 
various routes of administration.31,32 Table 1 summarizes 
the studies performed on the most common herbal 
medicines loaded in lipid-based NPs in the last 5 years.

Polymeric nanocarriers for herbal drug delivery
Recently, polymeric NPs have attracted more attention 
as a drug delivery system in phytomedicine. These NPs 
have a particle size of 10 to 1000 nm and are divided into 
two categories of nanospheres and nanocapsules based 
on structure. Nanospheres are polymeric matrices in 
which the active substance is uniformly dispersed, while 
nanocapsules have a core-shell structure with a polymeric 
shell, and the active ingredient is encapsulated in the core 

Table 1. A summary of lipid-based herbal nanoformulations

Nanocarrier type Active ingredients/product Therapeutic activity/disease Results (benefits of nanotechnology) Ref.

Liposome

Triptolide Anticancer activity Significant antitumor ability on breast cancer 33

Curcumin

Anti-inflammatory activity Improved antioxidant and behavioral responses in inflamed mice 34

Anticancer activity

Higher therapeutic efficiency 35

Significant cytotoxic effect on MCF-7 cells 36

Prolonged release of curcumin Improved antitumor effect 37

Anti-inflammatory activity Prolonged release of curcumin Reduced inflammatory markers 38

Capsaicin Anticancer activity Enhanced anticancer activity Improved pharmacokinetics properties 39

Usnic acid
Antimicrobial activity Increased antimicrobial activity 40

Antimycobacterial activity Effective antimycobacterial activity against infected macrophages 41

Catechins
Anticancer activity Significantly higher inhibition activity 42

Antioxidant activity Higher stability and antioxidant and antibacterial effects 43

Phytosome

Quercetin Anticancer activity Significantly increased apoptosis 44

Naringenin Acute lung injury
Sustained release of Naringenin Enhanced pulmonary 
bioavailability of Naringenin

45

Silybin Hepatoprotection activity Higher hepatoprotection efficacy Higher drug bioavailability 46

Epigallocatechin-3-gallate Anti-Inflammatory activity Significant anti-inflammatory activity of epigallocatechin-3-gallate 47

Curcumin Inflammation and anxiety
Reduction of adverse effects of stress on anxiety and inflammation 
parameters

48

Ginsenosides Antioxidant activity Improved efficacy and bioavailability of the ginsenosides 49

SLN

Triptolide
Rheumatoid arthritis

Remarkable inhibition of inflammation and reduction of knee 
edema

50

Antige + n-induced arthritis Better therapeutic effect 51

Berberine
Anticancer activity

Prolonged release of berberine 52

Wogonin Enhanced cytotoxicity Sustained and controlled release 53

Epigallocatechin gallate
Antioxidant and anticancer 
activities

Enhanced stability 54

Curcumin

Anticancer activity Stronger cytotoxicity Higher uptake efficiency 55

Pgp inhibitor
Effective reduction of the sensitivity to doxorubicin against drug-
resistant TNBC tumors

56

CNS diseases Increased brain accumulation 57

Anticancer activity Increased bioavailability 58

Hodgkin's lymphoma Enhanced growth inhibitory effect 59

Antioxidant activity Improved stability 60

Hibiscus rosa sinensis extract Antidepressant activity Greater antidepressant activity 61

Myricetin Anticancer activity Significant increase in necrosis percentage 62

Silybin Type 2 diabetes Enhanced absorption of silybin after oral administration 63

Linalool Anticancer activity Higher tumor inhibitory effects 64



Nanotechnology-mediated delivery of herbal and plant-derived

Advanced Pharmaceutical Bulletin, 2023, Volume 13, Issue 4 715

or is adsorbed on the polymeric membrane. Biodegradable 
and biocompatible synthetic or natural polymers are 
used to prepare polymeric NPs. These particles allow the 
controlled release of the drug and target it to a specific site 
in the body.65-67

Dendrimers have been extensively studied in herbal 
delivery among polymers due to their unique polyvalency, 
monodispersity, and controllable structure.68 Dendrimers 
consist of three parts: the central core, the generations, 
and the terminal groups. The drug can be attached to 
the terminal group either covalently or non-covalently 
and it can be encapsulated in the hydrophobic core. 
Polyamidoamine (PAMAM) is the first commercialized 
dendrimer, which is also used to increase the absorption 
of poorly water-soluble drugs.69,70 

Polymeric micelles with a core-shell structure (10-
100 nm) are another polymeric NPs that are formed by 
self-assembly of block copolymers consisting of both a 
hydrophilic block and a hydrophobic block in an aqueous 
medium. The hydrophobic core provides benefits such as 
increased solubility and protection against degradation 
and intracellular accumulation of the drug. The outer 
hydrophilic layer can achieve improved biocompatibility 
and active targeting. In general, the stability of polymeric 
micelles is higher than that of surfactant micelles.71-73 The 
studies conducted on the delivery of most common herbal 
medicines using different polymeric NPs during the last 5 
years are summarized in Table 2.

Inorganic nanoparticles
Recently, various types of inorganic NPs, such as metal 
NPs, mesoporous silica nanoparticles (MSNs), carbon 
nanotubes (CNTs), and magnetic NPs, have been used for 
applications in drug delivery. 

Metal NPs, the most important of which are quantum 
dots (QDs), gold, silver, platinum, iron (II, III) oxide, 
titanium dioxide, and zinc oxide, were discovered by 
Faraday in 1908. Recently, metal NPs have attracted 
attention in herbal drug delivery due to their unique 
properties, like the high surface area to volume ratio, many 
low coordination sites, the transition between metallic 
and molecular states, and high surface energies.90-92 

MSNs are capable of carrying large amounts of cargo 
due to their large surface area and porosity. In addition, 
they are widely used in both oral and parenteral drug 
delivery due to because of unique properties such as 
excellent chemical stability and biocompatibility.93,94

CNTs are relatively more compatible than other 
inorganic NPs. These NPs, which have a tubular structure, 
are obtained by curling up graphite sheets and are divided 
into two categories: single-walled carbon nanotubes 
(SWCNTs) and multi-walled carbon nanotubes 
(MWCNTs). SWCNTs can increase the solubility and 
bioavailability of herbal medicines. In addition, due 
to their hollow structure and the possibility of surface 
functionalization, they play an essential role in improving 
the physical and chemical properties of herbal drugs.95,96

Magnetic NPs are another group of inorganic NPs, 
among which Fe2O3 in the form of superparamagnetic NPs 
is not sensitive to oxidation compared to other magnetic 
NPs such as nickel and cobalt, so it has the potential 
application in biomedicine, mainly targeted drug delivery. 
In fact, the possibility of accumulation of magnetic NPs 
in the target tissue by applying an external magnetic field 
leads to target therapy.97 

The studies performed during the last 5 years on the 
delivery of most common herbal medicines using different 
types of an inorganic nanocarriers are summarized 

Table 2. Polymer-based herbal nanoformulations

Nanocarrier type Active ingredients/product Therapeutic activity/disease Results (benefits of nanotechnology) Ref.

Nanospheres

Curcumin
Anticancer activity

Higher anticancer activity and apoptosis in HepG2 cells 74

Increased growth inhibition and apoptosis in breast cancer cells 75

Improved serum stability Enhanced apoptotic effects on tumor cells 76

Skin wound healing process Enhanced potential in cutaneous wound repair 77

Berberine Anticancer activity Increased dissolution rate and bioavailability 78

Artemether Antimalarial activity Sustained release of artemether 79

Nanocapsules

Berberine Anticancer activity Improved efficiency and controlled release of berberine 80

Curcumin
Neuroprotective activity

Improvement in the blockade of apomorphine-induced behavioral 
changes

81

Antimalarial activity Controlled release of curcumin 82

Dendrimer

Quercetin Antibacterial efficacy Sustained drug release Enhanced therapeutic potential of quercetin 83

Silybin Antioxidant activity Extended-release time and improved solubility and stability 84

Curcumin Anticancer activity
Reduction of the viability of glioblastoma cell lines 85

Improved antitumor effect 86

Polymeric micelles

Berberine
Anticancer activity

Enhanced cellular uptake and improved solubility and delivery 87

Higher cellular uptake Enhanced cytotoxic effect against HCT116 cells 80

10-Hydroxycamptothecin Improved liver targeting and absorption 88

Curcumin Antibacterial activity Enhanced penetration into the biofilms and antibacterial activity 89
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in Table 3.

Techniques used for the formulation of 
nanophytomedicines
High-pressure homogenization method
In the high-pressure homogenization method, lipid 
particles are converted into nanoscale particles using 
high pressure and high shear stress. This method, divided 
into hot and cold homogenization, is widely used to 
produce lipid-based NPs, including emulsions, liposomes, 
and SLNs at large scales. In both cases, the first step 
involves dissolving of the drug in the molten lipid. In 
hot homogenization, homogenization is applied to the 
pre-emulsion at a higher temperature than the melting 
point of lipid. In contrast, in cold homogenization, 
homogenization of suspension is performed at room 
temperature.118,119

Solvent emulsification–diffusion method
In this method, the polymer or lipid is dissolved in an 
organic solvent and then emulsified into an aqueous phase 
containing an emulsifier. Finally, the solvent is evaporated 
under a vacuum to form polymeric or lipid-based NPs. 

The advantage of this method over the homogenization 
method is the lack of high temperature, so it is a suitable 
method for formulating temperature-sensitive drugs. 
However, organic solvents may cause toxicological 
problems.120,121

Co-precipitation method
Co-precipitation is the most used method for the 
preparation of metal oxide and core-shell NPs. It is a cost-
effective, fast, straightforward, and easily transposable 
on a larger scale method for industrial applications. This 
method gives nanomaterials via high purity and doesn’t 
require high pressure or temperature and hazardous 
organic solvents.122 

Phase coacervation
Coacervation is one of the common methods of 
microencapsulation and is divided into two categories: 
simple and complex. In simple coacervation, a colloidal 
solute such as ethyl cellulose or chitosan is used, while 
in the case of complex coacervation, a polymer solution 
is prepared by the interaction between two oppositely 
charged agents such as gelatin and chitosan. Generally, 

Table 3. Inorganic NPs used in herbal nanoformulations

Inorganic 
nanocarrier

Nanocarrier type
Active ingredients/
product

Therapeutic activity/
disease

Results (benefits of nanotechnology) Ref.

Metal NP

Gold
Berberine

Anticancer activity Remarkable reduction of tumor weight 98

Spinal cord injury Higher anti-apoptotic and anti-inflammatory effects 99

Curcumin Anticancer activity Higher inhibition of tumor cell growth 100

Silver Curcumin

Antibacterial activity Improved curcumin photostability and antibacterial activity 101

Carbon tetrachloride 
induced hepatic injury

Significant antioxidant activity 102

Anticancer activity Promoted cytotoxic effect on the tumor cells 103

QD Curcumin Anticancer activity Better inhibitory effect on tumor cells 104

MSN

folic acid–conjugated 
MSN

Curcumin

Antioxidant, 
Anticancer activity

Enhanced cellular uptake and sustained release Induction of 
apoptosis in vitro. Enhanced in vitro antioxidant activity

105

PEGylated lipid bilayer-
coated MSN

Paclitaxel and 
curcumin

Improved stability, solubility, and sustained release in vitro
Enabled iv administration of hydrophobic drugs
Promoted in vitro cytotoxic activity against breast cancer cells

106

Magnetic 
NP

Fe2O3/chitosan/
montmorillonite

Quercetin Anticancer activity
Decreased toxicity Controlled and targeted release of the 
quercetin

107

α-Fe2O3

Sida cordifolia plant 
extract

Antibacterial activity Enhanced antimicrobial activity through targeted delivery 108

Fe3O4

Gallic acid
Anticancer activity

Higher anticancer activity 109

Quercetin
Improved anticancer activity 110

Fe3O4–β-cyclodextrin Epilepsy disorder Improved therapeutic efficacy 111

Fe3O4 Silymarin Anticancer activity Higher antioxidant activity 112

CNT

MWCNT

Curcumin, 
Glycyrrhizin and Rutin

Anticancer activity

Increased stability of suspension of CNTs in aqueous media
Decreased toxicity of delivery system

113

Curcumin
Prolonged-release property High adsorption capacity for 
curcumin

114

SWCNT Curcumin
Increase in population of necrotic cells 115

Improved inhibition of cancer cell proliferation 116

Cancer cell membrane-
modified SWCNT

Berberine
Increased accumulation in liver cancer tissue
Prolonged circulation time

117
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this method involves the phase-separation of two separate 
liquid phases to form a polymer-rich phase (coacervate) 
and a polymer-depleted phase (equilibrium solution).123,124 

Salting out method
Both the drug and polymer are first dissolved in a solvent 
in this method. Then, the solubility of the polymer 
is reduced by adding an electrolyte, and as a result, it 
precipitates and encapsulates the drug. This technique is 
primarily used for the preparation of nanospheres.125,126

Supercritical fluid-based methods
The supercritical fluid technique with the potential to 
produce NPs with a narrow size distribution without 
solvent residues in the final product is considered an 
essential tool for preparing a wide range of biomedical 
nanomaterials. Carbon dioxide and water are most 
commonly used supercritical solvents in this method.127 
The basis of this method is the dissolution of the drug 
and carrier materials (e.g., polymer) in the supercritical 
solvent at critical temperature and pressure and then its 
expansion by spraying in the expansion chamber at lower 
pressures, which leads to the deposition of materials and 
the formation of NPs.128 

Nanoprecipitation technique 
Nanoprecipitation techniques, also called solvent 
displacement methods, were developed by Fessi et al.129 
Usually, in this method, the polymer and drug are dissolved 
in a water-miscible solvent and then added to a non-solvent. 
The solubility of the polymer decreases as soon as it enters 
the nonsolvent and the polymer precipitates encapsulate 

the drug. The presence of an emulsifier or stabilizer, such as 
poloxamers is vital to avoid the aggregation of NPs during 
the nanoprecipitation process.130

Self-assembly methods
Self-assembly is the spontaneous arrangement of 
individual units to create well-defined structures, 
which is more suitable for preparing two-dimensional 
nanostructures such as nanosheets. Self-assembly can 
occur under the influence or in the absence of external 
intervention, which is called dynamic and static processes, 
respectively.131,132

Clinical trials and FDA-approved herbal drug delivery 
nanoformulations
Cosmetochem Company specialized in the production of 
a range of botanical extracts in a liposomal powder named 
Liposome Herbasec®. Similarly, a line of Phytosome® 
technology-based products has been developed and 
commercialized by the Indena Company. Both liposomal 
and phytosomal NPs are very efficient penetration 
enhancers, so they are used as drug carriers for skin 
with the ability to increase the bioavailability of plant 
extracts.15,133

In addition, different companies have offered various 
nanoformulations of anticancer phytomedicines. A 
summary of anticancer nanophytomedicines, which have 
entered clinical trials and have also been approved by the 
FDA, is given in Table 4.

Conclusion
Despite the potential use of plant-derived drugs in the 

Table 4. Clinical trials and FDA-approved anticancer nanophytomedicines

Phytomedicine Brand name Nanocarrier FDA approved Clinical trials (phase) Govt. clinical trials

Docetaxel

DoceAqualip Lipid nanosuspension Approved in India I/II/ III NCT01957995 NCT03671044

SYP-0709 Polymeric NPs - I NCT02274610 NCT01103791

LE-DT/ ATI-1123 Liposome - I/II NCT01151384

CriPec® docetaxel/ 
CPC634

CriPec NPs - I/II
NCT02442531 NCT03742713 
NCT03712423

Docetaxel-PM/ SYP-
0704A/ NANOXEL- M

Polymeric micelle - II/III
NCT02639858 NCT02982395 
NCT03585673

Irinotecan Onivyde® Liposome Yes -
NCT00702182 NCT01494506 
ChiCTR-IPR- 15005856

Vincristine Marqibo® Liposome Yes - -

Vinorelbine tartrate Navelbine/ NanoVNB® Liposome Yes - NCT03518606 NCT02925000

Curcumin
IMX-110

Curcumin/doxorubicin- 
encapsulating nanoparticle

Yes I/II NCT03382340

Lipocurc™ Liposome - I/II NCT02138955

Camptothecin CRLX101/ NLG207 Polymeric nanoparticle - I/II
NCT02010567 NCT01380769 
NCT01612546

Paclitaxel

NK105 Micellar nanoparticle - III NCT01644890

Genexol-PM/ IG-001/ 
Cynviloq

Polymeric micelle - I/II/ III/IV NCT03618758

Lipusu® Liposome - I/II/ III/IV NCT02142790 NCT02996214

Abraxane® Albumin-stabilized nanoparticle Yes - NCT02555696 NCT02151149 
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treatment of various diseases, they have considerable 
limitations due to their high molecular weight, high 
required dose, poor solubility, and high toxicity. Novel 
nanotechnology-based drug delivery systems, including 
polymeric, lipid, and inorganic nanocarriers are beneficial 
in overcoming these limitations. Nanocarriers containing 
herbal medicines provide benefits such as increased 
therapeutic efficacy and bioavailability. Today, many 
herbal and plant-derived nanoformulations have been 
approved by the FDA, and many clinical studies are 
underway in this field.
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