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To Editor,

Artificial intelligence (AI) is redefining drug discovery,
prompting reevaluation of established frameworks like
Lipinski’s Rule of Five (Ro5). Although Ro5 has been a
key component in the prediction of oral bioavailability, its
strict use in the Al era continues the danger of inhibiting
innovation by omitting promising compounds that
challenge established norms.

Young recently examined Ro5’s limitations and historical
context in a 2023 Expert Opinion on Drug Discovery
article.! The paper underscores that the rule’s 90th-centile
thresholds are often misinterpreted as absolute limits.
This misinterpretation has led to the exclusion of viable
compounds, especially in emerging therapeutic areas
that require larger molecules such as protein-protein
interaction inhibitors, PROTACs, and macrocycles.
Young highlights that molecular weight (MW), the
most frequently violated Ro5 parameter, is increasingly
irrelevant in modern drug design, as evidenced by the
success of beyond Ro5 (bRo5) drugs with MW >700 Da.
These molecules leverage advanced design principles,
such as conformational flexibility (chameleonicity) and
transporter-mediated uptake, to achieve bioavailability.'

Figure 1 illustrates the relative increase in molecular
complexity over two decades. Notably, lipophilicity
(clogP) exhibited the highest percentage increase (~36%),
reflecting a growing tolerance for higher lipophilicity in
modern drugs. Additionally, MW increased by more
than 20%, suggesting a tendency toward bigger and
more complex molecules. Higher molecular weight and
lipophilicity have been clearly accepted; from 2013 to
2019, around 40% of new medications violated at least one
Ro5 rule.?

Selected oral medications that surpass conventional Ro5
parameters, particularly in MW and lipophilicity (clogP),
are shown in Table 1. Despite exhibiting several violations,
several of these compounds including Venetoclax,
Pibrentasvir, and Ledipasvir have acquired oral

bioavailability using sophisticated formulation techniques.
These include stabilizing methods based on polymers, hot-
melt extrusion and amorphous solid dispersions, which
improve absorption and solubility. The incorporation of
the prodrug fostamatinib, which is activated in vivo, is an
alternate method of chemical modification to get beyond
permeability restrictions. Collectively, these examples
demonstrate how formulation is more important than
Ro5 in the creation of bRo5 medication candidates.

Al-driven platforms are uniquely positioned to exploit
these differences. By integrating high-throughput
physicochemical measurements (e.g., chromatographic
log D, EPSA for chameleonicity) and predictive models.
Artificial intelligence can improve drugs for effective
lipophilicity and permeability parameters that are more
predictive of success than Ro5’s static thresholds.> For
instance, the AbbVie Multi-Parameter Scoring (MPS)
function, which prioritizes log D 7.4 = 3, low rotatable
bonds, and minimal aromatic rings, has demonstrated
efficacy in guiding bRo5 drug development. Similarly,
AI can harness natural product-inspired design, as noted
by Young,' to exploit evolutionary-refined transporter
interactions, bypassing Ro5 constraints altogether.

With the rise of complex molecules, Al-driven models
have evolved tohandle the unique challenges posed bybRo5
scaffolds. That includes the compounds conformational
flexibility, non-linear structure activity relationships
and formulation-dependent pharmacokinetics.* Recent
developments in graph neural networks (GNNs),
Transformer-based models, and attention mechanisms
have shown superior performance in learning molecular
representations for bRo5 libraries. Several studies provide
validation benchmarks for such models here discussed
few models.

Using 2D descriptors, Poongavanam et al’> created
random forest models to predict the passive permeability
of macrocycles, with an accuracy of about 85% and an
MCC of about 0.60. Only for stiff compounds with a Kier
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Figure 1. Percentage increase in key molecular descriptors of FDA-approved oral drugs between 1994-1997 and 2013-2019

Table 1. Representative bRo5 Oral drugs with Ro5 violations and corresponding formulation strategies

Drug MW (Da) clogP Exceeding descriptors Formulation strategy

Venetoclax 868.5 6.76 MW, clogP Copovidone based amorphous dispersion used
Pibrentasvir 1113 5.95 MW, clogP, Amorphous dispersion with poly ethylene glycol
Ledipasvir 889 5.98 MW, clogP Amorphous spray-dried dispersion

Fostamatinib 580.5 2.78 MW, HBA=13 Prodrug converted in vivo

Ombitasvir 894.1 5.72 MW, clogP Hot-melt extrusion with inhibitors and stabilizers

flexibility index<10 did 3D models enhance prediction.
In order to predict cyclic peptide permeability, a study
also presented a multimodal deep learning architecture
that combined a transformer and a graph convolutional
network. This resulted in an accuracy of roughly 0.82
and an AUC of 0.87, which is a notable advancement for
modeling bRo5-like macrocyclic compounds.®
Representative bRo5 pharmacological modalities are
categorized in Table 2 according to their structural class
and common Ro5 breaches. Despite frequently exceeding
several parameters, such as MW, HBD, HBA, and
topological polar surface area (TPSA). The macrocyclic
medications, like pibrentasvir and cyclosporine A, have
the advantage of conformational rigidity, which promotes
membrane permeability. Because of their high molecular
weight and structural flexibility, PROTACs (like ARV-110)
have poor passive permeability. Because they resemble
peptides, peptidomimetics, such as semaglutide, usually
exceed MW and HBD limits. The amphiphilic hybrids
like Venetoclax have high clogP and MW, requiring
sophisticated formulation techniques. The diversity of
bRo5 space and the requirement for customized design and
delivery techniques are highlighted by this classification.?
The general ability of conventional AI models trained
primarily on Ro5-compliant datasets is challenged by
changes in important molecular descriptors among bRo5

Table 2. Representative categories of bRo5 molecules with common rule-of-
five violations

Molecule Type Examples Ro5 Violations

Macrocycles Cyclosporine A, Pibrentasvir MW, HBA, HBD, TPSA

MW > 1000, high

PROTACs ARV-110, ARV-471

rotatability
Peptidomimetics Semaglutide, Bortezomib MW, HBD, PSA
Amphiphilic Hybrids Venetoclax, Entrectinib clogh, MW

substances, as shown in Table 3. Chemically diverse,
bRo5-specific training sets and sophisticated 3D-aware
architectures like transformers or graph neural networks
are required because increases in molecular weight
and flexibility frequently lead to extrapolation errors
and decreased QSAR performance. Furthermore, static
descriptors (like LogP) and traditional ADMET models
are unable to convey the complexity introduced by
phenomena like chameleonic behavior and formulation
reliance. When AI models are utilized in place of
physicochemical criteria, they run the risk of overfitting
to narrow chemical profiles and producing erroneous
predictions, especially for underrepresented scaffolds like
macrocycles or polar entities.

The Ro5 should be reconsidered as an adaptable, AI-
informed framework for modern drug development.
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Table 3. Descriptor shifts in bRo5 space and implications for Al model adaptation

Descriptor shift Effect on traditional models

Required Al adaptation

Molecular weight
Flexibility (rot. bonds) Decreased QSAR predictivity
Chameleonic behavior Misleading LogP/LogD assumptions

Formulation dependency ADMET prediction failure

Poor extrapolation from Ro5-trained datasets

Need bRo5-specific training sets
Use of 3D-aware models (e.g., GNNs, transformers)
Include dynamic conformer libraries or solvent models

Integrate formulation metadata as co-variables

Rather than blindly excluding compounds that violate
Ro5, the studies should prioritize real-world data like
experimental permeability, transporter effects, and in
vivo performance over simplistic rules. Al can help by
identifying promising outliers (e.g., natural product-
inspired molecules) and optimizing compounds using
advanced descriptors like chameleonicity and 3D polarity.”
The field needs a smarter definition of drug-likeness,
one that balances predictive modeling with biological
reality. Moving forward, the investigator advocates for
collaborative efforts to refine these guidelines, ensuring
they enable rather than restrict innovation in drug design.

Conclusion

In the evolving landscape of drug discovery, rigid
adherence to the Ro5 risks overlooks promising
therapeutic candidates, particularly those revealed
through Al-driven innovation. Drug-likeness is being
redefined by data-rich methods and new descriptors like
dynamic polarity and chameleonicity. The researchers
need to switch to evidence-based, flexible frameworks
instead of rigid cutoffs. By modernizing Ro5 through the
lens of AI and experimental validation, the researchers
can retain its foundational value while unlocking broader
chemical space for next-generation therapeutics.
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