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Circular RNAs (circRNAs) are a novel class of non-coding RNAs primarily generated through
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a back-splicing processes. These molecules exhibit extensive expression across various tissues,
indicating their significant role in numerous biological processes, particularly in complex
diseases such as cancer. Based on their origin, structure, and biogenesis, circular RNAs are
categorized into exonic circRNAs (ecirc-RNAs), circular intronic RNAs (ci-RNAs), or exonic-

intronic circRNAs (Elci-RNAs). Due to their covalently closed-loop configuration, it is necessary
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to develop specialized techniques to study them. CircRNAs are known to function as protein and
microRNA sponges, regulate transcription, interact with RNA-binding proteins (RBPs), and, in
rare cases, serve as templates for translation. In this review, we provide an overview of circRNA

features, biogenesis, and functions. In addition, we summarize molecular methods for studying
them and explain their significant roles in malignancies.

Introduction

Non-coding RNAs (ncRNAs) constitute the predominant
class of transcribed RNAs in eukaryotic cells, and more
than 90 % of the entire RNA expression is related to these
types of RNAs. These molecules are broadly classified
based on length into two major categories: small ncRNAs
(sncRNAs, <200 nt) and long ncRNAs (IncRNAs,>200
nt)."? MicroRNAs (miRNAs), small nucleolar RNAs
(snoRNAs), small nuclear RNAs (snRNAs), PIWI-
interacting RNA (piRNAs), and small interfering RNAs
(siRNAs),* are the prominent members of sncRNAs.*¢
Conversely, IncRNAs include subtypes such as long
intergenic ncRNAs, intronic ncRNAs, macroRNAs,
sense ncRNAs, antisense RNAs, and circular RNAs
(circRNAs).”? In eukaryotic systems, mRNA precursors
(pre-mRNAs) commonly contain intronic sequences
that are removed via canonical splicing to form mature,
linear transcripts.”” However, under certain conditions,
these processes can make an entirely different kind of
RNA from the same precursor RNA. Initially described
approximately 30 years ago, it was discovered that if
during non-canonical splicing, specifically back-splicing,
an upstream splice acceptor joins a downstream splice

donor, circRNAs generating.'"'?

This kind of ncRNA contains covalently locked non-
stop loop constructions (D-loop) without terminal 5’ caps
and 3’ poly-A tails.">" It is theoretically possible for all
internal exons of genes, excluding the first and last, to give
rise to circRNAs. Although back-splicing is considered
a relatively rare event, there are more than 200,000
exons in the human genome, and in contrast to the low
occurrence of back-splicing, 1,000 unique circRNAs can
be found in any given cell type."* Despite their generally
low expression levels, circRNAs exhibit resistance to
exonuclease-mediated degradation due to their circular
structure and have been implicated in several regulatory
roles.”” These include modulation of parental gene
expression, alternative splicing or translation, acting
as miRNA or RNA-binding protein (RBP) sponges,
translation into peptides/ proteins (only a few circRNAs),
and the generation of some pseudogenes.'®

An increasing number of studies have revealed the
aberrant expression of circRNAs in various pathological
conditions, including cancers, neurological disorders, and
cardiovascular diseases. In oncology, circRNAs can act
as either oncogenes or tumor suppressors, depending on
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their targets and interactions.'” For instance, circHIPK3
promotes colorectal cancer progression by sponging
multiple tumor-suppressive miRNAs,'® while circMTO1
suppresses hepatocellular carcinoma (HCC) via inhibition
of the oncogenic miR-9. The stability and specific
expression patterns of circRNAs in different tissues make
them promising candidates for non-invasive diagnostic
and prognostic biomarkers, as well as therapeutic targets.”
Accordingly, continued research into the biogenesis,
functions, and therapeutic potential of circRNAs is
anticipated to yield new insights for scientific exploration
and medical innovation. In this review, we summarize the
expanding findings on circRNAs and provide an up-to-
date account of their biogenesis, regulatory mechanisms,
and cellular functions in carcinogenesis.

Biogenesis and functional roles of circRNAs

Biogenesis of circRNAs

In eukaryotic cells, alternative splicing converts pre-
RNA into linear mRNA.* On the other hand, circRNAs
are formed through aberrant RNA splicing, specifically
back-splicing, which is different from canonical splicing.
Approximately 80% of circRNAs are derived from
exons, but they can also originate from other parts of
the genome, like introns, non-coding regions, antisense
strands, and untranslated regions (UTRs).? Back-splicing
generates numerous different circRNAs from a single
gene locus, contributing to the complexity of circRNA
formation.”” Based on sequence arrangement, circRNAs
are classified as exonic circRNAs (ecircRNAs), which
contain exon sequences; circular intronic RNAs (ciRNAs),
which originate from introns; exonic-intronic circRNAs
(EIciRNAs), containing both exonic and intronic
sequences; and tRNA intronic circRNAs (tricRNAs), which
are formed from spliced tRNA introns.”** Although the
majority of circRNAs reside in the cytoplasm, EIciRNAs
mostly remain in the nucleus.***

RNA-binding proteins (RBPs) play a crucial role in
the regulation of circRNAs synthesis. RBPs like Quaking
(QKI), Muscleblind (MBL/MBNLI1), and Fused-in
Sarcoma (FUS) can bind to specific motifs on the flanking
introns of immature linear RNA.*** These RBPs bring
the flanking introns together to facilitate the generation
of circRNAs.? Efficient circRNA production requires
certain RNA sequence features are needed. For example,
exons that can back-splice are often significantly longer up
to three times regular exons which is clear in single-exon
circRNAs.* Also, the presence of reverse complementary
sequences in flanking intronic regions, like Alu elements,
enhances intron pairing and exon circularization. These
regions can be either longer or shorter than typical
introns.”*" Inverted tandem repeats in introns also
support circRNA formation, with even short repeats
around 35 base pairs being sufficient.”> However, these
repeats can sometimes make intron base pairing too stable,
which makes it less likely for circRNA formation.**** As

circRNAs mature, introns might not always be removed
and can stay between the circularized exons, resulting in
a subtype of circRNA known as exonic-intronic circRNAs
(EIciRNAs).»

Despite ongoing research, the exact mechanisms
of circRNA biogenesis remain unclear. Three models
have been proposed: lariat-driven circularization (exon
skipping),* intron pairing-driven circularization,” and
re-splicing-driven circularization,” each contributing to
our understanding of how these unique RNA molecules
are formed. Figure la schematically illustrates circRNA
biogenesis. One common mechanism is lariat-driven
circularization, also known as exon-skipping, where
partial folding of pre-mRNA brings the upstream donor
site (5 splice site) and the downstream acceptor site (3’
splice site) into proximity. This allows the donor site to
attack the receptor site, resulting in the formation of a lariat
structure that is subsequently back-spliced to create a new
circRNA. This mechanism is notably stimulated by factors
such as tumor necrosis factor (TNF)-a and transforming
growth factor (TGF)-P in endothelial cells, producing
circRNAs alongside linear mRNA which consists of the
remaining exons.***

Another key mechanism is intron pairing-driven
circularization, which relies on reverse complementary
sequences, Alu elements, and the flanking introns. These
sequences make possible direct back-splicing. High
compatibility between these complementary sequences
enhances the circRNA production. This process generates
exonic circular RNAs (ecircRNAs) by removing intronic
sequences. It also produces exonic-intronic circRNAs
(EIciRNAs) that retain some intronic sequences.’”?*
A third, lesser-known method is resplicing-driven
circularization. Here, a mature linear mRNA undergoes
back-splicing to produce circRNAs with one or more
exons. The concentration of circRNAs within cells is
tightly regulated, with their breakdown being crucial for
maintaining cellular function. This degradation process
involves the partial activation of endonucleases such as
Argonaute 2 (Ago-2), Angiogenin, CPSF73, and RNase
L, which create access points for exonucleases to degrade
circRNAs completely. Each of these pathways underscores
the complex and dynamic nature of circRNA biogenesis
and its regulation in cellular biology.**%*

Cancer may facilitate the development of novel
categories of circRNAs, including read-through circRNAs
(rt-circRNAs) and fusion circRNAs (f-circRNAs)
(Figure 1b). The rt-circRNAs are derived from read-
through  transcripts.  Read-through  transcription
occurs when transcription extends over an intergenic
region beyond the termination signal, resulting in the
synthesis of circRNAs from two neighboring genes.
Gene pairs that produce rt-circRNAs are shorter than
randomly selected neighboring genes pairs. rt-circRNAs
share properties with conventional circRNAs, such as
elongated introns and an abundance of repetitive motifs.
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Figure 1. Biogenesis of circular RNAs and new categories of circular RNAs in oncology. (a) Canonical splicing and Primary methods of back-splicing: intron-
pairing promoted by inverted complementary sequences and RNA-binding proteins; lariat creation. (b) Production of rt-circRNAs from read-through transcripts.

Generation of f-circRNAs by chromosomal fusions

Read-through circularization may be linked to cancer,
characterized by widespread abnormal gene expression
mediated by transcription read-through. Of the 460
cancer driver genes, 39 were identified to generate 67
rt-circRNAs, with 31 of them exhibiting cancer-specific
expression. Nonetheless, their functional importance
in cancer requires further confirmation.”” Cancer-
associated chromosomal translocations may result in
the generation of fusion-circular RNAs (f-circRNAs).
Aberrant chromosomal rearrangements in malignancies
may lead to the juxtaposition of two otherwise separated
genes, bringing complementary intronic regions into
proximity to facilitate reverse splicing. In 2016, Guarnerio
et al initially showed that f-circRNAs originate from PML/
RARa fusion mRNAs in acute promyelocytic leukemia
and that they contribute to carcinogenesis independently
of their linear transcripts and protein equivalents, as well
as being associated with resistance to anti-cancer therapy.
Subsequent investigations have shown that f-circRNAs
arise from specific chromosomal translocations,
including BCR/ABL1, EML4/ALK, and SLC34A2/ROS1
fusions, seen in both hematological malignancies and
solid tumors.*

Mechanisms of action

The ability of circRNAs to control gene expression through
diverse mechanisms has led to their increasing recognition
as important regulators in cancer biology.*? Their
biogenesis often competes with linear mRNA formation,
affecting the production of protein. Functionally,

circRNAs regulate gene expression via interactions with
miRNAs, RNA-binding proteins, and chromatin, and
some even assist as templates for translation (Figure 2).
In malignancies, their tissue-specific expression, stability,
and subcellular localization contribute to their diverse
roles, where they influence metastasis, tumorigenesis, and
therapy resistance via tumor-suppressive or oncogenic
pathways.

miRNA sponging

CircRNAs are most known for their function as miRNA
sponges, which is among their most extensively studied
and well-characterized functions. By containing multiple
miRNA response elements (MREs), circRNAs can
sequester specific miRNAs and suppress them from
repressing their target mRNAs, thus controlling gene
expression and protein synthesis. This competitive
endogenous RNA (ceRNA) activity has an important
role in several physiological and pathological processes,
as well as malignancies, osteoarthritis, diabetes, and
neurological diseases.** For instance, ciRS-7 contains over
70 conserved binding sites for miR-7 and has been shown
to inhibit its tumor-suppressive activity in several types
of malignancy. Similarly, circHIPK3 which is abnormally
expressed in cancer tissues, sponges multiple tumor-
suppressive miRNAs such as miR-124, miR-193, and
miR-637, thus inducing tumor cell invasion, metastasis
and development.* Other circRNAs, as well as circMTO1,
circITCH, and circFOXO3, exert tumor-suppressive
effects by binding oncogenic miRNAs and regulating key

Advanced Pharmaceutical Bulletin. 2025;15(3) | 535



Asadi et al

AN

o

Blocking Translation Initiation

Transcription Regulation

circPAIP2 — U1snRNP — PAIP2
circEIF3J — U1snRNP — EIF3J

()
Template for translation

CircZNF609 — ZNF609
circFBXW7 — FBXW7

s miRNA Sponging
2 ¢IRS-7 | MiR-7 — EGFR, RAF1, PIK3CD
circHIPK3—| miR-124 — STAT3, CDK6, SphK1
J circMTO1 —| miR-9 — p21 (CDKN1A)
* ABE SR~ CircITCH—-| miR+7, MiR-17, MiR-214—ITCH
circFOX03-| miR-138, miR-22 — p21

Functional Roles of
circRNAs

RNA-binding Protein Sponging
GircFOX03-| p21,CDK2 | CDK2
circCenb1-|HUR , p53 — p53
circMbl—| MBL—| MBL.

Protein Scaffolding

Figure 2. Schematic representation of known functions of circRNAs

signaling pathways. For example, circMTO1 enhances p21
expression by sponging miR-9 in HCC," while circITCH
and circFOXO3 target miRNAs such as miR-17, miR-214,
miR-224, and miR-9 to prevent tumor development and
induce apoptosis. In another study, Circular RNA circ-
ABCBI10 was shown to induce breast tumor proliferation
and development via sponging miR-1271.*> A comparative
summary of notable circRNAs, their miRNA targets,
related malignancy types, and functional effects is provided
in Table 1 to support and contextualize these findings.

Protein interaction

CircRNAs enable directly interact with RBPs, affecting
several cellular processes including cancer development
and progression by regulating cellular signaling networks.
By harboring RBP binding sites, circRNAs function as
molecular scaffolds that facilitate or inhibit protein-
protein interactions, control RBPs activity, or prevent
them from regulating gene expression. Through the
formation of ribonucleoprotein complexes, certain
circRNAs, such as ecircRNAs, stabilize these interactions
and preserve the functional integrity of the related
proteins, thus controlling gene regulation at multiple
levels.”? For example, circ-Foxo3 controls cell cycle arrest
by interacting with cyclin-dependent kinase 2 (CDK2)
and the protein kinase inhibitor p21. In breast tumor,
circ-Foxo3 binds to CDK2 and p21, forming a ternary
complex that suppress cell cycle proliferation and tumor
development.”*”* Additionally, in the context of cellular
senescence, circFoxo3 can sequester proteins such as the
senescence marker p16 and the transcription factor E2F1,
thereby modulating pathways associated with aging and
tumor suppression.”® In liver malignancy, circ-Ccnbl
interacts with HuR (ELAVL1) to stabilize CCNB1 mRNA,
thus inducing oncogenic cell cycle development.” Another
example, circMbl, forms a binding interaction with the
Muscleblind (MBL) protein, which is a pivotal controller
of RNA splicing. During this process, circMbl specifically

attracts the MBL protein, which plays a crucial role in the
alternative splicing of Mbl pre-mRNA.”*”” Furthermore,
the decrease of MBL, activation of innate immune dsRNA
receptor (PKR) and prevention of Human Antigen R
(HuR) protein from binding to Poly(A) Binding Protein
Nuclear 1 (PABPN1) mRNA by circPABPN1 can be a
result of circRNA activation.”®” In liver cancer, circ-Ccnbl
sponges miR-194-3p, leading to the promotion of matrix
metalloproteinase 9 (MMP-9)-mediated oncogenic effects
and inducing tumor progression.** These RBP-mediated
mechanisms underscore the complexity of circRNA
functions in cancer, where protein scaffolding and
stabilization roles regulate key tumorigenic pathways.*'

Transcriptional and translational regulation by circRNAs
In the nucleus, certain circRNAs can to control the gene
expression of their host genes. Studies have demonstrated
that circRNAs influence the expression of their parental
genes through cis-acting mechanisms. In some cases,
nuclear circRNAs interact with RNA polymerase II (RNA
Pol II) at the promoter region, resulting in the generation
of various isoforms of a single gene.*? EiciRNAs are the
best-known group of circRNAs with transcriptional
activity.® As an example, circEIF3] and circPAIP2 regulate
the Eukaryotic Translation Initiation Factor 3 Subunit J
(EIF3]) and Poly(A) Binding Protein Interacting Protein
2 (PAIP2) gene transcriptions by making a complex with
the U1 snRNP. This complex then interacts with RNA Pol
II, which regulates the transcription of host genes.®8%
Circ-ZNF609 and circ-FBXW?7 are other examples of
transcriptional regulatory circRNAs that are respectively
involved in muscular biogenesis and glioma.”* The
binding of circRNAs to RNA Pol II can control selective
splicing by regulation of alternative splice site.

During this process, different splicing sites select pre-
mRNAs to produce altered mRNA isoforms. These
examples illustrate the diverse roles of circRNAs and
highlight their potential as therapeutic targets in cancer
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Table 1. CircRNAs as miRNA sponges in various cancers

CircRNA Targeted miRNA Functions Cancer type Ref.
Myocardial infarction; Neural development; anti-

CciRS-7 miR-7 oncogenic; stimulates proliferation/metastasis; Various (including breast, liver) 4
osteoblastic differentiation insulin secretion

. . . . Stimulates proliferation/migration; prevents cancer . . P ,

CircHIPK3 miR-124, miR-193a, miR-558 ) . Various (including liver, colorectal) 47
progression; B-cell function

CircFOXO3 miR-138, miR-9, miR-22 C'ell cycle progression and apoptosis; cardiovascular Various cancers "
diseases and cancer
Mediates signal transduction between hypoxic and

CircZNF91 miR-23b-3p normoxic tumor cells to promote pancreatic cancer  Pancreatic cancer i
chemoresistance

CircMTOT1 miR-9 Prevents cancer progression HCC 1

CircCCDC66 miR-93, miR-185, miR-33b Stimulates cancer progression Various (including colorectal) 49

circIRAK3 miR-3607 Promotes migration/invasion Breast cancer 50

circRNA_0084043  miR-153-3p Stimulates cancer progression malignant melanoma 51

CircANKS1B
Hsa_circ_0008039
circRNA-000911

CDRTas

circ-ABCB10
circ-ZKSCAN
circRNA-100269
hsa-circ-100338

hsa_circ_001059

circ-ITCH

circTCF25
hsa-circ-0043256
Circ-PAX2
circEAT
Circ-NFIX
hsa-circ-001569
hsa-circ-0000069
circPVT1
circ-LARP4

circMTO1

hsa_circ_000167

circHIPK3

hsa_circ_0067934

miR-148a-3p, miR-152-3p
miR-432-5p

miR-499a
miR-7

miR-1271
N/A

miR-630

miR-141-3p

miR-30c, miR-122, miR-139-3p,
miR-339, miR-1912

miR-214

miR-107, miR-103a-3p
miR-1252

miR-186

miR-372

miR-212-3p

miR-145

N/A

miR-125

miR-424-5p

miR-9

miR-181, miR-512, miR-521, miR-
556, miR-663 and miR-1204

miR-124

miR-98

Regulation of TGF-B1 signaling pathway
Increases E2F3 expression

Regulation of Notch1 and NF-kB signaling pathway
Prevention of cell proliferation

Initiation of cell proliferation

Prevention of cell proliferation and metastasis
Prevention of cell proliferation

Regulator of metastases

Regulator for tumor radiotherapy resistance
Prevention of cell proliferation by down-regulation of
c-myc, ubiquitination, and degradation of DvI2
Initiation of cell proliferation and metastasis
Prevention of cell proliferation

Initiation of cell proliferation

Regulator for cell differentiation and drug resistance
Enhances tumor cell progression

Initiation of cell proliferation and metastasis
Initiation of cell proliferation and metastasis
Initiation of cell proliferation and metastasis
Regulation of tumor progression

Regulation of tumor progression

Regulation of tumor proliferation

initiation of cell proliferation

Breast cancer
Breast cancer
Breast cancer

Breast, hepatocellular, lung, and
gastric cancers

Breast cancer
HCC
HCC
HCC

Esophageal squamous cell carcinoma

Esophageal squamous cell carcinoma,
lung cancer, colorectal cancer
Bladder cancer

Lung cancer

Lung cancer

Lung cancer

Lung cancer

Colorectal cancer

Colorectal cancer

Gastric cancer

Gastric cancer

HCC
Esophageal squamous cell carcinoma

HCC

Esophageal squamous cell carcinoma

55, 56

60

61

62

63

63

64

65

66

67

68

69

60

70

71

and other diseases.” A new study reveals that circRNAs
can compete with their host genes in post-transcriptional
processes. Additionally, circRNAs possess internal
ribosome entry sites, which enable them to translate
independently from the host gene. This model is an
intelligent way to regulate stability between the expression
levels of circRNAs and host mRNAs.® As a result,
circRNAs control protein production at the transcriptional
or post-transcriptional levels. CircZNF609, c-sirt7, and
circMbl are three illustrations of circRNAs with coding

probability.”** In glioblastoma, circFBXW?7 is translated
into FBXW7-185aa, a peptide that antagonizes c-Myc and
prevents tumor cell progression. These findings determine
the important role of circRNAs as regulators not only of
RNA dynamics but also of protein-coding potential in
malignancy.

Modulating immunity and metabolism
Another developing issue is the participation of circRNAs
in the immune response. Specific circRNAs can regulate
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the function of immune cells, thereby impacting the
immune system’s ability to react to infections and
disorders. This discovery presents new opportunities for
investigating circRNAs as potential therapeutic targets
for interventions in immune-related diseases.” CircRNAs
influence metabolic pathways. They interact with enzymes
and other regulatory factors that control metabolism,
which can change how cells process food and use energy.
This affects processes such as maintaining blood sugar
levels, metabolizing fats, and producing energy. Because
circRNAs can do this, they may play a role in health
problems related to metabolism, such as obesity and
diabetes.”> As we learn more about circRNAs, we can see
that these molecules play a key role in how cells control
themselves. They can interact with multiple targets within
the cell, and they are characterized by high stability and
specificity. This property makes circRNAs promising
candidates for diagnosing and treating diseases. As we
continue to study them and our technology improves,
we will learn even more about the function of circRNAs.
This will pave the way for novel discoveries and significant
advancements in the field of biomedical science.”

Techniques for measuring circRNAs

Measuring and evaluating circRNAs requires special
methods because of their unique closed-loop structure,
which makes them different from linear RNAs. CircRNA
sequencing is a common technique that begins with RNase
R treatment to degrade linear RNAs, facilitating the process
of circRNA sequencing. This step is crucial as it leaves
the circular RNAs intact, allowing for their identification
based on unique back-splice junctions through high-
depth sequencing, although RNAase treatment is not
always mandatory (Figure 3a).”>*”*® CircRNA microarrays
offer another high-throughput approach by using probes
specifically designed to hybridize with the junction
sequences of circRNAs on a solid surface, providing

a robust platform for evaluating circRNA expression
without requiring RNase treatment, although this can
improve accuracy.”'®!" Northern blotting stands out
because it can provide detailed information about the
size, isoforms, processing, sequence, and abundance of
circRNAs (Figure 3b). It distinguishes between circRNAs
and linear RNAs by using different gel electrophoresis
methods based on the size of the RNAs.*%

Real-time quantitative polymerase chain reaction
(RT-qPCR) analysis utilizes distinct primers that cover
the unique back-splice junctions of circRNAs, enabling
accurate quantification while preventing the amplification
of linear RNAs. This method can optionally use RNase
treatment to increase the concentration of circRNAs,
thereby improving measurement accuracy.'” Digital
droplet PCR (ddPCR) provides exceptional sensitivity
for circRNA quantifying, utilizing nanodroplets for PCR
amplification, and determining RNA concentration by
comparing the ratio of positive to negative droplets.
This method is highly accurate even for low-abundance
circRNAs (Figure 3¢).10+1°

For spatial analysis, RNA Fluorescence in situ
Hybridization (RNA-FISH) utilizes probes to detect
circRNA junctions. To assess their concentration and
distribution inside cells, showing their cellular localization
and dynamics (Figure 3d).'” Additionally, to explore how
circRNAs interact at the molecular level, methods such
as circRNA affinity pulldown, which utilizes biotinylated
antisense oligomers (ASOs) to capture circRNAs with
streptavidin-coated ~ beads, facilitating interaction
mapping within the molecular network. Similarly,
immunoprecipitation of circRNA-RBP complexes isolates
circRNA-protein complexes using antibodies that target
RNA-binding proteins associated with circRNAs. This
step allows for later analysis of the RNA component using
ddPCR and RT-qPCR. These different methods enhance
our understanding of the expression, structure, and
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Figure 3. Schematic representation of diverse circRNA profiling methods
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functional roles of circRNAs in cellular biology, as well as
their potential therapeutic applications.?>?"!%7

Diagnostic and prognostic potential of circRNAs in
cancer
circRNAs have gained attention as important diagnostic
and prognostic biomarkers in various malignancies due
to their remarkable stability, abundance in body fluids
such as plasma and serum, tissue-specific expression
pattern, and enabling non-invasive detection (Figure 4).!%
Unlike linear RNAs, which typically degrade within 20
hours, the half-life of circRNAs in body fluids generally
exceeds 48 hours, which is significantly longer than the
half-life of linear RNAs that related to their closed-loop
structure and protection within extracellular vesicles.
Recent research mention that the half-lives of circRNA
vary between 8 and 50 hours, depending on the specific
circRNA species and contexts.'” Several researches have
shown that expression levels of certain circRNAs are
related with clinicopathological characteristics including
migration potential, tumor stage, and tumor size,
connecting their dysregulation to tumor invasion and
development.'!® Recent Meta-analyses have demonstrated
that circRNAs show good diagnostic performance, with
pooled sensitivity and specificity of around 79% and
an area under the curve (AUC) of approximately 0.86
in hematological malignancies, demonstrating their
potential for early malignancy detection and support
clinical management."! Moreover, combining multiple
circRNA into panels considerably improves diagnostic
accuracy compared to single circRNAs. For instance, in
gastric cancer, a combination of circRNAs improved the
AUC from 0.82 to 0.91, representing better sensitivity and
specificity.!*2

Similarly, a classifier that employs five circRNAs
(circPDLIM5, circSCAFS8, circPLXDC2, circSCAMPI,
and circCCNT2) extracted from urine extracellular
vesicles has shown acceptable performance to recognize
high-grade prostate cancer of grade 2 or above.'” In
pancreatic ductal adenocarcinoma (PDAC), a panel
of five plasma-based liquid biopsy circRNAs (hsa_
circ_0060733, hsa_circ_00061117, hsa_circ_0064288,
hsa_circ_0007895, and hsa_circ_0007367) was able to
distinguish between early stage (stage I/II) and late stage
(stage III/IV). Diagnostic accuracy of this circRNA panel
for detecting PDAC patients was considerably increased
and improved when combined with cancer antigen 19-9
(CA19-9), the conventional biomarker for PDAC.!"* On
the prognostic side, increased levels of oncogenic circRNAs
are associated with poorer overall survival (hazard ratios
ranging from 1.3 to 2.3), whereas tumor-suppressive
circRNAs are often correlated with better survival rates.
These findings underscore circRNAs value in predicting
patient prognosis and therapeutic response. Despite
these hopeful findings, several challenges and limitation
remain, including the lack of standardized detection

techniques, large-scale validation studies, and mechanistic
insights to fully integrate circRNAs into clinical practice
as reliable biomarkers for cancer diagnosis and prognosis
are remain.®' hsa-circ-0001649 and hsa-circ-002059 have
shown strong potential as biomarkers in human HCC.">!¢
Similarly, hsa-circ-001988 has been proposed as a
diagnostic marker for gastric cancer.'” While, circPRMT5
was introduced as a biomarker for urothelial carcinoma,
where it appears have a role in tumor development and
lymph node metastasis.!”® Table 2 summarizes circular
RNAs that highlights potential biomarkers in several
cancer types. As discussed in previous parts of this review,
circular RNAs have four recognized functions, and all
of them are important in malignancy development.'?
Furthermore, circRNAs employ as predictive markers
for malignancy treatment efficacy and resistance.
Several circRNAs have been recognized for their role in
controlling chemosensitivity, underscoring their value in
guiding treatment strategies.

For instance, a specific circRNA expression signature has
been used to predict the response to immune checkpoint
blockade therapy. The ICBcircSig score was validated
based on the weighted expression of circTMTC3 and
circFAM117B from melanoma in patients receiving anti-
PD-1 or combined anti-CTLA4 and anti-PD-1 therapy.
This model, representing that the ICBcircSig score has
valuable role in predicting immunotherapy efficacy in
melanoma patients.'?

A growing number of clinical trials are evaluating
the potential of circRNAs as diagnostic and prognostic
biomarkers in several malignancies (Table 3). For
instance, trial NCT05771337 is recruiting breast tumor
patients to validate the clinical efficacy of two plasma-
based circRNAs (hsa_circ_0001785 and hsa_circ_100219)
for early detection, diagnosis and disease monitoring.'’
Additionally, NCT06530082 is evaluating a new dendritic
cell vaccine based on a circRNA-derived peptide
(circFAM53B-219aa) in individuals with advanced solid
tumors (https://www.careacross.com/clinical-trials/
trial/ NCT06530082). In pancreatic cancer, the CIRCUS
trial is exploring circRNA panels for early diagnosis and
comparing their efficacy with standard markers, such
as CA19-9."'* Furthermore, pilot studies are exploring
exosomal circular RNAs in cerebrospinal fluid as potential
markers for tracking glioma recurrence.”*® Also, preclinical
studies are evaluating circPVT1 as a predictor of drug
resistance in estrogen receptor alpha-positive (ERa+)
breast cancer.”' Collectively, these researches highlight
the growing clinical interest in circRNAs as minimally
invasive, stable, sensitive, and specific biomarkers for
cancer diagnosis, prognosis, and therapeutic monitoring.

Therapeutic applications of circRNAs in cancer
treatment

Therapeutic approaches that focus on circRNAs present
a hopeful and innovative future in the field of cancer
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Table 2. CircRNAs with prognostic values in cancers.

Related pathological

circRNA Cancer  Model Used Mode of Action Translational Stage Ref.
features
Urothelial In vitro (UCB cell lines), In vivo  Sponging miR-30c/ ggisgn:ﬁgtiia“em Tumor progression and
circPRMT5 . (BALB/c nude mice xenograft upregulates SNAIL1/induces/ ' ' prog . e
carcinoma . ; exosome-based lymph node metastasis
metastasis model) EMTI promotes metastasis A
biomarker)
miRNA sponge (targets: miR-
hsa Human salivary samples (clinical 661, miR-662, miR-593-5p, Tumor progression. TNM
a4 OSCC  patient cohort, 90 OSCC vs. 82 miR-107, miR-103a-3p); Biomarker validation prog ' 120
circ_0001874 . stage, tumor grade
controls) linked to TNM stage and
tumor grade
miRNA sponge (targets:
Human salivary samples (clinical miR-152-5p, miR-103a-3p, .
Eisri_oool 971 OSCC  patient cohort, 90 OSCC vs. 82 miR-107, miR-505-3p, miR-  Biomarker validation -srtl;meortgsgieszgg TNM 120
- controls) 9-5p); associated with TNM 8¢ 8
stage
Breast Human plasma samples (n=57 Fr:t?:l:iri]::?tlm[cRoﬁ/f\ir;ﬁfg)ge TNM stage, histological
hsa-circ-0001785 . p P - . Y . ! Biomarker validation grade, distant metastasis, 121
cancer  patients) associated with tumor cUrgery reshonse
burden gery resp
iRNA f iR-
Human HCC tissues, adjacent ;nOIOa 3;/52?5;'2;2: preclinical Tumor proliferation,
irc- R i 2 i i 122
Circ-ZEB1.33 HCC non tumorous tissues, HCC cell of CDK6/ enhanced cell functional studies upregulated in HCC tissues
lines Lo vs. normal
proliferation
94 paired HCC and Downregu[at‘ed " HCC.; Tumor size, AFP level,
hsa_ ) . correlated with tumor size .
. HCC adjacent normal tissues; . Pre-clinical Edmondson stage, poor 123
circ_0005075 o . . and AFP level (suggestive . U
clinicopathological correlation . differentiation in HCC
biomarker role)
' 60 paired HCC and adjacent Downregu[ated; ROC ' Clxmcal correlation  Tumor sn‘ze/ TNM stage, {\FP .
hsa-circ-0001649 HCC S ) analysis suggests potential + biomarker levels; diagnostic potential s
non-tumor liver tissues; cell lines . S0 .
diagnostic biomarker discovery (AUC: 0.834)
Overexpressed in LSCC;
hsa Human LSCC tissues (n=52 Clinical association correlated with T3-T4
— H - e 124
CircRNA._ 100855 LSCC pa}red samples), qRT-PCR, Not mechanistically tested study grade, Iymph node o
microarray metastasis, supraglottic site,
and advanced stage
Downregulated in
hsa Human LSCC tissues (n =52 Clinical association 'I;ic'%l Cg(:;;eelatl(;ﬁﬁ;;vl':th
— H - e - ’ 124
CircRNA._ 104912 LSCC pa}red samples), qRT-PCR, Not mechanistically tested study node metastasis, poor
microarray . o
differentiation, and
advanced stage
. . . . . Overexpressed in poorly
40 paired patient tissues and Promotes proliferation and } .
hsa_ S ) . . L differentiated tumors,
. Bladder  blood samples migration; potentially via Preclinical (in vitro "
circ_0003221 . . K S advanced T stage (II-1V), s
. cancer - Human cell lines (T24, 5637)  miRNA sponge (mechanism & in vivo)
circPTK2 . ) and N2-N3 lymph node
- Nude mice xenograft model not fully defined) .
metastasis
. Downregulated in CRC; Decreased expression in
31 paired colorectal tumor and . . .
. . associated with poor . tumors; linked to tumor
. Colorectal  adjacent normal tissues . L Preclinical sample- ) - . -
hsa-circ-001988 . . i differentiation and differentiation, perineural 20
cancer - Clinical correlation with . B ) ) based study . .
. perineural invasion; possible invasion; ROC AUC=0.788
patient data . . .
biomarker for diagnosis
Downregulate expression; preclinical
) Gastric ~ Human gastric cancer tissues potential biomarker; ) e Associated with TNM stage,  ,,
hsa_circ_002059 ) ) diagnostic biomarker . .
cancer  and plasma associated with TNM stage distal metastasis

and metastasis

study

Abbreviations: OSCC, Oral squamous cell carcinoma; HCC, hepatocellular carcinoma; LSCC, Laryngeal squamous cell carcinoma.

treatment. circRNAs possess distinct characteristics, such
as their exceptional stability and specific interactions
with miRNAs and proteins, which render them highly
suitable for therapeutic intervention."® To further
clarify the translational relevance of circRNAs in
cancer, Table 4 provides a comparative overview of
well-characterized circRNAs, detailing their associated
cancer types, experimental models, modes of action, and

current translational status. Here, we examine various
strategies that have been developed to utilize circRNAs for
cancer treatment.

circRNAs targeting strategy

Antisense oligonucleotides (ASOs)

One of the prominent approaches is the use of antisense
oligonucleotides (ASOs) specifically degrade oncogenic
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Table 3. Clinical trials investigating circRNAs as biomarkers in cancers

Trial Cancer type(s) circRNA(s) studied Approach/Goal Status Ref.
) . Diagnostic/prognostic validation . )

NCT05771337 Breast cancer hsa_circ_0001785, hsa_circ_100219 . Recruiting 132
in plasma/serum

NCT06530082 Advanced solid tumors  circFAM53B-219aa (peptide vaccine) Immunotherapy, safety, and Phase I/ll, ongoing ~ '**
efficacy assessment

. . . Early detection, comparison with . .

CIRCUS Trial PDAC circPDE8A, circRHOBTB3, panel CA19-9 Preclinical/Clinical ~ "*

Glioma (pilot studies) Glioma circSMARCAS5, circHIPK3 (exosomal)  Recurrence monitoring in CSF Preclinical 130

Drug resistance (preclinical) ~ Breast cancer (ERa+) circPVT1 Predicting tamoxifen resistance Preclinical 1

Abbreviation: PDAC, Pancreatic ductal adenocarcinoma.

Glioma
CDR1AS CircVCAN CircFBXW7
CircPTN CircNEIL3 CircE-Cad
CircPINTexon2 CircSHPRH
i} ‘\~
Breast Cancer RN
CircFoxo3 CircSEPTS CircAmotl1
CircANKS1B CircCenb1 CircFBXW7
CircHER2 CirclRAK3 CircFAMB4A
Hepatocellular Carcinoma
CircHIPK3 CircMDK CircMTO1
CSMARCAS CircMAP3K4 CircRHOT1
hsa_circ_0001727 hsa_circ_0005075 hsa_circ_0003570
Colorectal Cancer
L]
.
CircCCDC66 CircACC1 CircPLCE1 L]
CircLPAR1 CircPPP1R12A CircLECRC

hsa_circ_0001346

AR

Kidney Cancer

CircEGLN3 CircPCNXL2 CircATP2B1
CircAKT3 CircABCB10 CircNOX4
CircSOD2 CircAFAP1
Lung Cancer
.I’ CirclTCH CircHMGB2 CircUSP7
CircNDUFB2 CircZNF609 CircFGFR1
"" CircPTK2 F-circEA CircPRKCI
Leukemia
CircRNF220 F-circPR CircMYBL2
F-circM8 CircPVT1 Circ100290
CircPAN3 CircHIPK2 CircANAPC7
Gastric Cancer
CircPVT1 CircORCS CircAKT3
hsa_circ_0000190 CircNRIP1 hsa_circ_0000096
CircMAPK1 CircHIPK2 CircANAPC7

Figure 4. CircRNAs as biomarkers and therapeutic targets in cancer. This diagram depicts the role of circular RNAs (circRNAs) as biomarkers in cancer diagnosis.
The human silhouette in the center represents the patient. Different circRNAs are connected to specific cancer types. These circRNAs enable diagnostic outcomes,
such as early detection of tumors, monitoring of tumor progression, and evaluation of treatment responses. The illustration emphasizes the potential of circRNAs

as non-invasive biomarkers in liquid biopsy applications for cancer diagnosis

circRNAs. ASOs are synthetic, short nucleotide sequences
that regulate the function of target genes. The FDA
has approved two ASO drugs for Duchenne muscular
dystrophy (DMD) and spinal muscular atrophy (SMA)
treatment.”! circHIPK3, which promotes colorectal and
esophageal cancer (EC) by sponging tumor-suppressive
microRNAs, can be targeted by ASOs to disrupt its
oncogenic activity and restore the normal function of these
microRNAs. This targeted degradation can significantly
inhibit tumor growth and progression.'**> Chemical
modifications such as phosphorothioate backbones and
2’-O-methylation increase nuclease resistance while
simultaneously decrease immunogenicity. Despite these
advancements, challenges related to delivery efficiency
and tissue specificity remain important problem to
clinical translation. Advances in circRNA annotation,
modify chemical of ASOs, and improvement of targeted
delivery systems may enable for the development of

circRNA-directed precision therapeutics that control
circRNA activity in a selective and effective way.'”* In a
pivotal study, Legnini et al confirmed that circZNF609
can be selectively silenced using BSJ-specific ASOs, which
led to decrease myoblast proliferation without altering the
linear transcript.”

CRISPR/Cas9 gene editing

Advanced gene editing technologies such as CRISPR/
Cas9 offer the potential to correct dysfunctional circRNAs
implicated in cancer. This approach can be employed to
delete or modify oncogenic circRNAs, such as circPRKCI
in lung adenocarcinoma, thereby restoring normal
cellular functions and inhibiting cancer progression.'*
CRISPR/Cas9-mediated knockout of specific circRNAs
can provide insights into their roles in malignancy and
pave the way for targeted therapies.'™ The application
of CRISPR/Cas9- to target circRNAs shows hopeful
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Table 4. Comparative summary of promising circRNAs across cancer types: experimental models, molecular mechanisms, and translational relevance

circRNA Cancer type(s) Model used Mode of action Translational stage Function Ref.
sponges miR-1207-5p; Preclinical (in vitro
CircHIPK3 Colorectal In vitro upregulates FMNL2; promotes . . ! Oncogene 4
) . . tissue analysis)
proliferation and metastasis
Sponges miR-558,
In vitro (T24T, UMUC3); In downregulating heparanase Preclinical (in
circHIPK3 Bladder vivo (xenograft, metastasis (HPSE), inhibits MMP-9, VEGF,  vitro +xenograft mouse ~ Tumor suppressor ~ '**
model in nude mice) suppresses angiogenesis and model)
metastasis
In vitro (HepG2, SMMC-7721,
CireMTO1 HCC QGY-7701, SK-Hep1); InAV|vo Sponge§ miR-9; increases p21 P‘recllmcal (Am‘vnroA, in - imor suppressor
(SMMC-LTNM xenograft in expression; tumor suppressor vivo, and clinical tissue)
nude mice); Human tissue
In vitro (Eca-109, TE-1); In CITCITCH .ads asa spoyge for Preclinical
. . miR-7, miR-17, and miR-214. .
circITCH ESCC vivo (xenograft nude mouse); . (cell lines and mouse Tumor suppressor '3
T suppression of the Wnt/B-
Clinical tissues P xenografts)
catenin signaling pathway
. . circRNA Cdrlas sponges miR- . - .
CDR1as (ciRS-7)  HCC In v!tro (HepG2, MHCC-97H); 1270, promotes proliferation, P.recllmcal (in vitro+in Oncogene 137
In vivo (xenograft mouse); K . vivo)
migration
Breast cancer In vitro (MDA-MB-231, BT- l%/ﬁ)l\(jirILgZle:]:i”i/_l:\jg?; uprr(frgni)[taetses Preclinical (in vitro, in
CDRTas (ciRS-7)  triple-negative 549); In vivo (nude mouse tail P ! Oncogene 138

circSMARCA5

circFBXW7

circFOXO3

circFOXO3

circRNA_100290

circPVT1

circPVT1

circRNA_0025202

circGFRAT

circUHRF1 (hsa_
circ_0048677)

breast cancer

Prostate cancer

Glioma

Non-small cell
lung cancer

Prostate cancer

Colorectal
cancer

Gastric cancer

Osteosarcoma

Breast

Triple-negative
breast cancer

HCC

vein metastasis model)

In vitro (DU145, PC3,
LNCaP); In vivo (xenograft and
metastasis mouse models);
Clinical tissues

In vitro (U251, U373); In vivo
(xenograft nude mice); Clinical
samples

In vitro

In vitro (LNCaP, PC-3, DU145,
22Rv1)

In vitro (HCT116, SW620)

In vitro (AGS, SGC-7901)

In vitro (U20S, MG63);
Clinical tissue

In vitro (MCF-7, MCF7/TR,
T47D); In vivo (xenograft nude
mice); Clinical samples

In vitro (MDA-MB-231,
BT549, MDA-MB-468); In
vivo (xenograft mouse model);
Clinical tissues

In vitro (HCC cell lines + NK-
92 cells), In vivo (xenograft in
NOD/SCID mice)

migration, invasion, and
metastasis

Sponges miR-181b-5p and miR-
17-3p upregulate TIMP3, inhibit
EMT, proliferation, invasion,
metastasis

Encodes FBXW7-185aa protein;
promotes c-Myc degradation via
USP28 competition

Sponges miR-155, Upregulates
FOXO3, a tumor suppressor,
inhibits proliferation and
invasion

Sponges miR-29a-3p,
upregulates SLC25A15,
promotes proliferation,
suppresses apoptosis

Sponges miR-516b,
upregulating FZD4, activates
Whnt/B-catenin signaling,
promotes proliferation, invasion,
migration

circPVT1 functions as a
competing endogenous RNA
(ceRNA) by sponging miR-
423-5p

Sponges miR-205-5p indirectly
upregulates c-FLIP, promotes
EMT, invasion, and metastasis

Sponges miR-182-5p;
upregulates FOXO3a;
suppresses tumor growth

Sponges miR-34a, upregulates

GFRAT1, promotes proliferation,
suppresses apoptosis, linked to
poor prognosis

Sponges miR-449c-5p —
upregulates TIM-3 on NK
cells — — induces NK cell
exhaustion

vivo, and patient tissues)

Preclinical (in vitro+in
vivo +tissue validation)

Preclinical (in vitro, in
vivo, and clinical tissue)

Preclinical (in
vitro+human tissue)

Preclinical (in
vitro+clinical tissue)

Preclinical (in
vitro+clinical tissue
analysis)

Preclinical (in vitro)

Preclinical (in
vitro+human tissue)

Preclinical (in vitro+in
vivo +clinical tissues)

Preclinical (in vitro+in
vivo + patient samples)

Preclinical validation
and retrospective
clinical association with
anti-PD1 resistance

tumor suppressor

Tumor suppressor

Tumor suppressor

Oncogene

oncogene

Oncogene

Oncogene

Tumor suppressor
in HR +breast
cancer

Oncogene

Oncogene

142

143

144

146

148
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Table 4. Continued.

circRNA Cancer type(s) Model used Mode of action Translational stage Function Ref.
Sponges miR-545 and miR-589,
CirePRKCI Lung ' Ir? vitro (LUAD cell lines)/In Ieadmgito upregula'non 9f E2F7, preclinical Oncogene o
adenocarcinoma  vivo (xenograft) promoting cell proliferation and
tumorigenesis
miRNA sponge (miR-145-5p),
CircZNF609 Breast cancer In vitro (MCF7, MDA-MB-231);  upregulates p70S6K1, promotes preclinical Oncogene 150

In vivo (nude mouse xenograft)

proliferation, migration,
invasion

Abbreviations: ESCC, Esophageal squamous cell carcinoma; HCC, hepatocellular carcinoma; FMNL2, formin-like 2; CDR1as, Cerebellar degeneration-related protein

1 antisense RNA; ceRNA, endogenous RNA; OSCC, Oral squamous cell carcinoma; LUAD, Lung adenocarcinoma; EMT, Epithelial-mesenchymal transition.

new avenue for cancer treatment, particularly in tumors
where specific circRNAs are involved in malignancy
development, treatment resistance, or migration potential.
Since circRNA expression profiles can vary between
different tumor types and even among individual patients,
CRISPR/Cas9 technology aligns well with the principles
of personalized medicine. By using CRISPR technology to
target specific circRNAs correlated with poor prognosis or
therapeutic resistance, it may be possible to develop highly
specific, patient-centered interventions.” In related
work, CRISPR/Cas9 system has been planned to target
the telomerase reverse transcriptase (TERT) promoter or
its coding regions. These interventions have effectively
prevented TERT transcription and decrease telomerase
activity which leading to suppressed cell progression
and development and increased apoptosis in malignancy
cells.” As of May 2025, no clinical trials have been
published, particularly using CRISPR technology to target
circRNAs. However, several preclinical investigations
have made considerable progress. Notably, Zhang et al
developed an improved CRISPR/Cas13d platform that
efficiently degrades circRNAs at the RNA level with higher
specificity and efficiency than shRNA methods."”

Delivery strategies

Nanoparticle-based delivery systems

Another promising strategy involves the engineering of
circRNA-based nanoparticles for targeted drug delivery.
These nanoparticles encapsulate circRNAs, shielding
them from nuclease-mediated degradation and enabling
their effective delivery into tumor cells. Among the
several platforms, lipid nanoparticles (LNPs) has been
particularly successful in targeting tumors, types,
especially in HCC.”"®' In preclinical studies, LNPs
loaded with circRNAs promoted apoptosis, and prevent
tumor cell proliferation and progression.'**!¢! You et al
designed magnetically responsive nanoplatforms based
PEG-PCL-PEI-C14-coated = superparamagnetic  iron
oxide nanoparticles (SPIONs) for delivering siRNA to
target circ_0058051, which led to considerable decrease
in circRNA expression and noteworthy tumor inhibition
in a HCC model, with no observable off-target toxicity.'®
Similarly, Shu et al. used -chitosan-epigallocatechin
gallate (CS-EGCG) nanoparticles to deliver a circSPIRE1

overexpression plasmid via systemic administration. Their
finding showed a significant decrease in lung metastasis
in renal cell carcinoma model, by promoting epithelial
integrity and repressing angiogenesis.'®®

Exosome-based delivery systems

Exosome-based delivery systems have garnered important
attention as a next generation platform to developing
circRNA therapeutics. These nano-sized extracellular
vesicles, naturally secreted by cells, can be designed to
carry circRNAs directly to tumor cells. These exosomes
offer several advantages, as well as their innate ability
to pass biological barriers and target specific tissues,
such as malignant cells. For instance, circ-0025202 was
successfully delivered to breast cancer cells via engineered
exosomes. This approach led to considerable decrease
in tumor progression and metastasis, indicating the
therapeutic potential of exosome-mediated circRNA
delivery. This therapeutic strategy utilizes the natural
stability and efficient cellular uptake mechanisms of
exosomes to promote circRNA delivery while reducing
toxicity.'**

Synthetic circRNAs and tumor suppressor restoration
Synthetic circRNAs

Synthetic circRNAs can be designed to act as sponges
for oncogenic miRNAs, preventing these miRNAs from
promoting tumor growth and resistance to apoptosis.
For example, synthetic circRNAs can be designed to
sequester miR-21-5p, an oncogenic microRNA in cancer
cells, thereby preventing it from promoting tumor growth
and resistance to apoptosis. These synthetic circRNAs can
reduce miRNA availability, thus increasing the tumor-
suppressive gene expression like RECK and PDCD4.1¢>1¢¢

Upregulating tumor suppressor circRNAs

CircRNAs like circITCH have confirmed tumor-
suppressive function by controlling important oncogenic
pathways. In bladder cancer, circ-ITCH prevents tumor
growth and development by sponging miR-17/miR-
224 and leading to increased expression including p21
and PTEN.'” In colorectal tumor, circITCH suppresses
cell progression and growth via sponging miR-7, which
results in elevated expression of ITCH, a known negative
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controller of the Wnt/p-catenin signaling pathway.'*51¢°
Likewise, in gastric cancer, both in vitro and in vivo
research have confirmed that cir-ITCH have a tumor
suppressor function to suppress tumor carcinogenesis
by binding to miR-17 and subsequently downregulating
the Wnt/B-catenin pathway. This suppressive impact
on tumor progression and growth was decreased when
miR-17 was reintroduced."”® Despite these hopeful
preclinical results, high expression of tumor suppressor
circRNAs for treatment goals have several technical
and translational challenges. Improvement in vector
engineering, nanoparticle-based delivery system, and
chemical modifications are being developed to overcome
these barriers and enable the transition of circRNA-
based tumor suppressors into clinical applications.'”
Table 5 shows tumor suppressor circRNAs and preclinical
upregulation strategies.

Immune modulation

Circular RNAs are emerging as both modulators and
potential targets in cancer immunotherapy. Moreover,
synthetic circRNAs can be designed to modulate the
immune response against cancer. These synthetic
circRNAs can act as decoys for immune checkpoint
proteins, such as PD-L1, thereby enhancing the body’s
immune response against tumors."”* Collectively, these
therapeutic strategies underscore the versatile potential
of circRNAs in cancer treatment, offering novel avenues
to target and overcome the molecular complexities of
cancer. Table 6 presents the circRNAs involved in immune
modulation and their therapeutic potential.

circRNAs as immune modulators in the tumor
microenvironment

Recent research indicates that certain circRNAs control
immune checkpoints, cytokine production, T-cell activity,
and immune cell infiltration, thus can contribute to tumor
immune evasion and escape. One well-studied example is

Table 5. Tumor suppressor circRNAs and preclinical upregulation strategies

circUHRF1, which is notably highly expressed in HCC,
is secreted via exosomes. This circRNA promotes NK
cell exhaustion by increase in T-cell Immunoglobulin
and Mucin-domain containing-3 (TIM-3) expression.
Functional studies have confirmed that knockdown of
circUHRF1 restores NK cell cytotoxicity and enhances
the efficacy of anti-programmed cell death protein-1 (PD-
1) therapy, underscoring its potential as a therapeutic
target.!*® Similarly, in non-small cell lung cancer, circ-
CPA4 facilitates immune escape by sponging miR-377,
resulting in overexpression of PD-L1 and immune evasion
and escape. Knockdown of circ-CPA4, sensitize tumors
to immune checkpoint blockade, further highlighting
the clinical importance of circRNAs in regulating
immune responses.'”

circRNAs as biomarkers for immunotherapy response
CircRNAs exhibit exceptional stability in blood and
exosomes, making them attractive candidates for non-
invasive biomarkers to predict immunotherapy response.
A compelling example is exosomal circEIF3K, which
is derived from cancer-associated fibroblast induces
colorectal cancer growth by the miR-214/PD-L1
signaling pathway.'”®

Clinical challenges in circRNA-based therapeutic

With pay attention to the acceptable promise of circRNA-
based therapeutics, the application of circRNAs stay
in preclinical phase, introducing these challenges is
important for proceeding their development from
preclinical studies to clinical applications. This section
highlights the important limits of these techniques and
explores potential strategies for overcoming them. One
important dis-advantage is the risk of off-target gene
silencing, where RNA interference (RNAi) techniques
including the use of small interfering RNAs (siRNAs),
can knockdown unintended genes due to partial
complementarity leading to unexpected and mostly

circRNA Cancer type Mechanism

Therapeutic strategy Effect

Clinical/preclinical  Ref.

Sponges oncogenic miRNAs;

Plasmid overexpression /

| Proliferation, |

) . i 173
CIFSSMARCAS - Glioblastoma inhibits angiogenesis synthetic circRNA Migration preclinical
NIH3T3 cell, ‘ _ ,
circFOXO3 B16 cells (mouse Binds CDKZ/p?L blocks cell Viral vector overexpression 1 Apoptosis, | Tumor preclinical 174
. cycle progression growth
melanoma cell line)
cirelTCH Colorectal, bladder Sponges miRNAs regulating  plasmid-based overexpression, | Wnt signaling, | Cell preclinical 166, 170

Wnt pathway

Lentiviral delivery

proliferation

Table 6. circRNAs involved in immune modulation and therapeutic potential

circRNA Cancer type Immune function

Therapeutic strategy In vitro/in vivo  Ref.

Induces NK cell exhaustion via TIM-3

circUHRF1  HCC

lentiviral shRNA in vitro and in

upregulation system+anti-PD1 vivo

cire-CPA4 NSCLC (A549 a‘nd H1299 cell lines; Promotes PD-L1 expression; immune evasion S|RNA and shRNA- in v1tr9 and in 6
BALB/c nude mice xenografts) mediated knockdown vivo

GIrcEIF3K colorectal cancer (HCT116, SW620, FHO) Silencing circEIF3K, up-regulate miR-214, siRNA and lentiviral in vitro and in -

reducing PD-L1 expression

shRNA vivo
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damaging effects. Although recent techniques, like
CRISPR/Cas13 technology, show higher specificity in
targeting circRNAs, but these method and technology still
require validation in vivo application, before they can be
safely used in clinic."”” Another considerable challenge is
related the non-specific delivery of therapeutic agents to
tissues or cell types since some circRNAs are expressed
in multiple tissue types, this can lead to off-target effects
in non-diseased tissues. For this reason, researchers are
designing nanoparticle delivery platform that induce the
selectivity and accuracy of delivering therapeutic agents
to specific tissues or cell.'””® Furthermore, numerous
technical and safety problems prevent the clinical
translation of circRNA-based therapies. For instance,
gold nanoparticles (AuNPs), widely used to deliver
vehicles for circRNA-targeting agents in vivo models
whereas increase toxicity and safety risks.'”” Ongoing
research is focused on optimizing AuNP properties for
improve safety and biocompatibility or selecting safer
alternatives, including lipid nanoparticle (LNP)-based
systems, which are already approved for use in mRNA-
based vaccines and RNA therapies.’”® However, the using
LNPs also has some disadvantages, including inefficient
endosomal escape and limited ability to target solid
tumors is the main reason to prevent their application in
malignancy treatment therapy.'®

In clinical scale, another important disadvantage is the
complexity and cost of producing high-purity circRNAs.
High expression vectors frequently generate linear or mis-
spliced byproducts, decreasing therapeutic purity. Recent
studies in template-based in vitro circularization and
purification are hopeful but they are not yet suitable for
industrial production.' Moreover, synthetic circRNAs
may induce immune responses because they do not have
specific post-transcriptional modifications present in
endogenous circRNAs, including N°-methyladenosine
(m°A), which help them to evade immune responses.
There are some techniques to decrease synthetic circRNAs
immunogenicity including chemical modifications and
coating synthetic circRNAs with RBPs to escape immune
responses.'® From a diagnostic feature, the remarkable
stability of circRNAs in body fluids like plasma, serum,
and saliva supports their potential application in liquid
biopsy platforms. However, the clinical applications of
circRNAs stay limited due to the absence of standardized
detection protocols and unpredictable functional
validation in different patient cohorts. Moreover, ongoing
discussion about the coding potential of some circRNAs,
emphasizes the need for more complete functional
characterization and mechanistic studies.'"® Recent
studies have also underscored translational setbacks. For
instance, overexpression of circRNAs leads to induction
of immune responses or inability to reproduce in vitro
effects in vivo. to address this challenge, researchers are
engineering synthetic circRNAs that more closely mimic
endogenous molecules, with the goal of maintaining

function and reducing immunogenicity. Additionally,
combination therapeutic methods, including pairing
circRNA delivery with immune checkpoint inhibitors,
are also being investigated to increase efficiency.'™
Overcoming these challenges is essential to translating the
preclinical findings into effective clinical therapies.

Conclusion

circRNAs are gaining recognition as important regulators
in cancer biology, with diverse roles as diagnostic
biomarkers, therapeutic targets, and even direct treatment
approaches. Their unique characteristics, such as
remarkable stability, functional versatility, and precise
regulatory capabilities, make them a promising class of
molecules for personalized cancer treatment. Nevertheless,
the field remains in its early stages, and inconsistencies in
studies, along with technical limitations, underscore the
urgent requirement for rigorous and standardized research
frameworks. The future clinical impact of circRNAs is
dependent on ongoing methodological advancements,
scalable delivery systems, and robust clinical validation.
As research into circRNAs continues to gain momentum,
several remarkable methods and techniques are emerging
that could reshape malignancy diagnosis and treatment.
The advancement of CRISPR-based technologies and the
development of chemically stabilized synthetic circRNAs
may improve specificity and durability. Alongside,
progress in nanoparticle and exosome-mediated delivery
platform provides more targeted and efficient delivery
of circRNA-based therapeutics, increasing their clinical
potential.'®® Regardless of these developments, important
challenges remain, such as lack of clinical trial data,
functional diversity of circRNAs across various cancer
types, and an incomplete understanding of circRNA-host
gene interactions. Future studies efforts should prioritize
large-scale, standardized investigations accompanied by
robust functional validation across a variety of preclinical
and clinical models. Also, integrating circRNA signatures
with genomic and proteomic profiling could facilitate
highly personalized cancer management, paving the way
for accurate oncology tools that using circRNA biology
for personalized prognosis, diagnosis, and treatment
interventions.%
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