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Introduction
It is well known that the human papillomavirus (HPV) is 
the leading cause of more than 90% of cervical cancers.1 
The E6 and E7 oncoproteins of high-risk HPV types, 
particularly HPV16, alter routine host anti-tumor 
pathways, such as intrinsic apoptosis, and then induce 
cancer in host cells by generating genomic instability 
by targeting two host tumor suppressors, p53 and the 
retinoblastoma protein (pRb).2,3 Despite developing 
prevention methods such as vaccination of adolescent girls 
against high-risk strains of HPV and modern diagnostic 

procedures in developed countries, in poor and less 
developed countries, 500 000 new cases of cervical cancer 
and more than 300 000 deaths are reported due to this 
disease.4-6 Today, various treatment regimens based on 
surgery, chemotherapy, and Radiotherapy are combined 
to treat cervical cancer.7 However, there are still challenges 
to treatment success.8 An in-depth understanding of 
HPV-related malignancies and treatment failure factors is 
essential to provide successful treatment regimens.

The fact that solid cervical tumors have hypoxic 
areas with oxygen concentrations below 1.5% has been 
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Abstract
Purpose: Despite the development of anti-human papillomavirus (HPV) vaccines, cervical 
cancer is still a common disease in women, especially in developing countries. The presence 
of a hypoxic microenvironment causes traditional treatments to fail. In this study, we presented 
a combined treatment method based on the chemotherapeutic agent cisplatin and Clostridium 
novyi-NT spores to treat normoxic and hypoxic areas of the tumor.
Methods: TC-1 Cell line capable of expressing HPV-16 E6/7 oncoproteins was subcutaneously 
transplanted into female 6-8 week old C57/BL6 mice. The tumor-bearing mice were randomly 
divided into four groups and treated with different methods after selecting a control group. Group 
1: Control without treatment (0.1 mL sterile PBS intratumorally), Group: C. novyi-NT (107 C. 
novyi- NT). Group 3: Receives cisplatin intraperitoneally (10 mg/kg). Fourth group: Intratumoral 
administration of C. novyi-NT spores + intraperitoneal cisplatin. Western blot analysis was used 
to examine the effects of anti-hypoxia treatment and expression of hypoxia-inducible factor 1 
(HIF-1) and vascular endothelial growth factor (VEGF) proteins. 
Results: The results clearly showed that combined treatment based on C. novyi-NT and cisplatin 
significantly reduced the expression of HIF-1 alpha and VEGF proteins compared to cisplatin 
alone. At the same time, the amount of necrosis of tumor cells in the combined treatment 
increased significantly compared to the single treatment and the control. At the same time, the 
mitotic count decreased significantly.
Conclusion: Our research showed that developing a combined treatment method based on 
C. novyi-NT and cisplatin against HPV-positive cervical cancer could overcome the treatment 
limitations caused by the existence of hypoxic areas of the tumor.
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proven.9 Hypoxia is an adverse prognostic factor that 
suppresses the host’s immune system and severely 
reduces the effectiveness of various treatments, including 
Radiotherapy and chemotherapy.10,11 It has recently been 
shown that under hypoxic conditions, HPV-infected 
tumor cells, by being in a reversible proliferative stasis 
state, drastically reduce E6/E7 expression and cause 
the cell to escape immunity.12 If tumor cells are in the 
proper oxygen delivery state, the expression of E6/E7 
oncoproteins resumes rapidly and, after treatment, acts 
as an abundant source of oncoprotein expression.12,13 
This complex interaction, which can eventually cause 
the tumor cell to escape from the senescent, is mediated 
through the phosphoinositide 3-kinase/AKT/mammalian 
target of rapamycin (mTOR) signaling pathway in 
hypoxic conditions, despite decreased E6/E7 oncoprotein 
expression.13-16 Hypoxia-inducible factor 1-alpha (HIF-
1α) acts as a significant protein in the adaptation of cancer 
cells to hypoxic conditions, and its role in the angiogenesis 
and development of various cancers has been discussed.17,18 
By stabilizing HIF-1α in hypoxic conditions in cervical 
cancer, regulated in development and DNA damage 
responses 1 is activated and inhibits mTORC1.15,19,20 As a 
result, despite AKT-mediated inhibition of E6/E7, hypoxic 
HPV-positive cancer cells survive the aging process.13 
Thus, targeting tumor cells in hypoxic areas can be vital to 
a successful treatment regimen.

Cisplatin is one of the most common chemotherapy 
drugs prescribed as a first-line treatment for many 
cancers.21 This substance induces intrinsic cell death 
by creating irreversible bindings to the DNA of tumor 
cells.22 However, research has shown that the presence 
of a hypoxic microenvironment in the tumor, through 
decreased expression of anti-tumor protein p53,23 
increased cancer stemness,24 regulation of non-coding 
RNAs,25 generation of reactive oxygen species (ROS),26 
increased exosome secretion,27 loss of mismatch repair,28 
cyclophilin overexpression,29 Surviving overexpression,30 
and increased glucose transporter 1 (GLUT1) expression31 
may increase the resistance of hypoxic tumor cells to this 
treatment. Therefore, offering complementary therapies 
based on anti-hypoxia agents, which target the expression 
and stability of the HIF-1α axial protein that plays a 
crucial role in inducing this resistance,32 is considered a 
promising factor in increasing therapeutic efficacy.

Today, various strategies have been developed to treat 
all types of solid tumors, including surgery, chemotherapy, 
radiotherapy, targeted therapy, immunotherapy, 
combination therapy, and extracellular vesicle therapy.33-35 
More than half of cancer patients consider Radiotherapy 
as part of their treatment plan. Despite the benefits of this 
treatment modality, the development of various physical 
complications and, most importantly, the susceptibility 
of the patient’s normal cells to carcinogenesis from 
radiation exposure appears to be a significant challenge.36 
In the context of immunotherapy, immune checkpoint 

inhibition is considered standard treatment, but the 
most significant concern is for cold cancers, which are 
unlikely to respond to such therapy.37 Some medicines 
are inefficient because not every tumor can be removed 
by surgery or because it is resistant to chemotherapy and 
radiotherapy. Chemotherapy decreased drug penetration 
into neighboring tumor cells in the weakly vascularized 
area, environmental toxicity and reduced immunity, 
which faces some clinical problems after treatment.38 The 
existence of these challenges in treatment, driven mainly 
by the disturbances in tumor physiology and the presence 
of hypoxic areas in all types of solid tumors, led researchers 
to revive the method of using anaerobic bacteria at the 
beginning of the 20th century, because after injecting 
these bacteria into the tumor, they grow selectively in the 
hypoxic areas of the tumor and can cause its destruction.39 
The existence of these challenges in treatment, caused 
mainly by the disturbances in tumor physiology and the 
presence of hypoxic areas in all types of solid tumors, 
led researchers to revive the method of using anaerobic 
bacteria at the beginning of the 20th century, because 
after injecting these bacteria into the tumor, they grow 
selectively in the hypoxic areas of the tumor and can cause 
its destruction.39

One of the most attractive ways to overcome the 
resistance of cancer cells in hypoxic areas of solid tumors 
to standard therapies, which have been vigorously pursued 
over the last two decades, is to use the spores of a non-
lethal type of Clostridium novyi.40 After injection into the 
tumor, spores of C. novyi-NT migrate to hypoxic areas of 
the cancer, and due to the hypoxic nature of these areas, 
begin to germinate and cause cells to lysis in this area.41 
The nature of the therapeutic function of this agent is 
not fully understood,42 but it appears that this bacterium 
induces a robust immune response from the host.43 On 
the other hand, by secreting several extracellular proteins 
lysing the lipid structure of the cell membrane, including 
phospholipase C (PLC) (NT01CX0979), it causes the 
destruction of tumor cells in the hypoxic areas.44 

In this study, for the first time, a combined treatment 
strategy based on cisplatin and C. novyi-NT spores is 
presented in a mouse model for HPV-related cervical 
cancer and the effects of this type of treatment on resistance 
factors in hypoxic tumor areas are shown. Understanding 
these effects could pave the way for combination therapies 
to make cisplatin more effective against HPV-related 
cancers.

Materials and Methods
Preparation of cell culture and Clostridium novyi-NT 
spores
To cause HPV-Associated cervical cancer in a mouse 
model, the TC-1 cell line with the ability to express HPV-
16 E6/7 oncoproteins45 was prepared by the National Cell 
Bank of Iran affiliated with Pasteur Institute (Tehran, 
Iran). TC-1 cell line was suspended in RPMI-1640 (Sigma, 
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USA) medium with 10% fetal bovine serum (FBS) (Gibco, 
USA), 1% penicillin-streptomycin (Sigma, USA), 25 mM 
HEPES (Sigma, USA), 1% glutamine (Sigma, USA) and 
incubated at 37 °C and 5% CO2. We have previously been 
able to generate spores without lethal genes from the wild 
C. novyi type B strain.46 After processing, C. novyi-NT 
spores were packaged in lyophilized tablets containing 107 
and stored at -20 °C for future use. 

Animal study design and creation of a mouse model of 
HPV-associated cervical cancer
Thirty female 6-8 weeks old C57/BL6 mice weighing 18 to 
22 g were obtained from Pasteur Institute (Iran, Karaj) and 
fed for seven days according to laboratory standards. The 
animals were then randomly divided into five groups and 
six mice in each group (group = 5 and n = 6). One group 
was randomly chosen as a non-tumor and healthy group, 
and the other four groups were selected to challenge the 
tumor. To cause HPV-Associated cervical cancer, one 
million TC-1 cells were suspended in 0.2 mL of phosphate-
buffered saline (PBS) (Sigma, USA) and injected 
subcutaneously into the right flank of each mouse. During 
this period, the mice were monitored daily, and with the 
appearance of palpable tumors, the size of the tumors was 
measured using a caliper. The volume of the tumors was 
determined using the standard formula (longest diameter 
of the tumor) × (shortest diameter) 2 × 0.5. 

Treatment with Clostridium novyi-NT spores and 
cisplatin 
Cisplatin (CAS 15663-27-1) was purchased from sigma 
Aldrich (Sigma, USA). To evaluate the therapeutic effects 
of cisplatin chemotherapy alone or in combination with 
the anti-tumor effects of C. novyi-NT spores, after reaching 
the volume of mouse tumors in the range of 300 to 500 
mm3, the following was performed; Group 1: They did 
not receive any treatment and were injected with 0.1 mL 
of sterile PBS intratumoral. Group 2: A lyophilized tablet 
containing 107 C. novyi-NT spores was suspended in 0.1 
mL of sterile PBS and injected intra-tumor into different 
tumor parts. Group 3: 10 mg/kg cisplatin47 was dissolved 
in 0.1 mL sterile PBS and injected intraperitoneally into 
each mouse. Group 4: This group is a combination therapy 
group and received 107 C. novyi-NT spores suspended in 
0.1 ml PBS on day 0. Subsequently, 8 hours later, they 
received 10 mg/kg cisplatin dissolved in 0.1 mL PBS 
intraperitoneally. According to our previous study,46 the 
15th day after the start of treatment was chosen as the day 
of the end of treatment; on this day, all animals received 30 
μL of anesthetic solution with the following characteristics: 
Ketamine 10% (100 mg/mL; Medistar, Ascheberg, 
Germany) and xylazine 2% (20 mg/mL; Riemser, 
Greifswald, Germany) were combined in a single insulin 
syringe (2 parts ketamine and 1 part xylazine)48 and After 
ensuring deep anesthesia of the animals, a blood sample 
was taken through the heart muscle and maintained at 

10% using EDTA (ethylene diamine tetraacetic acid) as an 
anticoagulant. The animals were then sacrificed through 
the displacement of the neck vertebra. Tumor tissue was 
then carefully isolated and kept at -70 °C for gene analysis 
and protein expression and in 10% formalin solution for 
histopathological examination.

RNA extraction and cDNA synthesis
Total RNA was extracted from 100 mg of cervical cancer 
tissue isolated from each mouse and used RNA Extraction 
kit (Thermo Fisher Scientific, USA) according to the 
manufacturer’s instructions. The purification of total RNA 
was evaluated by NanoDrop ND-1000 (NanoDrop, USA) 
spectrophotometer. Extracted product was tested on a 2% 
agarose gel to check RNA integrity. 500 µg of extracted 
RNA was used for cDNA synthesis by random hexamer 
primer using a reverse transcription kit (Biotech Rabbit, 
Germany) according to the manufacturer’s instructions.

Real-time polymerase chain reaction (RT-PCR) analysis 
The expression level of the GLUT1 and PLC genes was 
determined by RT-PCR. 2 µL of syntonies cDNA was 
subjected to PCR cycle with SYBR Green 2x Master 
Mix (Amplicon, Denmark). PCR conditions included 
pre-denaturation at 95 °C for 15 minutes, denaturation 
at 95 °C for 30 seconds, and denaturation at 60 °C for 
45 seconds for 40 cycles. Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) was used as a reaction internal 
reference. All the samples were determined 3 times. 
The special primers were as follows: GLUT1, forward: 
5’- GAGAACCGGGCCAAGAGTG-3’ and reverse 
5’- TTCTTCTCCCGCATCATCTG-3’; PLC, forward 
5’- GGAGCATCAAGTAAAGCGTA-3’ and reverse 5’- 
CATTCGGATCATAATCAGGA-3’; GAPDH, forward 
5’-GCCAAAGGGTCATCATCTC-3’ and reverse 
5’-GTAGAGGCAGGGATGATGTT-3’. All primers 
were designed by Oligo 7 software and synthesized by 
Metabion Company (Germany). The target mRNA value 
was measured by comparison with the control sample, 
then the comparison period threshold (ΔΔCt) method 
was used for calculation.

Western blot analysis
Western blot analyses were performed as previously 
described with some modifications.49 The lysates were 
removed by centrifugation at 14 000 rpm for 20 minutes 
at 4 °C. According to the manufacturer’s instructions, the 
BCA protein Quantification kit determined the protein 
concentration of exosome lysates. The exosome lysates 
were mixed with a 2X Laemmli sample buffer equal to 
volume. Lysates (15 μg) were then subjected to SDS-PAGE 
after a 5 minutes boiling and subsequently transferred 
to a 0.2 μm immune-Blot™ polyvinylidene difluoride 
(PVDF) membrane (Bio-Rad Laboratories, CA, USA). 
The membranes were then blocked with 5% BSA (Cat No: 
A-7888; Sigma Aldrich, MO, USA) in 0.1% Tween 20 for 
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1 hour. Then, the membranes were incubated with Anti-
HIF-1 alpha (Abcam), Anti- Vascular endothelial growth 
factor (VEGF) (Abcam), and anti-beta actin-loading 
control antibodies (Abcam) for one h at room temperature. 
Subsequently, membranes were washed thrice with TBST 
and incubated with goat anti-rabbit IgG H&L (HRP) 
(Abcam) secondary antibodies. The membranes were 
then incubated with enhanced chemiluminescence for 1–2 
minutes. Protein expression was normalized to β-actin. 
Densitometry of protein bands was performed using the 
gel analyzer Version 2010a software (NIH, USA), such 
that the percentage area under the curve of each band 
was divided by the percentage area under the curve of 
its corresponding actin band, and then calculated values 
were compared between groups as described previously.49

Reactive oxygen species analysis
ROS1/ROS ELISA Kit (LifeSpan BioSciences, USA) 
was used to measure the number of ROS based on the 
Sandwich ELISA method. Tumor tissues were washed 
in PBS to remove excess blood. Next, the tissues were 
weighed before homogenization. The tissues were minced 
and homogenized in 10 ml PBS with a glass homogenizer 
on ice. All reagents, working standards, and samples were 
prepared according to the kit instructions and placed 
at room temperature for 20 minutes. 100 µL of sample 
and standard were added to each well and incubated for 
2 hours at 37 °C. The plate was emptied, and 100 µL of 
Detection Reagent A was added and incubated for 1 
hour at 37 °C. The plate was opened and washed thrice 
with 400 µL of the wash solution in the plate kit. 100 µL 
of Detection Reagent B was added and incubated for 30 
minutes at 37 °C. The plate was emptied and washed 
thrice with 400 µL of the wash solution in the plate kit. 
90 mL of substrate solution was added to each well and 
incubated for 20 minutes in the dark at 37 °C. Finally, 
50 µL of Stop solution was added to each well. Using an 
ELISA device, the amount of light absorption was read at 
450 nm, and based on the amount of light absorption, the 
standard curve was drawn, and based on the slope of the 
line and the width of the beginning, and the amount of 
ROS concentration in each well was measured.

Histopathological studies
Tumor tissue was fixed in 10% formalin and dehydrated 
through graded ethanol (70%, 90%, 96%, and 100%). 
Then, the tissues were paraffin-embedded, and 5μm 
sections were taken from the tissue by microtome. So, 
the slides were stained with hematoxylin and eosin dyes 
and Giemsa staining according to routine laboratory 
protocols. And then, for the histology of tumors, 
conventional hematoxylin and eosin (H&E) staining 
and light microscopy were used. Formula calculated 
the relative necrotic area (%) of tumor tissues: Relative 
necrotic area (%) = Necrotic area in tumor section/Total 
area of tumor section × 100.50 

Statistical analysis
All data for this experiment have been presented as 
mean ± SD. We used GraphPad Prism 9 software for 
statistical analysis, including a one-way analysis of 
variance (ANOVA) and a t test, and selected 0.05 as 
statistically significant.

Results and Discussion
Clostridium novyi-NT spores combined with cisplatin 
showed a synergistic anti-tumor effect in TC-1 mice 
models
The tumor tissues stained by the H&E technique were 
carefully examined to understand the double anti-tumor 
function of the combined treatment based on C. novyi-
NT spores and the cisplatin (Figure 1a). The detailed 
examination showed that the percentage of necrosis in 
the treatment group that received cisplatin and bacteria 
compared to the group that received only cisplatin 
increased statistically significantly (P < 0.0001) (Figure 1c). 
Also, detailed microscopic examinations showed that the 
mitotic count, as an indicator of tumor malignancy, in 
the group receiving combined treatment was statistically 
significantly lower compared to the control group and the 
group treated only with cisplatin (P < 0.0001) (Figure 1d).

Effects of C. novyi-NT spores and cisplatin on GLUT 1 
mRNA expression level in mice with cervical cancer and 
qPCR for detecting C. novyi-NT 
Glucose transporter-1 has been suggested as a prognostic 
factor in various cancers associated with treatment 
resistance and immune evasion.51 In a study by Kim et 
al, with the aim of intending to investigate the predictive 
effect of GLUT1 in cervical cancer, they analyzed the 
data of 298 patients. They showed that high expression 
of GLUT1 with old age, squamous cell carcinoma, high 
tumor stage, metastasis to pelvic lymph nodes, and low 
hysterectomy rates are associated. Finally, they concluded 
that GLUT1 expression and HPV16 subtype might have 
independent prognostic value in cervical cancer. GLUT1-
mediated immune modulation may be one of the crucial 
reasons for treatment failure, especially in HPV16 positive 
group.52 As a result, it can be concluded that treatments 
that modulate the expression of GLUT1 will have 
promising efficacy. The qPCR technique was employed 
to study the effect of C. novyi-NT spores and cisplatin 
treating cervical cancer in mice. The GAPDH gene was 
applied as a housekeeping gene (Figure 2), showing the 
expression level of GLUT 1 and C. novyi-NT PLC (Gene: 
NT01CX_0979) in different groups of mice. Results show 
that the GLUT 1 expression was significantly reduced in 
C. novyi-NT spores compared to control (P = 0.0001), 
the combination of C. novyi-NT spores and cisplatin 
compared to C. novyi-NT spores (P < 0.05), cisplatin 
compared to control and variety of C. novyi-NT spores 
and cisplatin compared to control (P < 0.0001). C. novyi-
NT PLC (Gene: NT01CX_0979) was considered a factor 
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confirming the presence and germination of C. novyi-NT 
spores. As expected, the expression level of this gene was 
zero in the control group and the group that received only 
cisplatin, as the PLC expression levels were significantly 
increased in cisplatin compared to control and cisplatin 
compared to C. novyi-NT spores (P < 0.005) and was seen 
the reduced level of expression in the combination of 

C. novyi-NT spores and cisplatin compared to cisplatin 
(P < 0.05) (Figure 2).

Effects of C. novyi-NT spores and cisplatin on HIF-1α 
and VEGF proteins expression level in mice with cervical 
cancer 
Hypoxia-inducible factors have been identified in 

Figure 1. Histopathological observations of the therapeutic combination of Clostridium novyi-NT spores and cisplatin in TC-1 tumor-bearing mice: (a) The results of 
H&E staining show that extensive necrosis has occurred in the tissue of tumor mice receiving the combination treatment (yellow box: extensive necrosis of tumor 
tissue). (b) Giemsa staining, confirming the germination of Clostridium novyi-NT bacteria spores in treatment groups receiving spores (yellow arrow: bacterial 
accumulation). (c) The comparison of the mitotic count of the tested groups shows that the amount of this factor is statistically significantly lower compared to 
the control group and the group receiving cisplatin. (d) Extensive tumor necrosis of the tumor tissue in the group receiving the combined treatment, the amount 
of which has increased statistically significantly compared to the other groups and the control group. (* P < 0.05, ** P < 0.005, *** P = 0.0001, **** P < 0.0001)

Figure 2. Effects of Clostridium novyi-NT spores and cisplatin on the expression level of PLC and GLUT 1 in mice with cervical cancer. GAPDH was used as 
a housekeeping gene. The RT-qPCR results showed statistically significant differences in the mRNA expression levels of (a) GLUT 1 and (b) PLC in different 
treatment groups of mice compared to the control. Data demonstrate the mean ± SD of three independent experiments. (* P < 0.05, ** P < 0.005, *** P = 0.0001, 
**** P < 0.0001)



Ebadi Sharafabad et al

Advanced Pharmaceutical Bulletin, 2023, Volume 13, Issue 4822

the hypoxic tumor microenvironment as essential 
transcription factors that regulate the expression of 
many of genes related to angiogenesis, metastasis, cell 
proliferation, and resistance to chemotherapy and 
radiotherapy. HIF-1α promotes cancer cell proliferation, 
and VEGF induces vascular endothelial cell division to 
promote tumor growth. High expression of HIF-1α and 
VEGF in cervical cancer tissues is associated with clinical 
stage, pathological grade and lymph node metastasis.53 
The effect of C. novyi-NT spores and cisplatin on protein 
expression level was examined by western blot and used 
anti-beta actin-loading by control antibodies. There were 
statistically significant differences in the protein expression 
levels of HIF-1α and VEGF in different groups of mice. 
Figure 3 shows protein expression levels in all groups of 
mice. Results show that the HIF-1α protein expression 
significantly reduces in the combination of C. novyi-NT 
spores and cisplatin group compared to control (P < 0.05), 
the combination of C. novyi-NT spores and cisplatin 
group compared to cisplatin (P < 0.05). The VEGF protein 
expression significantly reduces in the combination of C. 
novyi-NT spores and cisplatin group compared to control 
(P < 0.05), the combination of C. novyi-NT spores and 
cisplatin group compared to C. novyi-NT spores (P < 0.05).

Effects of C. novyi-NT spores and cisplatin on ROS in 
mice with cervical cancer
In several types of cancer, ROS are widely associated with 
carcinogenesis and cancer progression.54 To investigate 
the effect of C. novyi-NT spores and cisplatin on the 
changes related to Reactive oxygen species (ROS), it was 
performed according to the protocol of ROS1 / ROS 
ELISA Kit (LifeSpan BioSciences, USA). The results 
showed that the number of ROS was significantly reduced 
in the group receiving cisplatin along with C. novyi-NT 
spores compared to the group receiving cisplatin and C. 
novyi-NT spores alone and compared to the control group 
(P = 0.0001) (Figure 4).

It has been well established that the most important 
cause of cervical cancer is a chronic infection caused by 
high-risk types of HPV.55 These viruses cause genomic 

instability and cancer by deactivating suppressor proteins 
p53 and pRb through oncoproteins E6 and E7. Despite the 
development of prevention methods for this malignancy 
based on vaccination against high-risk types of HPV, 
the infection rate is still high in poor and developing 
countries, and as a result, there is a need to develop new 
treatment approaches.56 One of the essential factors that 
strongly affect the success of conventional treatments of 
this disease is the presence of hypoxic micro-regions in 
this type of tumor. Therefore, it can be said that hypoxia 
is the most critical factor in the failure of conventional 
treatments based on chemotherapy and radiotherapy.57

The most important factor that causes cancer cells to 
adapt to hypoxic conditions is HIF-1α. This transcription 
factor, as the central axis of cell adaptation to hypoxic 
conditions, by regulating more than 100 genes, mediates 
the requirements for the continued abnormal proliferation 
of tumor cells, abnormal metabolisms, metastasis, and 
resistance to therapeutic agents.53,58 As a result of the 
stabilization of this protein, VEGF expression is induced, 
which is a potential factor in the induction of tumor 
angiogenesis and also causes the expression of the glucose 
transporter gene and thus increases glycolysis.59 

One of the compounds widely used in treating various 
malignancies, including cervical cancer, is cisplatin.60 This 
combination has significant effects on normoxic tumors, 
but the hypoxic condition of the tumor is the main reason 
for the failure of this treatment.21 Research has shown 
that cisplatin causes the death of tumor cells through 
upregulating of the p53 suppressor protein.22 However, in 
the hypoxic conditions, HIF-1α strongly suppresses the 
level of p53.61 As a result, the resistance to this treatment 
increases. At the same time, as oxygen decreases in the 
hypoxic conditions of the tumor, the leakage of electrons 
from the electron transport chain occurs, which is the 
reason for the reduction of the electron flow through 
the mitochondrial complex of the electron transport 
chain. This process produces ROS that can enhance 
mitochondrial fragmentation and further reduce the 
expression of p-Drp1 and Mfn1, resulting in increased 
resistance to cisplatin. Therefore, providing combined 

Figure 3. Western blotting representative of HIF-1α and VEGF of different treatment groups, β-actin was used as a normalizer. A statistically significant decrease 
in the expression of both proteins is evident in the group receiving the combined treatment of Clostridium novyi-NT spores and cisplatin compared to the control 
group. All the experiments were performed in triplicates. (* P < 0.05)
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treatment regimens based on cisplatin and tumor anti-
hypoxic agents can promise to overcome the therapeutic 
limitations of cisplatin and significantly strengthen its 
effectiveness in hypoxic conditions.21,62 

The hypoxic condition of the tumor creates a suitable 
environment for the germination and growth of C. novyi-
NT spores.63,64 We and others have shown that this species, 
simultaneously germination and growing in hypoxic 
regions of tumor types, has caused extensive regression in 
various tumors in rodent models.46,65,66 Due to the unclear 
nature of this function, we tried to present a combined 
treatment method based on cisplatin and C. novyi-NT 
spores in the HPV-related cervical cancer model. Our goal 
was to increase the therapeutic efficiency and overcome 
the resistance of cisplatin treatment in hypoxic conditions. 

This study showed that the expression level of HIF-1α 
and VEGF proteins decreased in the group of tumor mice 
that received the combined treatment, in a statistically 
significant way, compared to the control group. By 
examining the aberrant expression patterns of 3352 
differentially expressed genes in 306 cervical cancer 
samples, Xu et al concluded that the HIF-1 signaling 
pathway related to TFRC might play an important role in 
cervical cancer.67 Conversely, Liu et al showed that HIF-1α 
and VEGF could be considered a parameter in evaluating 
the progress, metastasis, and prognosis of HPV-related 
cancers.68 

Various studies have shown that VEGF plays a 
significant role in angiogenesis and cancer development. 
On the other hand, abnormal expression of GLUT 1, as a 

downstream gene of HIF-1α, in HPV-positive head and 
neck cancer tumors increases the probability of invasion 
and metastasis. Therefore, it can be said that the decrease 
in the expression of this gene is a positive sign of the 
effectiveness of various therapeutic strategies. Fortunately, 
our recent study also showed that the expression level 
of GLUT 1 was significantly reduced in the group that 
received the combined treatment of C. novyi-NT spores 
and cisplatin.

Transmission electron microscopy and atomic force 
microscopy revealed that C. novyi-NT spores are 
surrounded by an amorphous layer interwoven with 
parasporal honeycomb layers sequentially dissolved 
during germination. Vegetative cells most of these spore-
specific genes encode spore coat proteins or proteins with 
redox activity, which could aid germination by scavenging 
ROS.44,69 As mentioned earlier, in hypoxic tumors, the 
reduction in oxygen consumption causes a decrease in 
electron flow through the mitochondrial complex of the 
electron transport chain.26 This leads to the leakage of 
electrons from the electron transport chain, resulting in 
excessive production of ROS, which in turn increases 
cisplatin resistance. In various tumors, the hypoxic 
tumor microenvironment induces ROS production, 
which increases mitochondrial fission and, thus, cisplatin 
resistance by downregulating the expression of p-Drp1 
(Ser637) and Mfn1.62 Our study showed that the number 
of ROS in the group receiving combined treatment was 
significantly reduced compared to the control group.

The molecular mechanisms involved in the anti-tumor 
function of C. novyi-NT have not been fully established. 
However, it seems to be related to the destructive properties 
of the enzymes it secures the induction of host immunity 
by the secretion of large amounts of cytokines.40,70 In 2006, 
Bettegowda et al determined the genomic sequence of C. 
novyi-NT spores. They showed that C. novyi-NT could 
affect the structure of the lipid layers of the host cell wall 
by secreting various proteins such as PLC (NT01CX0979), 
which, in addition to having a direct effect on tumor cell 
lysis, Activation of host antitumor immune responses is 
also stimulated.44 

In this study, we measured the germination of C. novyi-
NT spores by measuring the amplification of the PLC gene 
(NT01CX0979), along with the use of Giemsa stain. The 
results showed that, as expected, the expression level of 
this gene was zero in the control group and the group that 
received only cisplatin. As the PLC expression levels were 
significantly increased in cisplatin compared to control 
and cisplatin compared to C. novyi-NT spores and seen 
the reduced level of expression in the combination of C. 
novyi-NT spores and cisplatin compared to cisplatin. 

The results clearly showed that using a combined 
treatment regimen based on C. novyi-NT spores and 
cisplatin can overcome the therapeutic limitations of 
cisplatin chemotherapy in tumors with hypoxic areas in 
cervical cancer. It also increases treatment efficiency and 

Figure 4. Comparison of intracellular levels of ROS in different treatment 
groups: The results showed that the number of ROS was significantly reduced 
in the group receiving cisplatin along with Clostridium novyi-NT spores 
compared to the group receiving cisplatin and Clostridium novyi- NT spores 
alone and compared to the control group (P = 0.0001)
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is considered a favorable option in developing combined 
treatment methods for solid hypoxic tumors.

Conclusion
Our research showed that providing a combined 
treatment method based on C. novyi-NT spores and 
cisplatin can overcome the limitations and therapeutic 
resistance caused by hypoxic microenvironments in HPV-
positive cervical cancers. However, the mechanism of this 
phenomenon is not completely clear, but by overcoming 
the existing limitations, this method has a positive 
perspective in developing effective anti-tumor hypoxia 
treatment methods.
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