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Introduction
Non-coding RNAs (ncRNAs) constitute the predominant 
class of transcribed RNAs in eukaryotic cells, and more 
than 90 % of the entire RNA expression is related to these 
types of RNAs. These molecules are broadly classified 
based on length into two major categories: small ncRNAs 
(sncRNAs, < 200 nt) and long ncRNAs (lncRNAs, > 200 
nt).1,2 MicroRNAs (miRNAs), small nucleolar RNAs 
(snoRNAs), small nuclear RNAs (snRNAs), PIWI-
interacting RNA (piRNAs), and small interfering RNAs 
(siRNAs),3 are the prominent members of sncRNAs.4-6 
Conversely, lncRNAs include subtypes such as long 
intergenic ncRNAs, intronic ncRNAs, macroRNAs, 
sense ncRNAs, antisense RNAs, and circular RNAs 
(circRNAs).7-9 In eukaryotic systems, mRNA precursors 
(pre-mRNAs) commonly contain intronic sequences 
that are removed via canonical splicing to form mature, 
linear transcripts.10 However, under certain conditions, 
these processes can make an entirely different kind of 
RNA from the same precursor RNA. Initially described 
approximately 30 years ago, it was discovered that if 
during non-canonical splicing, specifically back-splicing, 
an upstream splice acceptor joins a downstream splice 

donor, circRNAs generating.11,12 
This kind of ncRNA contains covalently locked non-

stop loop constructions (D-loop) without terminal 5’ caps 
and 3’ poly-A tails.12,13 It is theoretically possible for all 
internal exons of genes, excluding the first and last, to give 
rise to circRNAs. Although back-splicing is considered 
a relatively rare event, there are more than 200,000 
exons in the human genome, and in contrast to the low 
occurrence of back-splicing, 1,000 unique circRNAs can 
be found in any given cell type.14 Despite their generally 
low expression levels, circRNAs exhibit resistance to 
exonuclease-mediated degradation due to their circular 
structure and have been implicated in several regulatory 
roles.15 These include modulation of parental gene 
expression, alternative splicing or translation, acting 
as miRNA or RNA-binding protein (RBP) sponges, 
translation into peptides/ proteins (only a few circRNAs), 
and the generation of some pseudogenes.16

An increasing number of studies have revealed the 
aberrant expression of circRNAs in various pathological 
conditions, including cancers, neurological disorders, and 
cardiovascular diseases. In oncology, circRNAs can act 
as either oncogenes or tumor suppressors, depending on 
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Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs primarily generated through 
a back-splicing processes. These molecules exhibit extensive expression across various tissues, 
indicating their significant role in numerous biological processes, particularly in complex 
diseases such as cancer. Based on their origin, structure, and biogenesis, circular RNAs are 
categorized into exonic circRNAs (ecirc-RNAs), circular intronic RNAs (ci-RNAs), or exonic-
intronic circRNAs (EIci-RNAs). Due to their covalently closed-loop configuration, it is necessary 
to develop specialized techniques to study them. CircRNAs are known to function as protein and 
microRNA sponges, regulate transcription, interact with RNA-binding proteins (RBPs), and, in 
rare cases, serve as templates for translation. In this review, we provide an overview of circRNA 
features, biogenesis, and functions. In addition, we summarize molecular methods for studying 
them and explain their significant roles in malignancies.
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their targets and interactions.17 For instance, circHIPK3 
promotes colorectal cancer progression by sponging 
multiple tumor-suppressive miRNAs,18 while circMTO1 
suppresses hepatocellular carcinoma (HCC) via inhibition 
of the oncogenic miR-9. The stability and specific 
expression patterns of circRNAs in different tissues make 
them promising candidates for non-invasive diagnostic 
and prognostic biomarkers, as well as therapeutic targets.19 
Accordingly, continued research into the biogenesis, 
functions, and therapeutic potential of circRNAs is 
anticipated to yield new insights for scientific exploration 
and medical innovation. In this review, we summarize the 
expanding findings on circRNAs and provide an up-to-
date account of their biogenesis, regulatory mechanisms, 
and cellular functions in carcinogenesis.

Biogenesis and functional roles of circRNAs
Biogenesis of circRNAs
In eukaryotic cells, alternative splicing converts pre-
RNA into linear mRNA.16 On the other hand, circRNAs 
are formed through aberrant RNA splicing, specifically 
back-splicing, which is different from canonical splicing. 
Approximately 80% of circRNAs are derived from 
exons, but they can also originate from other parts of 
the genome, like introns, non-coding regions, antisense 
strands, and untranslated regions (UTRs).2 Back-splicing 
generates numerous different circRNAs from a single 
gene locus, contributing to the complexity of circRNA 
formation.20 Based on sequence arrangement, circRNAs 
are classified as exonic circRNAs (ecircRNAs), which 
contain exon sequences; circular intronic RNAs (ciRNAs), 
which originate from introns; exonic-intronic circRNAs 
(EIciRNAs), containing both exonic and intronic 
sequences; and tRNA intronic circRNAs (tricRNAs), which 
are formed from spliced tRNA introns.21-23 Although the 
majority of circRNAs reside in the cytoplasm, EIciRNAs 
mostly remain in the nucleus.24,25

RNA-binding proteins (RBPs) play a crucial role in 
the regulation of circRNAs synthesis. RBPs like Quaking 
(QKI), Muscleblind (MBL/MBNL1), and Fused-in 
Sarcoma (FUS) can bind to specific motifs on the flanking 
introns of immature linear RNA.26-28 These RBPs bring 
the flanking introns together to facilitate the generation 
of circRNAs.29 Efficient circRNA production requires 
certain RNA sequence features are needed. For example, 
exons that can back-splice are often significantly longer up 
to three times regular exons which is clear in single-exon 
circRNAs.30 Also, the presence of reverse complementary 
sequences in flanking intronic regions, like Alu elements, 
enhances intron pairing and exon circularization. These 
regions can be either longer or shorter than typical 
introns.29,31 Inverted tandem repeats in introns also 
support circRNA formation, with even short repeats 
around 35 base pairs being sufficient.32 However, these 
repeats can sometimes make intron base pairing too stable, 
which makes it less likely for circRNA formation.33,34 As 

circRNAs mature, introns might not always be removed 
and can stay between the circularized exons, resulting in 
a subtype of circRNA known as exonic-intronic circRNAs 
(EIciRNAs).35

Despite ongoing research, the exact mechanisms 
of circRNA biogenesis remain unclear. Three models 
have been proposed: lariat-driven circularization (exon 
skipping),36 intron pairing-driven circularization,37 and 
re-splicing-driven circularization,23 each contributing to 
our understanding of how these unique RNA molecules 
are formed. Figure 1a schematically illustrates circRNA 
biogenesis. One common mechanism is lariat-driven 
circularization, also known as exon-skipping, where 
partial folding of pre-mRNA brings the upstream donor 
site (5’ splice site) and the downstream acceptor site (3’ 
splice site) into proximity. This allows the donor site to 
attack the receptor site, resulting in the formation of a lariat 
structure that is subsequently back-spliced to create a new 
circRNA. This mechanism is notably stimulated by factors 
such as tumor necrosis factor (TNF)-α and transforming 
growth factor (TGF)-β in endothelial cells, producing 
circRNAs alongside linear mRNA which consists of the 
remaining exons.36,38

Another key mechanism is intron pairing-driven 
circularization, which relies on reverse complementary 
sequences, Alu elements, and the flanking introns. These 
sequences make possible direct back-splicing. High 
compatibility between these complementary sequences 
enhances the circRNA production. This process generates 
exonic circular RNAs (ecircRNAs) by removing intronic 
sequences. It also produces exonic-intronic circRNAs 
(EIciRNAs) that retain some intronic sequences.37,38 
A third, lesser-known method is resplicing-driven 
circularization. Here, a mature linear mRNA undergoes 
back-splicing to produce circRNAs with one or more 
exons. The concentration of circRNAs within cells is 
tightly regulated, with their breakdown being crucial for 
maintaining cellular function. This degradation process 
involves the partial activation of endonucleases such as 
Argonaute 2 (Ago-2), Angiogenin, CPSF73, and RNase 
L, which create access points for exonucleases to degrade 
circRNAs completely. Each of these pathways underscores 
the complex and dynamic nature of circRNA biogenesis 
and its regulation in cellular biology.23,38,39

Cancer may facilitate the development of novel 
categories of circRNAs, including read-through circRNAs 
(rt-circRNAs) and fusion circRNAs (f-circRNAs) 
(Figure 1b). The rt-circRNAs are derived from read-
through transcripts. Read-through transcription 
occurs when transcription extends over an intergenic 
region beyond the termination signal, resulting in the 
synthesis of circRNAs from two neighboring genes. 
Gene pairs that produce rt-circRNAs are shorter than 
randomly selected neighboring genes pairs. rt-circRNAs 
share properties with conventional circRNAs, such as 
elongated introns and an abundance of repetitive motifs. 
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Read-through circularization may be linked to cancer, 
characterized by widespread abnormal gene expression 
mediated by transcription read-through. Of the 460 
cancer driver genes, 39 were identified to generate 67 
rt-circRNAs, with 31 of them exhibiting cancer-specific 
expression. Nonetheless, their functional importance 
in cancer requires further confirmation.40 Cancer-
associated chromosomal translocations may result in 
the generation of fusion-circular RNAs (f-circRNAs). 
Aberrant chromosomal rearrangements in malignancies 
may lead to the juxtaposition of two otherwise separated 
genes, bringing complementary intronic regions into 
proximity to facilitate reverse splicing. In 2016, Guarnerio 
et al initially showed that f-circRNAs originate from PML/
RARa fusion mRNAs in acute promyelocytic leukemia 
and that they contribute to carcinogenesis independently 
of their linear transcripts and protein equivalents, as well 
as being associated with resistance to anti-cancer therapy. 
Subsequent investigations have shown that f-circRNAs 
arise from specific chromosomal translocations, 
including BCR/ABL1, EML4/ALK, and SLC34A2/ROS1 
fusions, seen in both hematological malignancies and 
solid tumors.41

Mechanisms of action
The ability of circRNAs to control gene expression through 
diverse mechanisms has led to their increasing recognition 
as important regulators in cancer biology.42 Their 
biogenesis often competes with linear mRNA formation, 
affecting the production of protein. Functionally, 

circRNAs regulate gene expression via interactions with 
miRNAs, RNA-binding proteins, and chromatin, and 
some even assist as templates for translation (Figure 2). 
In malignancies, their tissue-specific expression, stability, 
and subcellular localization contribute to their diverse 
roles, where they influence metastasis, tumorigenesis, and 
therapy resistance via tumor-suppressive or oncogenic 
pathways.

miRNA sponging
CircRNAs are most known for their function as miRNA 
sponges, which is among their most extensively studied 
and well-characterized functions. By containing multiple 
miRNA response elements (MREs), circRNAs can 
sequester specific miRNAs and suppress them from 
repressing their target mRNAs, thus controlling gene 
expression and protein synthesis. This competitive 
endogenous RNA (ceRNA) activity has an important 
role in several physiological and pathological processes, 
as well as malignancies, osteoarthritis, diabetes, and 
neurological diseases.43 For instance, ciRS-7 contains over 
70 conserved binding sites for miR-7 and has been shown 
to inhibit its tumor-suppressive activity in several types 
of malignancy. Similarly, circHIPK3 which is abnormally 
expressed in cancer tissues, sponges multiple tumor-
suppressive miRNAs such as miR-124, miR-193, and 
miR-637, thus inducing tumor cell invasion, metastasis 
and development.44 Other circRNAs, as well as circMTO1, 
circITCH, and circFOXO3, exert tumor-suppressive 
effects by binding oncogenic miRNAs and regulating key 

Figure 1. Biogenesis of circular RNAs and new categories of circular RNAs in oncology. (a) Canonical splicing and Primary methods of back-splicing: intron-
pairing promoted by inverted complementary sequences and RNA-binding proteins; lariat creation. (b) Production of rt-circRNAs from read-through transcripts. 
Generation of f-circRNAs by chromosomal fusions 
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signaling pathways. For example, circMTO1 enhances p21 
expression by sponging miR-9 in HCC,19 while circITCH 
and circFOXO3 target miRNAs such as miR-17, miR-214, 
miR-224, and miR-9 to prevent tumor development and 
induce apoptosis. In another study, Circular RNA circ-
ABCB10 was shown to induce breast tumor proliferation 
and development via sponging miR-1271.45 A comparative 
summary of notable circRNAs, their miRNA targets, 
related malignancy types, and functional effects is provided 
in Table 1 to support and contextualize these findings.

Protein interaction
CircRNAs enable directly interact with RBPs, affecting 
several cellular processes including cancer development 
and progression by regulating cellular signaling networks. 
By harboring RBP binding sites, circRNAs function as 
molecular scaffolds that facilitate or inhibit protein-
protein interactions, control RBPs activity, or prevent 
them from regulating gene expression. Through the 
formation of ribonucleoprotein complexes, certain 
circRNAs, such as ecircRNAs, stabilize these interactions 
and preserve the functional integrity of the related 
proteins, thus controlling gene regulation at multiple 
levels.72 For example, circ-Foxo3 controls cell cycle arrest 
by interacting with cyclin-dependent kinase 2 (CDK2) 
and the protein kinase inhibitor p21. In breast tumor, 
circ-Foxo3 binds to CDK2 and p21, forming a ternary 
complex that suppress cell cycle proliferation and tumor 
development.73,74 Additionally, in the context of cellular 
senescence, circFoxo3 can sequester proteins such as the 
senescence marker p16 and the transcription factor E2F1, 
thereby modulating pathways associated with aging and 
tumor suppression.48 In liver malignancy, circ-Ccnb1 
interacts with HuR (ELAVL1) to stabilize CCNB1 mRNA, 
thus inducing oncogenic cell cycle development.75 Another 
example, circMbl, forms a binding interaction with the 
Muscleblind (MBL) protein, which is a pivotal controller 
of RNA splicing. During this process, circMbl specifically 

attracts the MBL protein, which plays a crucial role in the 
alternative splicing of Mbl pre-mRNA.76,77 Furthermore, 
the decrease of MBL, activation of innate immune dsRNA 
receptor (PKR) and prevention of Human Antigen R 
(HuR) protein from binding to Poly(A) Binding Protein 
Nuclear 1 (PABPN1) mRNA by circPABPN1 can be a 
result of circRNA activation.78,79 In liver cancer, circ-Ccnb1 
sponges miR-194-3p, leading to the promotion of matrix 
metalloproteinase 9 (MMP-9)-mediated oncogenic effects 
and inducing tumor progression.80 These RBP-mediated 
mechanisms underscore the complexity of circRNA 
functions in cancer, where protein scaffolding and 
stabilization roles regulate key tumorigenic pathways.81

Transcriptional and translational regulation by circRNAs
In the nucleus, certain circRNAs can to control the gene 
expression of their host genes. Studies have demonstrated 
that circRNAs influence the expression of their parental 
genes through cis-acting mechanisms. In some cases, 
nuclear circRNAs interact with RNA polymerase II (RNA 
Pol II) at the promoter region, resulting in the generation 
of various isoforms of a single gene.82 EiciRNAs are the 
best-known group of circRNAs with transcriptional 
activity.83 As an example, circEIF3J and circPAIP2 regulate 
the Eukaryotic Translation Initiation Factor 3 Subunit J 
(EIF3J) and Poly(A) Binding Protein Interacting Protein 
2 (PAIP2) gene transcriptions by making a complex with 
the U1 snRNP. This complex then interacts with RNA Pol 
II, which regulates the transcription of host genes.82,84-86 
Circ-ZNF609 and circ-FBXW7 are other examples of 
transcriptional regulatory circRNAs that are respectively 
involved in muscular biogenesis and glioma.87,88 The 
binding of circRNAs to RNA Pol II can control selective 
splicing by regulation of alternative splice site.

During this process, different splicing sites select pre-
mRNAs to produce altered mRNA isoforms. These 
examples illustrate the diverse roles of circRNAs and 
highlight their potential as therapeutic targets in cancer 

Figure 2. Schematic representation of known functions of circRNAs
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and other diseases.89 A new study reveals that circRNAs 
can compete with their host genes in post-transcriptional 
processes. Additionally, circRNAs possess internal 
ribosome entry sites, which enable them to translate 
independently from the host gene. This model is an 
intelligent way to regulate stability between the expression 
levels of circRNAs and host mRNAs.90 As a result, 
circRNAs control protein production at the transcriptional 
or post-transcriptional levels. CircZNF609, c-sirt7, and 
circMbl are three illustrations of circRNAs with coding 

probability.91-93 In glioblastoma, circFBXW7 is translated 
into FBXW7-185aa, a peptide that antagonizes c-Myc and 
prevents tumor cell progression. These findings determine 
the important role of circRNAs as regulators not only of 
RNA dynamics but also of protein-coding potential in 
malignancy.

Modulating immunity and metabolism
Another developing issue is the participation of circRNAs 
in the immune response. Specific circRNAs can regulate 

Table 1. CircRNAs as miRNA sponges in various cancers

CircRNA Targeted miRNA Functions Cancer type Ref.

ciRS-7 miR-7
Myocardial infarction; Neural development; anti-
oncogenic; stimulates proliferation/metastasis; 
osteoblastic differentiation insulin secretion

Various (including breast, liver) 46

CircHIPK3 miR-124, miR-193a, miR-558
Stimulates proliferation/migration; prevents cancer 
progression; β-cell function

Various (including liver, colorectal) 47

CircFOXO3 miR-138, miR-9, miR-22
Cell cycle progression and apoptosis; cardiovascular 
diseases and cancer

Various cancers 48

CircZNF91 miR-23b-3p
Mediates signal transduction between hypoxic and 
normoxic tumor cells to promote pancreatic cancer 
chemoresistance

Pancreatic cancer 46

CircMTO1 miR-9 Prevents cancer progression HCC 19

CircCCDC66 miR-93, miR-185, miR-33b Stimulates cancer progression Various (including colorectal) 49

circIRAK3 miR-3607 Promotes migration/invasion Breast cancer 50

circRNA_0084043 miR-153-3p Stimulates cancer progression malignant melanoma 51

CircANKS1B miR-148a-3p, miR-152-3p Regulation of TGF-β1 signaling pathway Breast cancer 52

Hsa_circ_0008039 miR-432-5p Increases E2F3 expression Breast cancer 53

circRNA-000911 miR-499a Regulation of Notch1 and NF-κB signaling pathway Breast cancer 54

CDR1as miR-7 Prevention of cell proliferation
Breast, hepatocellular, lung, and 
gastric cancers

55, 56

circ-ABCB10 miR-1271 Initiation of cell proliferation Breast cancer 45

circ-ZKSCAN N/A Prevention of cell proliferation and metastasis HCC 57

circRNA-100269 miR-630 Prevention of cell proliferation HCC 58

hsa-circ-100338 miR-141-3p Regulator of metastases HCC 59

hsa_circ_001059
miR-30c, miR-122, miR-139-3p, 
miR-339, miR-1912

Regulator for tumor radiotherapy resistance Esophageal squamous cell carcinoma 60

circ-ITCH miR-214
Prevention of cell proliferation by down-regulation of 
c-myc, ubiquitination, and degradation of Dvl2

Esophageal squamous cell carcinoma, 
lung cancer, colorectal cancer

61

circTCF25 miR-107, miR-103a-3p Initiation of cell proliferation and metastasis Bladder cancer 62

hsa-circ-0043256 miR-1252 Prevention of cell proliferation Lung cancer 63

Circ-PAX2 miR-186 Initiation of cell proliferation Lung cancer 63

circEA1 miR-372 Regulator for cell differentiation and drug resistance Lung cancer 64

Circ-NFIX miR-212-3p Enhances tumor cell progression Lung cancer 65

hsa-circ-001569 miR-145 Initiation of cell proliferation and metastasis Colorectal cancer 66

hsa-circ-0000069 N/A Initiation of cell proliferation and metastasis Colorectal cancer 67

circPVT1 miR-125 Initiation of cell proliferation and metastasis Gastric cancer 68

circ-LARP4 miR-424-5p Regulation of tumor progression Gastric cancer 69

circMT01 miR-9 Regulation of tumor progression HCC 19

hsa_circ_000167
miR-181, miR-512, miR-521, miR-
556, miR-663 and miR-1204

Esophageal squamous cell carcinoma 60

circHIPK3 miR-124 Regulation of tumor proliferation HCC 70

hsa_circ_0067934 miR-98 initiation of cell proliferation Esophageal squamous cell carcinoma 71
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the function of immune cells, thereby impacting the 
immune system’s ability to react to infections and 
disorders. This discovery presents new opportunities for 
investigating circRNAs as potential therapeutic targets 
for interventions in immune-related diseases.94 CircRNAs 
influence metabolic pathways. They interact with enzymes 
and other regulatory factors that control metabolism, 
which can change how cells process food and use energy. 
This affects processes such as maintaining blood sugar 
levels, metabolizing fats, and producing energy. Because 
circRNAs can do this, they may play a role in health 
problems related to metabolism, such as obesity and 
diabetes.95 As we learn more about circRNAs, we can see 
that these molecules play a key role in how cells control 
themselves. They can interact with multiple targets within 
the cell, and they are characterized by high stability and 
specificity. This property makes circRNAs promising 
candidates for diagnosing and treating diseases. As we 
continue to study them and our technology improves, 
we will learn even more about the function of circRNAs. 
This will pave the way for novel discoveries and significant 
advancements in the field of biomedical science.96

Techniques for measuring circRNAs
Measuring and evaluating circRNAs requires special 
methods because of their unique closed-loop structure, 
which makes them different from linear RNAs. CircRNA 
sequencing is a common technique that begins with RNase 
R treatment to degrade linear RNAs, facilitating the process 
of circRNA sequencing. This step is crucial as it leaves 
the circular RNAs intact, allowing for their identification 
based on unique back-splice junctions through high-
depth sequencing, although RNAase treatment is not 
always mandatory (Figure 3a).22,97-99 CircRNA microarrays 
offer another high-throughput approach by using probes 
specifically designed to hybridize with the junction 
sequences of circRNAs on a solid surface, providing 

a robust platform for evaluating circRNA expression 
without requiring RNase treatment, although this can 
improve accuracy.97,100,101 Northern blotting stands out 
because it can provide detailed information about the 
size, isoforms, processing, sequence, and abundance of 
circRNAs (Figure 3b). It distinguishes between circRNAs 
and linear RNAs by using different gel electrophoresis 
methods based on the size of the RNAs.97,102

Real-time quantitative polymerase chain reaction 
(RT-qPCR) analysis utilizes distinct primers that cover 
the unique back-splice junctions of circRNAs, enabling 
accurate quantification while preventing the amplification 
of linear RNAs. This method can optionally use RNase 
treatment to increase the concentration of circRNAs, 
thereby improving measurement accuracy.103 Digital 
droplet PCR (ddPCR) provides exceptional sensitivity 
for circRNA quantifying, utilizing nanodroplets for PCR 
amplification, and determining RNA concentration by 
comparing the ratio of positive to negative droplets. 
This method is highly accurate even for low-abundance 
circRNAs (Figure 3c).104,105

For spatial analysis, RNA Fluorescence in situ 
Hybridization (RNA-FISH) utilizes probes to detect 
circRNA junctions. To assess their concentration and 
distribution inside cells, showing their cellular localization 
and dynamics (Figure 3d).106 Additionally, to explore how 
circRNAs interact at the molecular level, methods such 
as circRNA affinity pulldown, which utilizes biotinylated 
antisense oligomers (ASOs) to capture circRNAs with 
streptavidin-coated beads, facilitating interaction 
mapping within the molecular network. Similarly, 
immunoprecipitation of circRNA-RBP complexes isolates 
circRNA-protein complexes using antibodies that target 
RNA-binding proteins associated with circRNAs. This 
step allows for later analysis of the RNA component using 
ddPCR and RT-qPCR. These different methods enhance 
our understanding of the expression, structure, and 

Figure 3. Schematic representation of diverse circRNA profiling methods
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functional roles of circRNAs in cellular biology, as well as 
their potential therapeutic applications.22,97,107

Diagnostic and prognostic potential of circRNAs in 
cancer
circRNAs have gained attention as important diagnostic 
and prognostic biomarkers in various malignancies due 
to their remarkable stability, abundance in body fluids 
such as plasma and serum, tissue-specific expression 
pattern, and enabling non-invasive detection (Figure 4).108 
Unlike linear RNAs, which typically degrade within 20 
hours, the half-life of circRNAs in body fluids generally 
exceeds 48 hours, which is significantly longer than the 
half-life of linear RNAs that related to their closed-loop 
structure and protection within extracellular vesicles. 
Recent research mention that the half-lives of circRNA 
vary between 8 and 50 hours, depending on the specific 
circRNA species and contexts.109 Several researches have 
shown that expression levels of certain circRNAs are 
related with clinicopathological characteristics including 
migration potential, tumor stage, and tumor size, 
connecting their dysregulation to tumor invasion and 
development.110 Recent Meta-analyses have demonstrated 
that circRNAs show good diagnostic performance, with 
pooled sensitivity and specificity of around 79% and 
an area under the curve (AUC) of approximately 0.86 
in hematological malignancies, demonstrating their 
potential for early malignancy detection and support 
clinical management.111 Moreover, combining multiple 
circRNA into panels considerably improves diagnostic 
accuracy compared to single circRNAs. For instance, in 
gastric cancer, a combination of circRNAs improved the 
AUC from 0.82 to 0.91, representing better sensitivity and 
specificity.112

Similarly, a classifier that employs five circRNAs 
(circPDLIM5, circSCAF8, circPLXDC2, circSCAMP1, 
and circCCNT2) extracted from urine extracellular 
vesicles has shown acceptable performance to recognize 
high-grade prostate cancer of grade 2 or above.113 In 
pancreatic ductal adenocarcinoma (PDAC), a panel 
of five plasma-based liquid biopsy circRNAs (hsa_
circ_0060733, hsa_circ_00061117, hsa_circ_0064288, 
hsa_circ_0007895, and hsa_circ_0007367) was able to 
distinguish between early stage (stage I/II) and late stage 
(stage III/IV). Diagnostic accuracy of this circRNA panel 
for detecting PDAC patients was considerably increased 
and improved when combined with cancer antigen 19-9 
(CA19-9), the conventional biomarker for PDAC.114 On 
the prognostic side, increased levels of oncogenic circRNAs 
are associated with poorer overall survival (hazard ratios 
ranging from 1.3 to 2.3), whereas tumor-suppressive 
circRNAs are often correlated with better survival rates. 
These findings underscore circRNAs value in predicting 
patient prognosis and therapeutic response. Despite 
these hopeful findings, several challenges and limitation 
remain, including the lack of standardized detection 

techniques, large-scale validation studies, and mechanistic 
insights to fully integrate circRNAs into clinical practice 
as reliable biomarkers for cancer diagnosis and prognosis 
are remain.81 hsa-circ-0001649 and hsa-circ-002059 have 
shown strong potential as biomarkers in human HCC.115,116 
Similarly, hsa-circ-001988 has been proposed as a 
diagnostic marker for gastric cancer.117 While, circPRMT5 
was introduced as a biomarker for urothelial carcinoma, 
where it appears have a role in tumor development and 
lymph node metastasis.118 Table 2 summarizes circular 
RNAs that highlights potential biomarkers in several 
cancer types. As discussed in previous parts of this review, 
circular RNAs have four recognized functions, and all 
of them are important in malignancy development.119 
Furthermore, circRNAs employ as predictive markers 
for malignancy treatment efficacy and resistance. 
Several circRNAs have been recognized for their role in 
controlling chemosensitivity, underscoring their value in 
guiding treatment strategies. 

For instance, a specific circRNA expression signature has 
been used to predict the response to immune checkpoint 
blockade therapy. The ICBcircSig score was validated 
based on the weighted expression of circTMTC3 and 
circFAM117B from melanoma in patients receiving anti-
PD-1 or combined anti-CTLA4 and anti-PD-1 therapy. 
This model, representing that the ICBcircSig score has 
valuable role in predicting immunotherapy efficacy in 
melanoma patients.128

A growing number of clinical trials are evaluating 
the potential of circRNAs as diagnostic and prognostic 
biomarkers in several malignancies (Table 3). For 
instance, trial NCT05771337 is recruiting breast tumor 
patients to validate the clinical efficacy of two plasma-
based circRNAs (hsa_circ_0001785 and hsa_circ_100219) 
for early detection, diagnosis and disease monitoring.129 
Additionally, NCT06530082 is evaluating a new dendritic 
cell vaccine based on a circRNA-derived peptide 
(circFAM53B-219aa) in individuals with advanced solid 
tumors (https://www.careacross.com/clinical-trials/
trial/NCT06530082). In pancreatic cancer, the CIRCUS 
trial is exploring circRNA panels for early diagnosis and 
comparing their efficacy with standard markers, such 
as CA19-9.114 Furthermore, pilot studies are exploring 
exosomal circular RNAs in cerebrospinal fluid as potential 
markers for tracking glioma recurrence.130 Also, preclinical 
studies are evaluating circPVT1 as a predictor of drug 
resistance in estrogen receptor alpha-positive (ERα + ) 
breast cancer.131 Collectively, these researches highlight 
the growing clinical interest in circRNAs as minimally 
invasive, stable, sensitive, and specific biomarkers for 
cancer diagnosis, prognosis, and therapeutic monitoring.

Therapeutic applications of circRNAs in cancer 
treatment
Therapeutic approaches that focus on circRNAs present 
a hopeful and innovative future in the field of cancer 

https://www.careacross.com/clinical-trials/trial/NCT06530082
https://www.careacross.com/clinical-trials/trial/NCT06530082
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treatment. circRNAs possess distinct characteristics, such 
as their exceptional stability and specific interactions 
with miRNAs and proteins, which render them highly 
suitable for therapeutic intervention.133 To further 
clarify the translational relevance of circRNAs in 
cancer, Table 4 provides a comparative overview of 
well-characterized circRNAs, detailing their associated 
cancer types, experimental models, modes of action, and 

current translational status. Here, we examine various 
strategies that have been developed to utilize circRNAs for 
cancer treatment.

circRNAs targeting strategy
Antisense oligonucleotides (ASOs)
One of the prominent approaches is the use of antisense 
oligonucleotides (ASOs) specifically degrade oncogenic 

Table 2. CircRNAs with prognostic values in cancers.

circRNA Cancer Model Used Mode of Action Translational Stage
Related pathological 
features

Ref.

circPRMT5
Urothelial 
carcinoma

In vitro (UCB cell lines), In vivo 
(BALB/c nude mice xenograft 
metastasis model)

Sponging miR-30c/
upregulates SNAIL1/induces/
EMTl promotes metastasis

Preclinical (patient 
tissue, mouse, 
exosome-based 
biomarker)

Tumor progression and 
lymph node metastasis

118

hsa_
circ_0001874

OSCC
Human salivary samples (clinical 
patient cohort, 90 OSCC vs. 82 
controls)

miRNA sponge (targets: miR-
661, miR-662, miR-593-5p, 
miR-107, miR-103a-3p); 
linked to TNM stage and 
tumor grade

Biomarker validation
Tumor progression, TNM 
stage, tumor grade

120

hsa_
circ_0001971

OSCC
Human salivary samples (clinical 
patient cohort, 90 OSCC vs. 82 
controls)

miRNA sponge (targets: 
miR-152-5p, miR-103a-3p, 
miR-107, miR-505-3p, miR-
9-5p); associated with TNM 
stage

Biomarker validation
Tumor progression, TNM 
stage, tumor grade 

120

hsa-circ-0001785
Breast 
cancer

Human plasma samples (n = 57 
patients)

Presumed miRNA sponge 
(not directly confirmed); 
associated with tumor 
burden

Biomarker validation
TNM stage, histological 
grade, distant metastasis, 
surgery response

121

Circ-ZEB1.33 HCC
Human HCC tissues, adjacent 
non-tumorous tissues, HCC cell 
lines

miRNA sponge for miR-
200a-3p/upregulation 
of CDK6/ enhanced cell 
proliferation

Preclinical 
functional studies

Tumor proliferation, 
upregulated in HCC tissues 
vs. normal

122

hsa_
circ_0005075

HCC
94 paired HCC and 
adjacent normal tissues; 
clinicopathological correlation

Downregulated in HCC; 
correlated with tumor size 
and AFP level (suggestive 
biomarker role)

Pre-clinical
Tumor size, AFP level, 
Edmondson stage, poor 
differentiation in HCC

123

hsa-circ-0001649 HCC
60 paired HCC and adjacent 
non-tumor liver tissues; cell lines

Downregulated; ROC 
analysis suggests potential 
diagnostic biomarker

Clinical correlation 
+ biomarker 
discovery

Tumor size, TNM stage, AFP 
levels; diagnostic potential 
(AUC: 0.834)

115

hsa_
circRNA_100855

LSCC
Human LSCC tissues (n = 52 
paired samples), qRT-PCR, 
microarray

Not mechanistically tested
Clinical association 
study

Overexpressed in LSCC; 
correlated with T3–T4 
grade, lymph node 
metastasis, supraglottic site, 
and advanced stage

124

hsa_
circRNA_104912

LSCC
Human LSCC tissues (n = 52 
paired samples), qRT-PCR, 
microarray

Not mechanistically tested
Clinical association 
study

Downregulated in 
LSCC; correlated with 
T3–T4 grade, lymph 
node metastasis, poor 
differentiation, and 
advanced stage

124

hsa_
circ_0003221 
circPTK2

Bladder 
cancer

40 paired patient tissues and 
blood samples 
- Human cell lines (T24, 5637) 
- Nude mice xenograft model

Promotes proliferation and 
migration; potentially via 
miRNA sponge (mechanism 
not fully defined)

Preclinical (in vitro 
& in vivo)

Overexpressed in poorly 
differentiated tumors, 
advanced T stage (II–IV), 
and N2–N3 lymph node 
metastasis

125

hsa-circ-001988
Colorectal 

cancer

31 paired colorectal tumor and 
adjacent normal tissues 
- Clinical correlation with 
patient data

Downregulated in CRC; 
associated with poor 
differentiation and 
perineural invasion; possible 
biomarker

Preclinical sample-
based study

Decreased expression in 
tumors; linked to tumor 
differentiation, perineural 
invasion; ROC AUC = 0.788 
for diagnosis

126

hsa_circ_002059
Gastric 
cancer

Human gastric cancer tissues 
and plasma

Downregulate expression; 
potential biomarker; 
associated with TNM stage 
and metastasis

Preclinical 
diagnostic biomarker 
study

Associated with TNM stage, 
distal metastasis

127

Abbreviations: OSCC, Oral squamous cell carcinoma; HCC, hepatocellular carcinoma; LSCC, Laryngeal squamous cell carcinoma.
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circRNAs. ASOs are synthetic, short nucleotide sequences 
that regulate the function of target genes. The FDA 
has approved two ASO drugs for Duchenne muscular 
dystrophy (DMD) and spinal muscular atrophy (SMA) 
treatment.151 circHIPK3, which promotes colorectal and 
esophageal cancer (EC) by sponging tumor-suppressive 
microRNAs, can be targeted by ASOs to disrupt its 
oncogenic activity and restore the normal function of these 
microRNAs. This targeted degradation can significantly 
inhibit tumor growth and progression.18,152 Chemical 
modifications such as phosphorothioate backbones and 
2’-O-methylation increase nuclease resistance while 
simultaneously decrease immunogenicity. Despite these 
advancements, challenges related to delivery efficiency 
and tissue specificity remain important problem to 
clinical translation. Advances in circRNA annotation, 
modify chemical of ASOs, and improvement of targeted 
delivery systems may enable for the development of 

circRNA-directed precision therapeutics that control 
circRNA activity in a selective and effective way.153 In a 
pivotal study, Legnini et al confirmed that circZNF609 
can be selectively silenced using BSJ-specific ASOs, which 
led to decrease myoblast proliferation without altering the 
linear transcript.91

CRISPR/Cas9 gene editing
Advanced gene editing technologies such as CRISPR/
Cas9 offer the potential to correct dysfunctional circRNAs 
implicated in cancer. This approach can be employed to 
delete or modify oncogenic circRNAs, such as circPRKCI 
in lung adenocarcinoma, thereby restoring normal 
cellular functions and inhibiting cancer progression.149 
CRISPR/Cas9-mediated knockout of specific circRNAs 
can provide insights into their roles in malignancy and 
pave the way for targeted therapies.154 The application 
of CRISPR/Cas9- to target circRNAs shows hopeful 

Table 3. Clinical trials investigating circRNAs as biomarkers in cancers

Trial Cancer type(s) circRNA(s) studied Approach/Goal Status Ref.

NCT05771337 Breast cancer hsa_circ_0001785, hsa_circ_100219
Diagnostic/prognostic validation 
in plasma/serum

Recruiting 132

NCT06530082 Advanced solid tumors circFAM53B-219aa (peptide vaccine)
Immunotherapy, safety, and 
efficacy assessment

Phase I/II, ongoing 129

CIRCUS Trial PDAC circPDE8A, circRHOBTB3, panel
Early detection, comparison with 
CA19-9

Preclinical/Clinical 114

Glioma (pilot studies) Glioma circSMARCA5, circHIPK3 (exosomal) Recurrence monitoring in CSF Preclinical 130

Drug resistance (preclinical) Breast cancer (ERα + ) circPVT1 Predicting tamoxifen resistance Preclinical 131

Abbreviation: PDAC, Pancreatic ductal adenocarcinoma.

Figure 4. CircRNAs as biomarkers and therapeutic targets in cancer. This diagram depicts the role of circular RNAs (circRNAs) as biomarkers in cancer diagnosis. 
The human silhouette in the center represents the patient. Different circRNAs are connected to specific cancer types. These circRNAs enable diagnostic outcomes, 
such as early detection of tumors, monitoring of tumor progression, and evaluation of treatment responses. The illustration emphasizes the potential of circRNAs 
as non-invasive biomarkers in liquid biopsy applications for cancer diagnosis
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Table 4. Comparative summary of promising circRNAs across cancer types: experimental models, molecular  mechanisms, and translational relevance

circRNA Cancer type(s) Model used Mode of action Translational stage Function Ref.

CircHIPK3 Colorectal In vitro
Sponges miR-1207-5p; 
upregulates FMNL2; promotes 
proliferation and metastasis

Preclinical (in vitro, 
tissue analysis)

Oncogene 134

circHIPK3 Bladder
In vitro (T24T, UMUC3); In 
vivo (xenograft, metastasis 
model in nude mice)

Sponges miR-558, 
downregulating heparanase 
(HPSE), inhibits MMP-9, VEGF, 
suppresses angiogenesis and 
metastasis

Preclinical (in 
vitro + xenograft mouse 
model)

Tumor suppressor 135

circMTO1 HCC

In vitro (HepG2, SMMC-7721, 
QGY-7701, SK-Hep1); In vivo 
(SMMC-LTNM xenograft in 
nude mice); Human tissue

Sponges miR-9; increases p21 
expression; tumor suppressor

Preclinical (in vitro, in 
vivo, and clinical tissue)

Tumor suppressor 19

circITCH ESCC
In vitro (Eca-109, TE-1); In 
vivo (xenograft nude mouse); 
Clinical tissues

circITCH acts as a sponge for 
miR-7, miR-17, and miR-214. 
suppression of the Wnt/β-
catenin signaling pathway

Preclinical
(cell lines and mouse 
xenografts)

Tumor suppressor 136

CDR1as (ciRS-7) HCC
In vitro (HepG2, MHCC-97H); 
In vivo (xenograft mouse);

circRNA Cdr1as sponges miR-
1270, promotes proliferation, 
migration

Preclinical (in vitro + in 
vivo)

Oncogene 137

CDR1as (ciRS-7)
Breast cancer 
triple-negative 
breast cancer 

In vitro (MDA-MB-231, BT-
549); In vivo (nude mouse tail 
vein metastasis model)

Sponges miR-1299, upregulates 
MMP2 and MMP17, promotes 
migration, invasion, and 
metastasis

Preclinical (in vitro, in 
vivo, and patient tissues)

Oncogene 138

circSMARCA5 Prostate cancer

In vitro (DU145, PC3, 
LNCaP); In vivo (xenograft and 
metastasis mouse models); 
Clinical tissues

Sponges miR-181b-5p and miR-
17-3p upregulate TIMP3, inhibit 
EMT, proliferation, invasion, 
metastasis

Preclinical (in vitro + in 
vivo + tissue validation)

tumor suppressor 139

circFBXW7 Glioma
In vitro (U251, U373); In vivo 
(xenograft nude mice); Clinical 
samples

Encodes FBXW7-185aa protein; 
promotes c-Myc degradation via 
USP28 competition

Preclinical (in vitro, in 
vivo, and clinical tissue)

Tumor suppressor 140

circFOXO3
Non-small cell 
lung cancer

In vitro 

Sponges miR-155, Upregulates 
FOXO3, a tumor suppressor, 
inhibits proliferation and 
invasion

Preclinical (in 
vitro + human tissue)

Tumor suppressor 141

circFOXO3 Prostate cancer
In vitro (LNCaP, PC-3, DU145, 
22Rv1)

Sponges miR-29a-3p, 
upregulates SLC25A15, 
promotes proliferation, 
suppresses apoptosis

Preclinical (in 
vitro + clinical tissue)

Oncogene 142

circRNA_100290
Colorectal 
cancer 

In vitro (HCT116, SW620)

Sponges miR-516b, 
upregulating FZD4, activates 
Wnt/β-catenin signaling, 
promotes proliferation, invasion, 
migration

Preclinical (in 
vitro + clinical tissue 
analysis)

oncogene 143

circPVT1 Gastric cancer In vitro (AGS, SGC-7901)

circPVT1 functions as a 
competing endogenous RNA 
(ceRNA) by sponging miR-
423-5p

Preclinical (in vitro) Oncogene 144

circPVT1 Osteosarcoma
In vitro (U2OS, MG63); 
Clinical tissue

Sponges miR-205-5p indirectly 
upregulates c-FLIP, promotes 
EMT, invasion, and metastasis

Preclinical (in 
vitro + human tissue)

Oncogene 145

circRNA_0025202 Breast
In vitro (MCF-7, MCF7/TR, 
T47D); In vivo (xenograft nude 
mice); Clinical samples

Sponges miR-182-5p; 
upregulates FOXO3a; 
suppresses tumor growth 

Preclinical (in vitro + in 
vivo + clinical tissues)

Tumor suppressor 
in HR + breast 
cancer

146

circGFRA1
Triple-negative 
breast cancer

In vitro (MDA-MB-231, 
BT549, MDA-MB-468); In 
vivo (xenograft mouse model); 
Clinical tissues

Sponges miR-34a, upregulates 
GFRA1, promotes proliferation, 
suppresses apoptosis, linked to 
poor prognosis

Preclinical (in vitro + in 
vivo + patient samples)

Oncogene 147

circUHRF1 (hsa_
circ_0048677)

HCC
In vitro (HCC cell lines + NK-
92 cells), In vivo (xenograft in 
NOD/SCID mice)

Sponges miR-449c-5p → 
upregulates TIM-3 on NK 
cells → → induces NK cell 
exhaustion

Preclinical validation 
and retrospective 
clinical association with 
anti-PD1 resistance

Oncogene 148
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new avenue for cancer treatment, particularly in tumors 
where specific circRNAs are involved in malignancy 
development, treatment resistance, or migration potential. 
Since circRNA expression profiles can vary between 
different tumor types and even among individual patients, 
CRISPR/Cas9 technology aligns well with the principles 
of personalized medicine. By using CRISPR technology to 
target specific circRNAs correlated with poor prognosis or 
therapeutic resistance, it may be possible to develop highly 
specific, patient-centered interventions.155 In related 
work, CRISPR/Cas9 system has been planned to target 
the telomerase reverse transcriptase (TERT) promoter or 
its coding regions. These interventions have effectively 
prevented TERT transcription and decrease telomerase 
activity which leading to suppressed cell progression 
and development and increased apoptosis in malignancy 
cells.156 As of May 2025, no clinical trials have been 
published, particularly using CRISPR technology to target 
circRNAs. However, several preclinical investigations 
have made considerable progress. Notably, Zhang et al 
developed an improved CRISPR/Cas13d platform that 
efficiently degrades circRNAs at the RNA level with higher 
specificity and efficiency than shRNA methods.157 

Delivery strategies
Nanoparticle-based delivery systems
Another promising strategy involves the engineering of 
circRNA-based nanoparticles for targeted drug delivery. 
These nanoparticles encapsulate circRNAs, shielding 
them from nuclease-mediated degradation and enabling 
their effective delivery into tumor cells. Among the 
several platforms, lipid nanoparticles (LNPs) has been 
particularly successful in targeting tumors, types, 
especially in HCC.158,159 In preclinical studies, LNPs 
loaded with circRNAs promoted apoptosis, and prevent 
tumor cell proliferation and progression.160,161 You et al 
designed magnetically responsive nanoplatforms based 
PEG-PCL-PEI-C14-coated superparamagnetic iron 
oxide nanoparticles (SPIONs) for delivering siRNA to 
target circ_0058051, which led to considerable decrease 
in circRNA expression and noteworthy tumor inhibition 
in a HCC model, with no observable off-target toxicity.162 
Similarly, Shu et al. used chitosan–epigallocatechin 
gallate (CS–EGCG) nanoparticles to deliver a circSPIRE1 

overexpression plasmid via systemic administration. Their 
finding showed a significant decrease in lung metastasis 
in renal cell carcinoma model, by promoting epithelial 
integrity and repressing angiogenesis.163

Exosome-based delivery systems
Exosome-based delivery systems have garnered important 
attention as a next generation platform to developing 
circRNA therapeutics. These nano-sized extracellular 
vesicles, naturally secreted by cells, can be designed to 
carry circRNAs directly to tumor cells. These exosomes 
offer several advantages, as well as their innate ability 
to pass biological barriers and target specific tissues, 
such as malignant cells. For instance, circ-0025202 was 
successfully delivered to breast cancer cells via engineered 
exosomes. This approach led to considerable decrease 
in tumor progression and metastasis, indicating the 
therapeutic potential of exosome-mediated circRNA 
delivery. This therapeutic strategy utilizes the natural 
stability and efficient cellular uptake mechanisms of 
exosomes to promote circRNA delivery while reducing 
toxicity.164

Synthetic circRNAs and tumor suppressor restoration
Synthetic circRNAs
Synthetic circRNAs can be designed to act as sponges 
for oncogenic miRNAs, preventing these miRNAs from 
promoting tumor growth and resistance to apoptosis. 
For example, synthetic circRNAs can be designed to 
sequester miR-21-5p, an oncogenic microRNA in cancer 
cells, thereby preventing it from promoting tumor growth 
and resistance to apoptosis. These synthetic circRNAs can 
reduce miRNA availability, thus increasing the tumor-
suppressive gene expression like RECK and PDCD4.165,166

Upregulating tumor suppressor circRNAs
CircRNAs like circITCH have confirmed tumor-
suppressive function by controlling important oncogenic 
pathways. In bladder cancer, circ-ITCH prevents tumor 
growth and development by sponging miR-17/miR-
224 and leading to increased expression including p21 
and PTEN.167 In colorectal tumor, circITCH suppresses 
cell progression and growth via sponging miR-7, which 
results in elevated expression of ITCH, a known negative 

circRNA Cancer type(s) Model used Mode of action Translational stage Function Ref.

circPRKCI
Lung 
adenocarcinoma

In vitro (LUAD cell lines)/In 
vivo (xenograft)

Sponges miR-545 and miR-589, 
leading to upregulation of E2F7, 
promoting cell proliferation and 
tumorigenesis

Preclinical Oncogene 149

circZNF609 Breast cancer
In vitro (MCF7, MDA-MB-231); 
In vivo (nude mouse xenograft)

miRNA sponge (miR-145-5p), 
upregulates p70S6K1, promotes 
proliferation, migration, 
invasion

Preclinical Oncogene 150

Abbreviations: ESCC, Esophageal squamous cell carcinoma; HCC, hepatocellular carcinoma; FMNL2, formin-like 2; CDR1as, Cerebellar degeneration-related protein 
1 antisense RNA; ceRNA, endogenous RNA; OSCC, Oral  squamous cell carcinoma; LUAD, Lung adenocarcinoma; EMT, Epithelial-mesenchymal transition. 

Table 4. Continued.
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controller of the Wnt/β-catenin signaling pathway.168,169 
Likewise, in gastric cancer, both in vitro and in vivo 
research have confirmed that cir-ITCH have a tumor 
suppressor function to suppress tumor carcinogenesis 
by binding to miR-17 and subsequently downregulating 
the Wnt/β-catenin pathway. This suppressive impact 
on tumor progression and growth was decreased when 
miR-17 was reintroduced.170 Despite these hopeful 
preclinical results, high expression of tumor suppressor 
circRNAs for treatment goals have several technical 
and translational challenges. Improvement in vector 
engineering, nanoparticle-based delivery system, and 
chemical modifications are being developed to overcome 
these barriers and enable the transition of circRNA-
based tumor suppressors into clinical applications.171 
Table 5 shows tumor suppressor circRNAs and preclinical 
upregulation strategies. 

Immune modulation
Circular RNAs are emerging as both modulators and 
potential targets in cancer immunotherapy. Moreover, 
synthetic circRNAs can be designed to modulate the 
immune response against cancer. These synthetic 
circRNAs can act as decoys for immune checkpoint 
proteins, such as PD-L1, thereby enhancing the body’s 
immune response against tumors.174 Collectively, these 
therapeutic strategies underscore the versatile potential 
of circRNAs in cancer treatment, offering novel avenues 
to target and overcome the molecular complexities of 
cancer. Table 6 presents the circRNAs involved in immune 
modulation and their therapeutic potential.

circRNAs as immune modulators in the tumor 
microenvironment
Recent research indicates that certain circRNAs control 
immune checkpoints, cytokine production, T-cell activity, 
and immune cell infiltration, thus can contribute to tumor 
immune evasion and escape. One well-studied example is 

circUHRF1, which is notably highly expressed in HCC, 
is secreted via exosomes. This circRNA promotes NK 
cell exhaustion by increase in T-cell Immunoglobulin 
and Mucin-domain containing-3 (TIM-3) expression. 
Functional studies have confirmed that knockdown of 
circUHRF1 restores NK cell cytotoxicity and enhances 
the efficacy of anti-programmed cell death protein-1 (PD-
1) therapy, underscoring its potential as a therapeutic 
target.148 Similarly, in non-small cell lung cancer, circ-
CPA4 facilitates immune escape by sponging miR-377, 
resulting in overexpression of PD-L1 and immune evasion 
and escape. Knockdown of circ-CPA4, sensitize tumors 
to immune checkpoint blockade, further highlighting 
the clinical importance of circRNAs in regulating 
immune responses.175

circRNAs as biomarkers for immunotherapy response 
CircRNAs exhibit exceptional stability in blood and 
exosomes, making them attractive candidates for non-
invasive biomarkers to predict immunotherapy response. 
A compelling example is exosomal circEIF3K, which 
is derived from cancer-associated fibroblast induces 
colorectal cancer growth by the miR-214/PD-L1 
signaling pathway.176

Clinical challenges in circRNA-based therapeutic
With pay attention to the acceptable promise of circRNA-
based therapeutics, the application of circRNAs stay 
in preclinical phase, introducing these challenges is 
important for proceeding their development from 
preclinical studies to clinical applications. This section 
highlights the important limits of these techniques and 
explores potential strategies for overcoming them. One 
important dis-advantage is the risk of off-target gene 
silencing, where RNA interference (RNAi) techniques 
including the use of small interfering RNAs (siRNAs), 
can knockdown unintended genes due to partial 
complementarity leading to unexpected and mostly 

Table 5. Tumor suppressor circRNAs and preclinical upregulation strategies

circRNA Cancer type Mechanism Therapeutic strategy Effect Clinical/preclinical Ref.

circSMARCA5 Glioblastoma 
Sponges oncogenic miRNAs; 
inhibits angiogenesis

Plasmid overexpression / 
synthetic circRNA

↓ Proliferation, ↓ 
Migration

preclinical 173

circFOXO3
NIH3T3 cell, 
B16 cells (mouse 
melanoma cell line) 

Binds CDK2/p21; blocks cell 
cycle progression

Viral vector overexpression
↑ Apoptosis, ↓ Tumor 
growth

preclinical 174

circITCH Colorectal, bladder
Sponges miRNAs regulating 
Wnt pathway

plasmid-based overexpression, 
Lentiviral delivery

↓ Wnt signaling, ↓ Cell 
proliferation

preclinical 168, 170

Table 6. circRNAs involved in immune modulation and therapeutic potential

circRNA Cancer type Immune function Therapeutic strategy In vitro/in vivo Ref.

circUHRF1 HCC
Induces NK cell exhaustion via TIM-3 
upregulation

lentiviral shRNA 
system + anti-PD1

in vitro and in 
vivo

149

circ-CPA4
NSCLC (A549 and H1299 cell lines; 
BALB/c nude mice xenografts)

Promotes PD-L1 expression; immune evasion
siRNA and shRNA-
mediated knockdown

in vitro and in 
vivo

176

circEIF3K colorectal cancer (HCT116, SW620, FHC)
Silencing circEIF3K, up-regulate miR-214, 
reducing PD-L1 expression

siRNA and lentiviral 
shRNA

in vitro and in 
vivo

177
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damaging effects. Although recent techniques, like 
CRISPR/Cas13 technology, show higher specificity in 
targeting circRNAs, but these method and technology still 
require validation in vivo application, before they can be 
safely used in clinic.177 Another considerable challenge is 
related the non-specific delivery of therapeutic agents to 
tissues or cell types since some circRNAs are expressed 
in multiple tissue types, this can lead to off-target effects 
in non-diseased tissues. For this reason, researchers are 
designing nanoparticle delivery platform that induce the 
selectivity and accuracy of delivering therapeutic agents 
to specific tissues or cell.178 Furthermore, numerous 
technical and safety problems prevent the clinical 
translation of circRNA-based therapies. For instance, 
gold nanoparticles (AuNPs), widely used to deliver 
vehicles for circRNA-targeting agents in vivo models 
whereas increase toxicity and safety risks.179 Ongoing 
research is focused on optimizing AuNP properties for 
improve safety and biocompatibility or selecting safer 
alternatives, including lipid nanoparticle (LNP)-based 
systems, which are already approved for use in mRNA-
based vaccines and RNA therapies.178 However, the using 
LNPs also has some disadvantages, including inefficient 
endosomal escape and limited ability to target solid 
tumors is the main reason to prevent their application in 
malignancy treatment therapy.180 

In clinical scale, another important disadvantage is the 
complexity and cost of producing high-purity circRNAs. 
High expression vectors frequently generate linear or mis-
spliced byproducts, decreasing therapeutic purity. Recent 
studies in template-based in vitro circularization and 
purification are hopeful but they are not yet suitable for 
industrial production.181 Moreover, synthetic circRNAs 
may induce immune responses because they do not have 
specific post-transcriptional modifications present in 
endogenous circRNAs, including N6-methyladenosine 
(m6A), which help them to evade immune responses. 
There are some techniques to decrease synthetic circRNAs 
immunogenicity including chemical modifications and 
coating synthetic circRNAs with RBPs to escape immune 
responses.182 From a diagnostic feature, the remarkable 
stability of circRNAs in body fluids like plasma, serum, 
and saliva supports their potential application in liquid 
biopsy platforms. However, the clinical applications of 
circRNAs stay limited due to the absence of standardized 
detection protocols and unpredictable functional 
validation in different patient cohorts. Moreover, ongoing 
discussion about the coding potential of some circRNAs, 
emphasizes the need for more complete functional 
characterization and mechanistic studies.183 Recent 
studies have also underscored translational setbacks. For 
instance, overexpression of circRNAs leads to induction 
of immune responses or inability to reproduce in vitro 
effects in vivo. to address this challenge, researchers are 
engineering synthetic circRNAs that more closely mimic 
endogenous molecules, with the goal of maintaining 

function and reducing immunogenicity. Additionally, 
combination therapeutic methods, including pairing 
circRNA delivery with immune checkpoint inhibitors, 
are also being investigated to increase efficiency.184 
Overcoming these challenges is essential to translating the 
preclinical findings into effective clinical therapies.

Conclusion
circRNAs are gaining recognition as important regulators 
in cancer biology, with diverse roles as diagnostic 
biomarkers, therapeutic targets, and even direct treatment 
approaches. Their unique characteristics, such as 
remarkable stability, functional versatility, and precise 
regulatory capabilities, make them a promising class of 
molecules for personalized cancer treatment. Nevertheless, 
the field remains in its early stages, and inconsistencies in 
studies, along with technical limitations, underscore the 
urgent requirement for rigorous and standardized research 
frameworks. The future clinical impact of circRNAs is 
dependent on ongoing methodological advancements, 
scalable delivery systems, and robust clinical validation. 
As research into circRNAs continues to gain momentum, 
several remarkable methods and techniques are emerging 
that could reshape malignancy diagnosis and treatment. 
The advancement of CRISPR-based technologies and the 
development of chemically stabilized synthetic circRNAs 
may improve specificity and durability. Alongside, 
progress in nanoparticle and exosome-mediated delivery 
platform provides more targeted and efficient delivery 
of circRNA-based therapeutics, increasing their clinical 
potential.185 Regardless of these developments, important 
challenges remain, such as lack of clinical trial data, 
functional diversity of circRNAs across various cancer 
types, and an incomplete understanding of circRNA-host 
gene interactions. Future studies efforts should prioritize 
large-scale, standardized investigations accompanied by 
robust functional validation across a variety of preclinical 
and clinical models. Also, integrating circRNA signatures 
with genomic and proteomic profiling could facilitate 
highly personalized cancer management, paving the way 
for accurate oncology tools that using circRNA biology 
for personalized prognosis, diagnosis, and treatment 
interventions.81,186
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