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To Editor,
Antibiotic resistance, driven by bacterial adaptability 
through genetic mutations and horizontal gene transfer, 
poses a critical global health challenge.1 Bacteria employ 
diverse resistance mechanisms, including beta-lactamase 
production, altered penicillin-binding proteins (PBPs), 
reduced membrane permeability, and efflux pumps, which 
lead to multidrug-resistant (MDR) and extensively drug-
resistant (XDR) strains.2,3 These mechanisms increase 
mortality, prolong hospital stays, and raise healthcare 
costs, highlighting the urgent need for innovative strategies 
to enhance antibiotic efficacy and curb resistance.4

Amoxicillin, a broad-spectrum beta-lactam antibiotic, 
inhibits bacterial cell wall synthesis by targeting PBPs, 
resulting in osmotic instability and cell lysis.5 It is 
effective against pathogens such as Streptococcus spp., 
Staphylococcus spp., Escherichia coli, and Haemophilus 
influenzae.5 However, resistance primarily through beta-
lactamase enzymes that hydrolyze the beta-lactam ring, 
along with biofilms that limit antibiotic penetration 
compromises its effectiveness.6,7 Combining amoxicillin 
with beta-lactamase inhibitors like clavulanic acid can 
partially restore its activity, yet novel adjuvants remain 
essential to overcome complex resistance mechanisms.8

Hypothesis
We propose that metformin, traditionally used for glucose 
regulation, may serve as an adjuvant to amoxicillin, 
enhancing its antibacterial efficacy and potentially 
reducing resistance development through metabolic 
restriction and immunomodulation. While metformin 
lacks direct antibacterial action, its effects on host 
metabolism and immune responses may create an 
unfavorable environment for bacterial survival, thereby 
complementing amoxicillin’s bactericidal effect.

Molecular mechanisms of metformin’s adjuvant potential
Metformin activates AMP-activated protein kinase 
(AMPK), a central regulator of cellular energy 

homeostasis.9 AMPK activation shifts metabolism 
toward lipid oxidation and reduces glucose availability, 
particularly in inflamed tissues where bacteria exploit 
nutrient-rich conditions.10 This metabolic restriction 
may stress bacterial energy production, increasing 
susceptibility to amoxicillin’s cell wall-targeting effects.11 
Additionally, metformin inhibits the mechanistic target of 
rapamycin (mTOR) pathway, reducing excessive immune 
cell proliferation and oxidative stress, which can otherwise 
promote bacterial adaptation.12

Metformin also exerts immunomodulatory effects. 
By modulating the Treg/Th17 balance, it promotes 
anti-inflammatory cytokines (e.g., IL-10, TGF-β) and 
suppresses pro-inflammatory mediators (e.g., IL-6, IL-
17).13 This shift reduces inflammation-driven nutrient 
and oxygen influx, limiting bacterial proliferation and 
enhancing biofilm disruption.14 By stabilizing the immune 
environment, metformin may decrease selective pressure 
for resistance mutations, supporting amoxicillin’s efficacy.

Proposed synergy
Metformin’s metabolic and immunological effects may 
amplify amoxicillin’s bactericidal action by creating an 
inhospitable environment for bacteria. Reduced glucose 
availability and inflammation hinder bacterial growth, 
while amoxicillin disrupts cell wall synthesis. This dual 
strategy could lower the necessary amoxicillin dose, 
thereby reducing side effects and resistance risk. Given 
metformin’s well-documented safety profile, it represents 
a promising candidate as an antibiotic adjuvant, though 
clinical dose optimization is required.15

Therapeutic considerations
For clinical application, metformin dosing may begin at 
500 mg daily, titrated to 1,000–1,500 mg based on tolerance, 
aligning with its therapeutic range for AMPK activation.15 
Amoxicillin dosing (500–1,000 mg every 8–12 hours) 
should follow standard infection-specific guidelines.5 
Regular monitoring of kidney and liver function, glucose, 
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and lactate levels is necessary to prevent complications 
such as lactic acidosis, particularly when metformin doses 
exceed 2,000 mg daily.15 Further preclinical and clinical 
studies are needed to validate this synergy and assess 
metformin’s role in non-diabetic patients.

Conclusion
We propose that co-administering metformin with 
amoxicillin could be a promising strategy to enhance 
antibiotic efficacy and mitigate resistance. Through 
metabolic restriction and immunomodulation via AMPK 
and mTOR pathways, combined with amoxicillin’s 
established bactericidal mechanism, this approach may 
improve treatment outcomes against MDR pathogens. 
Further research is essential to substantiate this hypothesis 
and optimize combination protocols.
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