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To Editor,
Artificial intelligence (AI) is redefining drug discovery, 
prompting reevaluation of established frameworks like 
Lipinski’s Rule of Five (Ro5). Although Ro5 has been a 
key component in the prediction of oral bioavailability, its 
strict use in the AI era continues the danger of inhibiting 
innovation by omitting promising compounds that 
challenge established norms.

Young recently examined Ro5’s limitations and historical 
context in a 2023 Expert Opinion on Drug Discovery 
article.1 The paper underscores that the rule’s 90th-centile 
thresholds are often misinterpreted as absolute limits. 
This misinterpretation has led to the exclusion of viable 
compounds, especially in emerging therapeutic areas 
that require larger molecules such as protein-protein 
interaction inhibitors, PROTACs, and macrocycles. 
Young highlights that molecular weight (MW), the 
most frequently violated Ro5 parameter, is increasingly 
irrelevant in modern drug design, as evidenced by the 
success of beyond Ro5 (bRo5) drugs with MW > 700 Da. 
These molecules leverage advanced design principles, 
such as conformational flexibility (chameleonicity) and 
transporter-mediated uptake, to achieve bioavailability.1

Figure 1 illustrates the relative increase in molecular 
complexity over two decades. Notably, lipophilicity 
(clogP) exhibited the highest percentage increase (~36%), 
reflecting a growing tolerance for higher lipophilicity in 
modern drugs. Additionally, MW increased by more 
than 20%, suggesting a tendency toward bigger and 
more complex molecules. Higher molecular weight and 
lipophilicity have been clearly accepted; from 2013 to 
2019, around 40% of new medications violated at least one 
Ro5 rule.2

Selected oral medications that surpass conventional Ro5 
parameters, particularly in MW and lipophilicity (clogP), 
are shown in Table 1. Despite exhibiting several violations, 
several of these compounds including Venetoclax, 
Pibrentasvir, and Ledipasvir have acquired oral 

bioavailability using sophisticated formulation techniques. 
These include stabilizing methods based on polymers, hot-
melt extrusion and amorphous solid dispersions, which 
improve absorption and solubility. The incorporation of 
the prodrug fostamatinib, which is activated in vivo, is an 
alternate method of chemical modification to get beyond 
permeability restrictions. Collectively, these examples 
demonstrate how formulation is more important than 
Ro5 in the creation of bRo5 medication candidates.2

AI-driven platforms are uniquely positioned to exploit 
these differences. By integrating high-throughput 
physicochemical measurements (e.g., chromatographic 
log D, EPSA for chameleonicity) and predictive models. 
Artificial intelligence can improve drugs for effective 
lipophilicity and permeability parameters that are more 
predictive of success than Ro5’s static thresholds.3 For 
instance, the AbbVie Multi-Parameter Scoring (MPS) 
function, which prioritizes log D 7.4 ≈ 3, low rotatable 
bonds, and minimal aromatic rings, has demonstrated 
efficacy in guiding bRo5 drug development. Similarly, 
AI can harness natural product-inspired design, as noted 
by Young,1 to exploit evolutionary-refined transporter 
interactions, bypassing Ro5 constraints altogether.

With the rise of complex molecules, AI-driven models 
have evolved to handle the unique challenges posed by bRo5 
scaffolds. That includes the compounds conformational 
flexibility, non-linear structure activity relationships 
and formulation-dependent pharmacokinetics.4 Recent 
developments in graph neural networks (GNNs), 
Transformer-based models, and attention mechanisms 
have shown superior performance in learning molecular 
representations for bRo5 libraries. Several studies provide 
validation benchmarks for such models here discussed 
few models. 

Using 2D descriptors, Poongavanam et al5 created 
random forest models to predict the passive permeability 
of macrocycles, with an accuracy of about 85% and an 
MCC of about 0.60. Only for stiff compounds with a Kier 
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flexibility index ≤ 10 did 3D models enhance prediction. 
In order to predict cyclic peptide permeability, a study 
also presented a multimodal deep learning architecture 
that combined a transformer and a graph convolutional 
network. This resulted in an accuracy of roughly 0.82 
and an AUC of 0.87, which is a notable advancement for 
modeling bRo5-like macrocyclic compounds.6

Representative bRo5 pharmacological modalities are 
categorized in Table 2 according to their structural class 
and common Ro5 breaches. Despite frequently exceeding 
several parameters, such as MW, HBD, HBA, and 
topological polar surface area (TPSA). The macrocyclic 
medications, like pibrentasvir and cyclosporine A, have 
the advantage of conformational rigidity, which promotes 
membrane permeability. Because of their high molecular 
weight and structural flexibility, PROTACs (like ARV-110) 
have poor passive permeability. Because they resemble 
peptides, peptidomimetics, such as semaglutide, usually 
exceed MW and HBD limits. The amphiphilic hybrids 
like Venetoclax have high clogP and MW, requiring 
sophisticated formulation techniques. The diversity of 
bRo5 space and the requirement for customized design and 
delivery techniques are highlighted by this classification.2

The general ability of conventional AI models trained 
primarily on Ro5-compliant datasets is challenged by 
changes in important molecular descriptors among bRo5 

substances, as shown in Table 3. Chemically diverse, 
bRo5-specific training sets and sophisticated 3D-aware 
architectures like transformers or graph neural networks 
are required because increases in molecular weight 
and flexibility frequently lead to extrapolation errors 
and decreased QSAR performance. Furthermore, static 
descriptors (like LogP) and traditional ADMET models 
are unable to convey the complexity introduced by 
phenomena like chameleonic behavior and formulation 
reliance. When AI models are utilized in place of 
physicochemical criteria, they run the risk of overfitting 
to narrow chemical profiles and producing erroneous 
predictions, especially for underrepresented scaffolds like 
macrocycles or polar entities.

The Ro5 should be reconsidered as an adaptable, AI-
informed framework for modern drug development. 

Figure 1. Percentage increase in key molecular descriptors of FDA-approved oral drugs between 1994-1997 and 2013-2019

Table 1. Representative bRo5 Oral drugs with Ro5 violations and corresponding formulation strategies

Drug MW (Da) clogP Exceeding descriptors Formulation strategy

Venetoclax 868.5 6.76 MW, clogP Copovidone based amorphous dispersion used

Pibrentasvir 1113 5.95 MW, clogP, Amorphous dispersion with poly ethylene glycol

Ledipasvir 889 5.98 MW, clogP Amorphous spray-dried dispersion

Fostamatinib 580.5 2.78 MW, HBA = 13 Prodrug converted in vivo

Ombitasvir 894.1 5.72 MW, clogP Hot-melt extrusion with inhibitors and stabilizers

Table 2. Representative categories of bRo5 molecules with common rule-of-
five violations

Molecule Type Examples Ro5 Violations

Macrocycles Cyclosporine A, Pibrentasvir MW, HBA, HBD, TPSA

PROTACs ARV-110, ARV-471
MW > 1000, high 
rotatability

Peptidomimetics Semaglutide, Bortezomib MW, HBD, PSA

Amphiphilic Hybrids Venetoclax, Entrectinib clogP, MW
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Rather than blindly excluding compounds that violate 
Ro5, the studies should prioritize real-world data like 
experimental permeability, transporter effects, and in 
vivo performance over simplistic rules. AI can help by 
identifying promising outliers (e.g., natural product-
inspired molecules) and optimizing compounds using 
advanced descriptors like chameleonicity and 3D polarity.7 
The field needs a smarter definition of drug-likeness, 
one that balances predictive modeling with biological 
reality. Moving forward, the investigator advocates for 
collaborative efforts to refine these guidelines, ensuring 
they enable rather than restrict innovation in drug design.

Conclusion
In the evolving landscape of drug discovery, rigid 
adherence to the Ro5 risks overlooks promising 
therapeutic candidates, particularly those revealed 
through AI-driven innovation. Drug-likeness is being 
redefined by data-rich methods and new descriptors like 
dynamic polarity and chameleonicity. The researchers 
need to switch to evidence-based, flexible frameworks 
instead of rigid cutoffs. By modernizing Ro5 through the 
lens of AI and experimental validation, the researchers 
can retain its foundational value while unlocking broader 
chemical space for next-generation therapeutics.
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Table 3. Descriptor shifts in bRo5 space and implications for AI model adaptation

Descriptor shift Effect on traditional models Required AI adaptation

Molecular weight Poor extrapolation from Ro5-trained datasets Need bRo5-specific training sets

Flexibility (rot. bonds) Decreased QSAR predictivity Use of 3D-aware models (e.g., GNNs, transformers)

Chameleonic behavior Misleading LogP/LogD assumptions Include dynamic conformer libraries or solvent models

Formulation dependency ADMET prediction failure Integrate formulation metadata as co-variables
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