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Introduction
The kidney plays a crucial role in facilitating the excretion 
of numerous drugs and their metabolites from the 
body. The dysregulation or decompensation of kidney 
function may directly affect the pharmacokinetics, 
pharmacodynamics or toxicity of drugs. Glomerular 
filtration rate (GFR) represents the overall filtration rate of 
the functioning nephrons, and is therefore considered the 
optimal method for measuring overall kidney function 
and making disease diagnosis decisions1 

Creatinine-based estimation of GFR has served as the 
primary approach for assessing kidney function and 
adjusting drug dosages.2 In 1847, Liebig discovered heating 
creatine with mineral acids formed a new substance, 
which he named creatinine. In 1886, Jaffe observed a 
creatinine reaction with picric acid in an alkaline medium, 
and this method, known as the Jaffe reaction, was used for 
measuring creatinine in clinical laboratories until the early 
21st century.3 Due to the fact that creatinine precursors 
are synthesized by the liver, creatinine was considered 
a product of nitrogen metabolism at the time of Jaffe’s 
discovery. In 1926, Rehberg demonstrated that creatinine 

was eliminated into the urine via glomerular filtration 
and was neither secreted nor reabsorbed, thus proposing 
creatinine as a biomarker of GFR.4

Although measuring the renal clearance rate 
of exogenous biomarkers such as inulin, 99mTc-
diethylenetriamine pentaacetic acid, 125I-othalamate and 
51Cr-EDTA is more accurate (with inulin being the gold 
standard), these measures are not routinely performed 
in clinical practice due to cumbersome and invasive 
operation. Instead, adjusting the dosage of drugs mainly 
excreted by the kidneys commonly relies on the levels of 
endogenous filtration markers such as serum creatinine 
(SCr) to measure GFR.5,6 In clinical administration, 
elevated SCr is often of great concern as drug eligibility 
and dosage depend on estimates of GFR. However, the 
correlation between an increase in SCr and a decrease in 
GFR is not absolute, thus failling to reflect deteriorating 
renal function or decreased drug excretion. For example, 
most patients with a GFR of about 40 mL/min appear 
to have normal CLCr (creatinine clearance).7 Besides, the 
SCr level may still be within the normal range on the first 
day of severe renal failure, and the measured GFR may 
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Abstract
Serum creatinine (SCr) is widely regarded as a standard biomarker for assessing glomerular 
filtration rate (GFR) and is commonly used to guide dose adjustments for renally eliminated drugs. 
However, the application of SCr as a marker for evaluating GFR and drug dosing in kidney injury 
has significant limitations that are often overlooked in clinical practice. This oversight can result 
in subtherapeutic drug concentrations or adverse drug reactions due to inappropriate dosing 
adjustments based on SCr levels alone. This review aimed to highlight the factors affecting serum 
creatinine (SCr) and the challenges associated with using SCr as a biomarker for assessing GFR 
and adjusting drug doses with regard to its limitations and variability. The findings of this review 
underscore the complexity of SCr regulation, which is affected by its synthesis, metabolism, 
and excretion processes (glomerular filtration, tubular secretion, tubular reabsorption and extra-
renal elimination), and disease states (such as trauma-induced hyperfiltration and HIV) and the 
use of medications (drug-creatinine interactions) lead to altered renal excretion of creatinine, 
either increasing or decreasing its levels. Additionally, the renal excretion pathways for drugs 
and creatinine are not entirely the same, making it difficult to use creatinine to evaluate drug 
renal excretion. In conclusion, SCr is an imperfect index of GFR and adjusting drug dosing, 
and the development of multi-biomarker panels, incorporating biomarkers from different 
excretory pathways-particularly those involving tubular transport-holds promise for improving 
the evaluation of renal excretory function and ensuring safer and more effective drug dosing.
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not decrease significantly until 7-10 days.8 Furthermore, 
some drugs can reversibly increase SCr levels without 
affecting GFR.9 Therefore, it is recognized that SCr is an 
imperfect biomarker for evaluating GFR or adjusting drug 
dosage, which can be attributed to changes in creatinine 
biosynthesis, metabolism, renal tubular transport and 
drug interactions in most clinical settings. 

This review aims at systematizing the current knowledge 
on the factors that affect SCr levels in vivo and identifying 
the challenges of using creatinine as a biomarker for 
kidney function and measuring drug dosing adjustment.

Factors affecting SCr level
Creatinine biosynthesis 
Creatinine is mainly produced in skeletal muscles from 
the non-enzymatic dehydration and cyclization of creatine 
and phosphocreatine, and creatine is a nitrogenous organic 
acid produced by the liver, kidneys and pancreas,10 of 
which 75% is phosphorylated to produce phosphocreatine 
by creatine kinase (CK), while the remainder is present in 
its free form.10,11 The serum creatine level in adults is about 
1.6-7.9 mg/L.12 A 70-kg man contains 120 g creatine, and 
roughly 1.7% of the total creatine pool (1.1% creatine/day 
and 2.6% phosphorylcreatine/day) is nonenzymatically 
converted to creatinine daily.13,14

As illustrated in Figure 1, the biosynthesis of endogenous 

creatinine is a multi-step process. The first step is to 
synthesize guanidine acetate in kidney catalyzed by 
L-arginine-glycine amidinotransferase (AGAT), mainly in 
the mitochondrial membrane space and less in cytoplasm. 
In the second step, guanidinoacetate methyltransferase 
(GAMT) facilitates the transfer of a methyl group 
from S-adenosylmethionine, producing creatine and 
S-adenosylhomocysteine in the liver. The third step 
is creatine transport via Na + -Cl--dependent creatine 
transporter (SLC6A8), followed by CK-mediated creatine 
phosphorylation to form phosphocreatine. The final step 
is to form creatinine through non-enzymatic dehydration/
cyclization of creatine, which can freely diffuse out of the 
cell and ultimately be removed in urine.

Endogenous creatine synthesis is complicated due to the 
lack of specific enzymes required by most tissues, making 
dynamic interactions between metabolic enzymes and 
transportation between different tissues necessary.

AGAT, the rate-limiting enzyme and de novo synthesis-
initiating step, is predominantly expressed in the kidney. 
Despite the presence of significant amounts of AGAT 
in the livers of pigs, monkeys, and humans, it is widely 
acknowledged that the majority of guanidinoacetate 
synthesis predominantly occurs in the kidney.15,16 
Creatine and L-ornithine exert negative pre-translational 
feedback on AGAT expression  in the kidney.17 However, 

Figure 1. Creatinine biosynthesis. ADP, adenosine 5'-diphosphate; AGAT, L-arginine-glycine amidinotransferase; ATP, adenosine 5'-triphosphate; CK, creatine 
kinase; GAMT, guanidinoacetate methyltransferase; SLC6A8, solute carrier family 6 member 8
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creatinine and phosphocreatine are both ineffective. 
AGAT expression may be under the control of hormonal 
factors, including estrogens, testosterone, thyroid 
hormones and growth hormone.13,17,18 In rats that have 
undergone thyroidectomy or hypophysectomy, AGAT 
activity in the kidney is reduced, but it can be restored by 
administering thyroxine or growth hormone, respectively. 
AGAT levels in rat kidneys are downregulated by 
estrogens and diethylstilbestrol, while upregulated by 
testosterone. Additionally, AGAT levels in kidneys, livers 
and other tissues are decreased in some situations, such as 
fasting, vitamin E deficiency and streptozotocin-induced 
diabetes.19-21

GAMT, the second enzyme in creatine synthesis, is most 
strongly expressed in the liver, testis, caput epididymis 
and ovaries. As a whole, creatine synthesized by the liver 
is sufficient to meet the requirements for creatine in the 
entire body.22 Although the GAMT level in female liver is 
higher than that in males, estradiol, testosterone, cortisol, 
thyroxine and growth hormone have little effect on GAMT 
activity in rat liver.23,24 In contrast to the suppression of 
AGAT expression by creatine in the kidney, the expression 
of GAMT in the liver is not under the control of creatine 
or ornithine. The influencing factors and regulation of 
GATM are still unclear.

Creatine transporter (SLC6A8) predominantly mediates 
the uptake of creatine rather than creatinine to skeletal 
muscle, brain, kidney and heart,25 and its expression 
and/or activity is regulated by diet, hormonal factors, 
guanidinoacetate and extracellular creatine concentration, 
with negative regulation by high creatine levels occurring 
more rapidly than the positive control mediated by 
creatine deficiency.17,26 Dietary creatine supplementation 
depresses the expression of the creatine transporter in 
rats.27 Importantly, dietary creatine supplementation 
results in a 3 to 20-fold increase in serum creatine 
concentration, but only a 10%-20% increase in muscle 
creatine.17 This result is attributed to the low permeability 
of creatine in muscles. Consistently, the creatine 
transporter expression is downregulated by extracellular 
creatine of > 0.1 μM (with IC50 ≈ 20-30 μM). More 
than 5 mM guanidinoacetate or guanidinopropionate 
also decreases creatine transport, but D-/L-ornithine, 
creatinine and phosphocreatine have no effect.28 
Conversely, creatine transporter activity is inhibited by 
isoproterenol, norepinephrine, clenbuterol and N6,2′-O-
dibutyryladenosine  3′,5′-cyclic monophosphate in vitro, 
which can be related to the regulation of intracellular 
cyclic adenosine monophosphate levels.29 In addition, 
the uptake of creatine is inhibited by the Na + -K + -ATPase 
inhibitors ouabain and digoxin. Insulin and insulin-like 
growth factor increase the activity of Na + -K + -ATPase, 
ultimately resulting in increased uptake of creatine.30-32

CK is a central controller of cellular energy homeostasis, 
predominately located in skeletal muscles, myocardium 
and brain, and reversibly catalyzes the metabolism of 

creatine by utilizing ATP to generate phosphocreatine and 
ADP. Most tissues express two CK isoenzymes, dimeric 
cytosolic and octameric mitochondrial CK. Cytosolic CK 
consists of two subunits, B (brain type) or M (muscle type), 
which yields three isoenzymes: CK-MM, CK-BB and CK-
MB.33-35 In addition to three cytosolic CK isoforms, there 
are two mitochondrial CK isoenzymes, the ubiquitous 
and sarcomeric forms.33 The presence of cytosolic and 
mitochondrial CK plays multiple roles in cellular energy 
homeostasis.36-38 In the healthy subject, total CK is mainly 
composed of the MM isoform, but depends on age, gender 
race, muscle mass as well as disease state (Supplementary 
Table S1).39 

Creatinine metabolism 
Creatinine is excreted exclusively through a combination of 
glomerular filtration and tubular secretion, with minimal 
binding to plasma proteins and negligible metabolism 
in healthy individuals. In severe renal insufficiency, up 
to 68% of generated creatinine may be metabolized or 
excreted via extrarenal routes.40-42 However, extrarenal 
elimination has not been observed in patients with mild 
to moderate renal insufficiency.12 

Gut microbiota-mediated degradation and oxidative 
metabolism may facilitate the catabolism of creatinine 
(Figure 2).17,43 There may be two pathways of microbial-
mediated degradation of creatinine: (1) Creatinine can be 
broken down into 1-methylhydantoin and ammonia through 
the action of creatinine deaminase and cytosine deaminase 
in various bacteria and fungi, and 1-methylhydantoin 
is further broken down into N-carbamoylsarcosine and 
sarcosine by 1-methylhydantoin amidohydrolase and 
N-carbamoylsarcosine amidohydrolase, respectively.44,45 In 
this pathway, 1-methylhydantoin amidohydrolase is a rate-
limiting enzyme, and consequently, N-carbamoylsarcosine 
is in much lower concentration than other intermediary 
metabolites and even undetectable.45 (2) Creatinine is 
hydrolyzed to creatine which is partly reabsorbed or 
degraded by bacteria, and the production of creatine by 
creatininase is then degraded by creatinase to urea and 
sarcosine.17,45 Sarcosine is further converted to glycine 
by sarcosine oxidase or sarcosine dehydrogenase, and 
in the end to methylamine by sarcosine reductase. In 
addition, only a few studies have addressed the conversion 
of creatinine to methylguanidine, which can be further 
decomposed to methylamine via methylguanidine 
amidinohydrolase.17,46,47

Two oxidative pathways of creatinine catabolism have 
been demonstrated: (1) Creatinine is metabolized to 
methylguanidine and the intermediate creatol, creatone A, 
or creatone B.48,49 However, it is unclear whether these steps 
of the pathway are enzyme-catalyzed reactions.47,48,50,51 
ROS may selectively stimulate the formation of 
methylguanidine from creatinine.52,53 (2) Creatinine 
also can be converted to 1-methylhydantoin, which is 
further degraded to 5-hydroxy-1-methylhydantoin, 

http://www.baidu.com/link?url=oix9w0lkBU0J6RuazzZc1R91St6mTmTJuTu9sWiriwNwQBeoO1lInbALRV7HNzP7QIgX1TtWDhiDo8b_u-EwY1S9fwbstT1al1F3qEjJnIu
http://www.baidu.com/link?url=oix9w0lkBU0J6RuazzZc1R91St6mTmTJuTu9sWiriwNwQBeoO1lInbALRV7HNzP7QIgX1TtWDhiDo8b_u-EwY1S9fwbstT1al1F3qEjJnIu
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methylparabanic acid, N5-methyloxaluric acid as well as 
the end product methylurea.54,55 As shown in Figure 2, 
the formation of 1-methylhydantoin from creatinine may 
depend on bacterial degradation rather than non-
enzymatic metabolism.17 In patients with chronic renal 
failure (CRF) or uremia, the formation of creatinine 
degradation products is increased and may further 
deteriorate kidney function.56,57

Transport and excretion of creatinine
The vectorial transport of cationic compounds, along with 
some anionic and zwitterionic compounds, is regulated 
by the organic cation transporter 2 (OCT2) located on 
the basolateral membrane and the multidrug and toxin 
extrusion proteins (MATE1 and MATE2-K) on the 
apical membrane. Many anionic drugs are transported 
by the uptake organic anion transporter 1 (OAT1), 
OAT2 and OAT3 on the basolateral membrane, as well 
as the efflux transporters multidrug resistance-associated 
protein (MRP) 2 and MRP4 on the apical membrane.58 
Other transporters, such as organic anion transporting 
polypeptide 4C1 (OATP4C1), P-glycoprotein (P-gp), 
novel organic cation transporters (OCTN1 and OCTN2) 
and breast cancer resistance protein (BCRP), may also 
be involved in mediating the renal secretion of some 

compounds.1

Renal tubular transporter-mediated uptake of creatinine 
via OCT2, OCT3, OAT1, OAT2, and OAT3 has been 
found in both in vivo and in vitro studies.59-61 Creatinine 
is a low affinity substrate for OCT2, with in vitro Km 
values of 1.9 ± 0.4,62 4.0 ± 0.3 mM61 or 56.4 ± 3.4 mM.63 
However, both Km values are significantly higher than the 
physiological (about 45-85 μM for male and 30-60 μM for 
female) and even the pathophysiological concentrations of 
creatinine in humans. Therefore, the function of hOCT2 
is not saturated under physiological conditions. Single-
nucleotide polymorphisms of OCT2 (rs2504954) have 
been associated with the SCr levels.64 The creatinine uptake 
mediated by OCT3 is similar to 62,64 or lower than that by 
OCT2,61,63 but the expression of renal OCT3 is extremely 
low in vivo. It is worth noting that in hyperuricemia 
rats, the plasma concentration of creatinine significantly 
increased, while its renal clearance decreased, and the 
renal clearance ratio of creatinine to inulin dropped from 
1.62 to 1.09.65 Considering that the data were corrected for 
inulin clearance, this observation could be explained by 
a decrease in tubular secretion of OCT2 and/or MATE1 
transporters, rather than a decrease of GFR.

OAT1 and OAT3 are responsible for the uptake of many 
anionic compounds. Although the fact that creatinine at 

Figure 2. Creatinine metabolism
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physiological pH is a foundation, the uptake of creatinine 
by mOAT1 (Km = 6.7 mM) and mOAT3 (Km > 10 mM) were 
observed in vitro and in vivo.59,66 However, several studies 
have demonstrated that creatinine is not a substrate for 
OAT1, aligning with findings that creatinine uptake is 
mediated by OAT3 rather than OAT1 or OAT2,60-62,64 
but the contribution of OAT3 to creatinine clearance is 
significantly lower compared to that of OCT2.63 On the 
contrary, Ciarimboli et al found that creatinine was not 
transported by mOAT3 in cell lines transfected with 
mOAT3.60,64 

OAT2 is found in both the basolateral and apical 
membranes of human renal proximal tubules, whereas in 
rats, it is localized only in the apical membrane,67 and its 
mRNA level is 3-fold higher than that of OCT2.68 OAT2 
has many substrates that are the same as OAT1 and 
OAT3. Creatinine is the substrate of OAT2 and has high 
affinity (Km values of 0.80-0.99 mM),62,67 and the transport 
efficiency for OAT2 is approximately 37-1850 times that 
of OCT2, MATE1 and MATE2-K.67

MATE1 and MATE2-K are responsible for the efflux of 
creatinine from renal tubular cells.62,67,69 Kinetic analyses 
demonstrated that creatinine has a low affinity for MATE1 
and MATE2K, with Km values of > 10 and > 20 mM, 
respectively.67,70 It is unclear whether MRP2, MRP4, P-gp 
and BCRP mediate renal tubular clearance of creatinine.

It has been proven that creatinine can be reabsorbed 
in renal tubules (5%-10%), but its mechanism remains 
unclear.63,67 Researchers speculated that creatinine 
reabsorption could be mediated by OAT267 or OAT4,63 
which could also be a passive process during low 
urine flow.71 

There is still controversy surrounding renal tubular 
transporters mediated creatinine elimination. 

Our study demonstrated that the uptake of d3-creatinine 
was significantly enhanced in OCT2-overexpressing cells 
compared to control cells, but not MATE1, MATE2-K, 
OAT1, OAT2, OAT3, MRP4, OATP4C1, P-gp, PEPT2 and 
URAT1.72

Interactions between creatinine and drugs
Early studies suggested that creatinine was mainly 
passively filtered at the glomerulus with little secretion 
or reabsorption in renal tubules, and impaired kidney 
function resulted in a reduction of CLCr accompanied by 
an elevation of SCr. However, several drugs have been 
reported to affect creatinine secretion in renal tubules, 
thereby causing a transient non-pathologic increase in SCr 
without altering GFR. These changes can be attributed to 
the reversible inhibition of transporters responsible for the 
tubular secretion of creatinine.73 It is thus an important 
issue to understand how an increase in SCr results from 
pathologic injury or reversibly inhibited secretion.

To distinguish that an increase of SCr is due to inhibition 
of renal tubular transporters rather than pathological 
changes, Chu et al carried out a retrospective analysis of 

the effect of inhibition of renal tubular OCT2, MATE1 
and MATE2-K on SCr levels based on in vivo-vitro 
correlations74 using a cutoff value of Cmax/IC50 > 0.1 and 
Cmax,u/IC50 > 0.1.9 The US Food and Drug Administration 
and the International Transporter Consortium 
recommend a cutoff value of Cmax/IC50 > 0.1 and Cmax,u/
IC50 > 0.1 to evaluate the potential risk of drug-drug 
interactions (Table 1). They found that cimetidine,75-78 
cobicistat,62,79 dolutegravir,80,81 dronedarone,82 7-[(3R)-
3-(1-aminocyclopropyl) pyrrolidin-1-yl]-1-[(1R,2S)-
2-fluorocyclopropyl]-8-methoxy-4-oxoquinoline-
3-carboxylic acid (DX-619),83 pyrimethamine,84,85 
rilpivirine,86-88 ranolazine,89 ritonavir,79,90 salicylate,91 
telaprevir,92-94 and trimethoprim95-98 reversibly increased 
SCr levels by ≥ 10% without affecting GFR, and 
amiodarone99 and vandetanib100 reversibly increased SCr 
levels by > 10% but changes in GFR were not observed. In 
the phase 1 study, INCB039110,101,102 an inhibitor of the 
Janus kinases (JAKs) with selectivity for JAK1, reversibly 
increased SCr but did not affect GFR.101 However, both 
Cmax/IC50 and Cmax,u/IC50 resulted in a false-negative 
prediction for telaprevir. In addition, ranitidine had 
a Cmax,u/IC50 higher than 0.1 for OCT2, MATE1 and 
MATE2-K, but had no effect on SCr or CLCr..

60

Eisner et al demonstrated that para-aminohippuric 
acid, a classical substrate of OAT1, induced a decrease in 
creatinine secretion and increased SCr levels.59 Notably, 
tubular handling of creatinine could be dependent on 
serum albumin levels.103 Collectively, the increase of SCr 
or decrease of CLCr can be attributed to the inhibition 
of creatinine secretion mediated by one or more renal 
tubular transporters. However, inhibition of renal tubular 
transporters does not necessarily lead to elevated SCr.

Challenges of creatinine as a biomarker for renal 
function and drug dosing adjustment
There is indeed a relationship between GFR and CLCr in 
young adults without renal diseases.8 However, SCr is an 
imperfect biomarker for estimating GFR and its levels can 
be influenced by various factors mentioned above. Firstly, 
as fractional secretion varies inversely with GFR, SCr levels 
cannot be changed by renal tubular hypersecretion of 
creatinine with the deterioration of glomerular function.7 
Secondly, some drugs act by competitively inhibiting the 
transport of creatinine in renal tubules as a result of SCr 
elevation without changing GFR. Thirdly, a substantial 
fraction of creatinine is metabolized rather than excreted 
with a sharply decreased GFR. Fourthly, the rise in SCr 
following a reduction in GFR is delayed due to kinetic 
changes in creatinine production and accumulation. For 
example, the serum half-life of creatinine is approximately 
4 h at a normal GFR of 120 mL/min/1.73 m2 but extends 
to 16 hours at a GFR of 30 mL/min/1.73 m2.9 Fifthly, 
SCr is also affected by other factors, including weight, 
gender, age, muscle metabolism as well as intake or use of 
protein supplements. Notably, glomerular hyperfiltration 
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occurring as a consequence of underlying disease is often 
ignored because of no change or mild decrease in SCr.104-

107 Therefore, appropriate increases in drug dosing would 
rarely be carried out, which would lead to subtherapeutic 
concentrations of drugs108 (Figure 3). 

Variations in creatine pool size can substantially impact 
creatinine production. Total muscle mass is a critical 
factor in determining creatine pool size, and conditions 
such as aging,109 dietary protein deficiency, progressive 
muscular dystrophy,110 chronic glucocorticoid therapy,111 
sepsis,112 hyperthyroidism and poliomyelitis,113 can 
decrease the production of creatinine. The size of the 
creatine pool is diminished during a creatine-free period 
or dietary protein deficiency, but the rate of conversion of 
creatine to creatinine remains unaffected.114,115 Although 
creatinine levels in meat (0.2-0.4 mg creatinine and 3.5-5 
mg creatine per gram of uncooked lean beef) are very low, 
meat is also a major source of creatinine as a consequence 
of high conversion ratio from creatine to creatinine (18%-
65%).12,116,117 Consequently, the excretion of creatinine 
decreases by 10-30% when reducing dietary meat content. 

Moreover, a slight change in the turnover ratio of creatine 
will have a significant impact on creatinine production 
because of the relatively large pool size of the creatine. 
Fitch and Sinton found that the turnover ratio of creatine 
increased to 2.2%-3.8% per day in some patients with 
muscular dystrophy.118

Tubular secretion of creatinine was identified in an 
early study investigating the clearance of exogenously 
administered creatinine.119 The exogenous creatinine 
excretion was decreased in a high plasma creatinine state 
produced by infusion of creatinine, which could be related 
to the competitive inhibition of renal tubular secretion of 
creatinine.119 As discussed above, some compounds can 
increase SCr by up to 40% without altering GFR.83,91 During 
severe renal insufficiency the elimination of creatinine via 
glomerular filtration decreases and tubular secretion is 
increased by as much as 60%.7,120 Thus, the contribution of 
active secretion of creatinine in renal tubules could result 
in an overestimation of GFR.

Creatinine is eliminated solely by the kidney in healthy 
people. Extrarenal creatinine elimination occurs only in 

Table 1. Effect of compounds on SCr, CLCr and GFR in humans

Compounds Dose regimen
Increase of 

SCr (%)
Decrease of 

CLCr (%)
GFR

Cmax 
(µM)

fu Inhibited transporters#

Amiodarone
400-200 mg or

400-400 mg, p.o., qid, 1 y
11 / / 0.8–2.3 0.04 OCT2, MATE1, MATE2-K, P-gp

Cimetidine

400 mg, p.o, bid, 7 d
400 mg, p.o., qid, 3 wk

400-200-200-200 mg, p.o.
400-400-400-800 mg, p.o. 

13.5
25.8
38.2
22.2

18.2
14.8, 37.5

35.5
20.3

NS
NS
NS
NS

9.36
/
/

18.7

0.80 OCT2, OAT2, OAT3, MATE1, MATE2-K

Cobicistat 150 mg, p.o., qd, 7 d 10.5 8 NS 2.21 0.08 OCT2, OAT2, MATE1, MATE2-K

Dolutegravir
50 mg, p.o., qd, 14 d
50 mg, p.o., bid, 14 d

9.1
16.7

10
14

NS
NS

6.75
13.11

0.01 OCT2, MATE1, MATE2-K

Dronedarone 400 mg, p.o., bid, 7 d 10-15 13.8 NS 0.30 0.02 OCT2, MATE1, P-gp

DX-619 800 mg, i.v., qd, 4 d 32.3 27 NS 22.04 0.29-0.35 OCT2, MATE1, MATE2-K

Famotidine
10 mg, i.v., SD

20 mg, p.o., bid, 7 d
200 mg, p.o., SD

NS
NS
/

NS
NS
SI

NS
/
/

About 1.3
0.39

/
0.8 OCT1, OCT2, OCT3, MATE1, MATE2-K

INCB039110 600 mg, p.o., bid, 8 d SI / NS 3 / OCT2, OAT2, MATE1, MATE2-K

Pyrimethamine
50 mg, p.o., SD 
100 mg, p.o., SD

SI
18.5

16.5, 20.0
/

NS
NS

2.29
4.6

0.13 OCT2, MATE1, MATE2-K

Ranolazine 1000 mg, p.o., bid, 5 d 12.4 11 (NS) NS 4.87 0.37 OCT2, MATE1, MATE2-K

Rilpivirine 25 mg, p.o., qd, 48 wk small increase / NS 0.58 0.003 OCT2, MATE1, MATE2-K

Ritonavir 100 mg, p.o., qd, 7 d NS NS or 25 NS 2.16 0.015 OCT2, MATE1, MATE2-K, P-gp, OAT2, OATPs

Salicylate 4 g/d, p.o., 10 d 38.4 24.7 NS / / OAT1

Telaprevir 750 mg, p.o., tid, 12 wk SI / NS 5.82 0.04-0.24 P-gp, but not OCT2 and MATE1/2-K

Trimethoprim

5 mg/kg, p.o., bid, 10 d
5 mg/kg, p.o., qid, 10 d
100 mg, p.o., bid, 10 d
200 mg, p.o., bid, 14 d

22.2
31.3
14.8
18.4

21.3
16.0

/
21.8

/
/

NS
NS

17.5
29.6

/
9.92

0.58 OCT2, MATE1, MATE2-K

Vandetanib 300 mg, p.o., qd, SD SI / / 0.25-0.27 0.10 OCT2, MATE1, MATE2-K

/, data are not reported or available; bid, twice daily; Cmax, maximum plasma concentration; CLCr, creatinine clearance; d, day; DX-619, 7-[(3R)-3-(1-
aminocyclopropyl)pyrrolidin-1-yl]-1-[(1R,2S)-2-fluorocyclopropyl]-8-methoxy-4-oxoquinoline-3-carboxylic acid; fu, plasma unbound fraction; GFR, glomerular 
filtration rate; INCB039110, (2-(3-(4-(7H-pyrrolo[2,3-day]pyrimidin-4-yl)-1H-pyrazol-1-yl)-1-(1-(3-fluoro-2-(trifluoromethyl)isonicotinoyl)piperidin- 4-yl)azetidin-
3-yl)acetonitrile); i.v., intravenous; MATE, multidrug and toxin extrusion protein; NS, no significance; OAT, organic anion transporter; OATPs, organic anion 
transporting polypeptides; OCT2, Organic cation transporter 2; P-gp, P-glycoprotein; p.o., oral; qd, once daily, qid, four times daily; SCr, serum creatinine; SI, 
significantly increased compared with baseline level; tid, three times daily; 
# Data from http://transportal.compbio.ucsf.edu.
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patients with severe renal insufficiency. This mechanism 
is thought to result from the degradation of creatinine in 
the intestinal lumen by gut microbiota. The increased 
level of creatinine caused by renal dysfunction induces 
bacterial creatininase activity, resulting in degradation and 
loss of creatinine,42,121 and creatinine degradation can be 
abolished by antibiotics.121 Consequently, the GFR could be 
overestimated by CLCr as a result of extrarenal elimination.

Creatinine synthesis, metabolism and elimination 
are altered in certain disease states, which could lead to 
inaccurate assessment in GFR by using SCr clearance. 
Aging is linked to changes in renal structure and function, 
with GFR decreasing by approximately 8-10 mL/min/1.73 
m² per decade after the age of 30.122,123 Consistently, renal 
clearance of creatinine is also decreased with aging. 
However, this fall in CLCr with the progressive decrease in 
GFR is commonly accompanied by a decrease in creatinine 
production, and consequently, SCr may not be affected.124

GFR in early pregnancy increases by 50% compared 
to that of later pregnancy levels.125 However, the ratio of 
creatinine to inulin clearance is slightly above 1.0 (normal 
ranges from 1.1 to 1.4) in the first and early second 
trimester, and is approximate or slightly lower than that 
in later pregnancy, suggesting that tubular secretion of 
creatinine is attenuated during pregnancy, especially in the 
latter half. As a result of the decrease in CLCr in pregnancy, 
a SCr concentration above 8 mg/L is an abnormal result.126 

Acute kidney injury (AKI) leads to a rapid decrease in 
GFR. Although GFR is effectively equal to zero at the early 
stage of AKI, SCr may be only slightly above baseline. 
Conversely, SCr continues to increase at the early stage 
of recovery from AKI.127 In patients with CRF, because of 
increased tubular secretion of creatinine, the creatinine/
inulin clearance ratio is as high as 2.5 at a lower GFR.120 
Of note, tubular clearance of creatinine is significantly 
enhanced at GFR from 40 to 80 mL/min/1.73 m2.7 
Even if the GFR is reduced to 15 mL/min/1.73 m2, SCr 
changed by only 2.0 mg/L, but these changes could not be 
considered significant.12 In addition, reduced creatinine 
production and increased extrarenal metabolism are also 
observed in CRF.40,114 Thus, the rate of decline in SCr 
may not accurately reflect the rate of decline in GFR in 

some instances of physiological and pathological changes, 
which can result in incorrect drug dosages.

Diabetes mellitus is often associated with a deterioration 
in kidney function.128 Some studies found that GFR 
increased by 27% and 16% in recently diagnosed patients 
with T1DM107,129 and T2DM,130 respectively. Generally, 
GFR in untreated diabetes is higher than that in short-term 
insulin-treated diabetes.131 Consistently, CLCr is increased 
in early diabetes. During diabetic ketoacidosis and diabetic 
coma, GFR decreases and SCr increases. However, the 
decline in GFR is not associated with a parallel increase 
in SCr. McCance and Widdowson found three of four 
patients with diabetic coma had the creatinine/inulin 
clearance ratio less than 1 (0.42-0.85),132 suggesting that 
creatinine could also undergo the reabsorption in renal 
tubules. In diabetic nephropathy, SCr levels remain within 
the normal range despite the GFR is as low as 36 mL/
min/1.73 m2,133 which could be attributed to enhanced 
secretion of creatinine in renal tubules. Consequently, 
changes in SCr do not reliably predict variations in GFR.

Summary and Perspective 
A reliable assessment of renal function is essential for 
evaluating renal disease stage and progression, determining 
the need for dialysis therapy, screening kidney donors 
and adjusting drug dosages. GFR is generally accepted 
as the best overall measure of kidney function. Over 70 
equations based on SCr levels have been developed to 
estimate GFR. Among these, the Cockcroft-Gault formula 
and the Modification of Diet in Renal Disease (MDRD) 
formula are the most extensively studied and widely 
applied.2,134,135 Over the years, the importance of SCr 
determination in diagnosing renal disease and monitoring 
disease progression cannot be overemphasized. However, 
a large number of researchers have pointed out that there 
is no absolute correlation between GFR and SCr.136-139 
The relationship between SCr and measured GFR is not 
linear but curvilinear, and a given value of SCr can be 
associated with a wide range of measured GFR values 
(30-90 mL/min/1.73 m2),137 which can cause difficulty in 
distinguishing between a normal GFR and an abnormal 
one.140 The estimated GFR by SCr is insensitive at a GFR 

Figure 3. Influencing factors of SCr in evaluating GFR. GFR, glomerular filtration rate; SCr, serum creatinine
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above 60 ml/min/1.73 m2, creating a “creatinine-blind 
range”,138,141 and thus the measurement of SCr is limited as 
a diagnostic marker for the early stages of renal injury.142 
As a result, SCr as a marker for adjusting drug dosages may 
not achieve satisfactory therapeutic objectives,143 which 
can be attributed to failure to recognize the variations 
in non-GFR determinants including generation, tubular 
secretion or reabsorption and extra-renal elimination 
of creatinine. To accurately predict kidney function via 
SCr levels, the factors affecting creatinine synthesis, 
metabolism and elimination would need to be fully 
considered in clinical settings. Under creatinine intake 
control, simultaneous monitoring of plasma levels of 
creatinine and its precursors, guanidinoacetate and 
creatine, can indirectly reflect creatinine synthesis. 
Although it is difficult to evaluate creatinine metabolism 
mediated by gut microbiota in vivo, renal or extra-renal 
elimination of creatinine can be determined via ECT/
PET imaging using radioactively labeled creatinine. In 
view of the unclear mechanism of renal tubular transport 
of creatinine, it is particularly important to elucidate the 
renal tubular transporters that mediate elimination of 
creatinine.

Some researchers have argued that serum cystatin C 
is a better biomarker for estimating GFR than SCr.144,145 
However, serum concentration of cystatin C can be affected 
by inflammation and changes in protein catabolism,146,147 
and the biological variation in cystatin C levels is far 
higher than that in creatinine.138 One study published in 
the New England Journal of Medicine demonstrated that 
the estimated GFR by serum cystatin C was not more 
accurate than SCr, and the combination of SCr and serum 
cystatin C was more precise than equations using either 
marker individually for estimating GFR.148 In addition, 
some investigators suggested that cystatin C at higher 
levels of GFR might be a better filtration marker than 
creatinine.149,150 Thus, to some extent, the use of cystatin 
C can avoid the risk associated with the “creatinine-blind 
range”, and estimating GFR by the combination of serum 

cystatin C and SCr may be a better choice.
Kidney tubular secretion is another important renal 

functional parameter and 61% of all drugs are eliminated 
through tubular secretion mediated by transporters rather 
than through glomerular filtration.146 Thus, a strategy of 
drug dosing adjustment should be based on the actual 
mechanism of kidney drug elimination, not just on the 
GFR. Importantly, renal tubules are vulnerable to a variety 
of injuries.151 Based on these reasons, the development of 
markers for renal tubular transporters will be of great use in 
the early diagnosis of renal injury and adjustment of drug 
dosages. In recent years, growing research has focused 
on identifying potential biomarkers for renal tubular 
transporters, with several endogenous compounds being 
recognized as biomarker of these transporters. Thiamine 
and N-methylnicotinamide are potential substrates 
for the cation transport system (OCT2-MATE1/2-K) 
in renal tubules.69,152-154 Hippurate and taurine, cyclic 
guanosine monophosphate, and 6β-hydroxycortisol and 
glycochenodeoxycholate sulfate have been proposed as 
endogenous probes for the evaluation of OAT1, OAT2 
and OAT3 function, respectively.155-157 In addition, 
some tubular proteins, neutrophil gelatinase-associated 
lipocalin, kidney injury molecule-1 and N-acetyl-β-D-
glucosaminidase have all emerged as early and sensitive 
markers for renal tubular injury.158 Unfortunately, these 
markers are not currently used to adjust drug dosages 
clinically. Therefore, the evaluation system of renal 
excretion pathways of drugs based on multiple biomarkers 
should be established.

Renal elimination of endogenous and exogenous 
compounds is affected by many factors, including 
renal blood flow, GFR, and renal tubular excretion and 
reabsorption, and monitoring these changes will be 
conducive to evaluating renal excretory function. When 
creatinine is used as a marker for GFR and drug dosing 
adjustment, changes in its synthesis, metabolism and 
excretion and other influencing factors need to be fully 
considered (Figure 4).

Figure 4. Kidney function evaluation and drug dosing adjustment from the perspective of SCr and new approaches. ECT, emission computed tomography; GFR, 
glomerular filtration rate; LC-MS, liquid chromatography-tandem mass spectrometry, MATE, multidrug and toxin extrusion protein; OAT, organic anion transporter; 
OATP4C1, organic anion transporting polypeptide 4C1; OCT2, Organic cation transporter 2; P-gp, P-glycoprotein; PET-CT, positron-emission tomography 
computed tomography



Creatinine-based GFR assessment and drug dosing decisions

Advanced Pharmaceutical Bulletin. 2024;14(4) 753

Conclusion
SCr as a biomarker for evaluating GFR and adjusting the 
dosage of drugs is imperfect, which is particularly reflected 
in low correlation, insensitivity and high variation of non-
GFR determinants. This could be related to changes in 
the generation, tubular secretion or reabsorption, and 
extra-renal elimination of creatinine. However, there is 
a lack of latest research evidence about the biosynthesis, 
metabolism and extra-renal elimination of creatinine. 
Therefore, in order to better evaluate renal function and 
adjust drug dosages, studies on the elimination pathways 
of creatinine in vivo should be necessary, and the 
combination of multiple markers of renal function should 
be developed. 
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