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Introduction
Skin hyperpigmentation disorders particularly melasma is 
a highly prevalent pigmentary condition characterized by 
enhanced vascularization and disrupted melanogenesis in 
human skin. The most frequent melasma’s characteristic is 
the irregular appearance of contrast brown patches on the 
face or neck especially at sites of frequent solar exposure.1 
Although melasma is medically benign, untreated cases 
can significantly impair life quality due to cosmetic 
concerns and associated psychological distress.2 Melasma 
affects all ethnicities with Asian women of reproductive 
age and darker skin phototypes accounting for up to 90% 
of cases.3,4 This condition develops when hyperactive 
melanocytes increase melanin synthesis and deposit 
excess pigment in the skin epidermis. Nevertheless, 
its pathogenesis is multifactorial including ultraviolet 
radiation (UVR), genetic predisposition, hormonal 
influences and aging.5,6

Current melasma therapeutic approaches include 
topical depigmenting agents and procedural interventions 

but remain limited by high relapse and recurrence rates.7,8 
Hydroquinone and retinoids are the most frequently 
prescribed topical depigmenting agents. The “New Trio” 
therapy cream containing isobutyl amide-thiazolyl-
resorcinol, retinoic acid and dexamethasone have 
demonstrated comparable efficacy and tolerability to the 
gold-standard “Kligman’s Trio” comprising hydroquinone, 
tretinoin and corticosteroid in reducing Melasma Area and 
Severity Index (MASI) score by approximately 50% after 
8-12 weeks of use.9,10 Furthermore, procedural treatments 
including laser therapy, microneedling, dermabrasion and 
acid-based chemical peels serve as secondary options. 
Combination treatments such as hydroquinone with 
laser therapy have shown more durable melanogenesis 
suppression than monotherapy.8,11 However, treatment 
effects remain inconsistent and adverse effects including 
post-inflammatory hyperpigmentation, erythema and 
barrier disruption compromise overall success. As a result, 
the pursuit for a safer, more effective and innovative 
therapeutic strategy for melasma remains an active area 
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Abstract
Melasma is a prevalent pigmentary disorder characterized by irregular brown patches on sun-
exposed face and neck regions, driven by increased vascular proliferation and dysregulated 
melanogenesis. Although benign, untreated melasma significantly impacts quality of life from 
emotional stress and cosmetic impairment especially for Asian women. Melasma complex 
and diverse aetiology involves melanocyte hyperactivity triggered by UVR exposure, genetics, 
hormones and aging. The effectiveness of current topical and physical therapies such as 
depigmenting agents, peels, photoablation and dermabrasion etc. have varying efficacy but 
limited by high recurrence rates. Tranexamic acid (TA) is a lysine-derived antifibrinolytic 
drug which has demonstrated high potential in reduction of melanogenic factors, inhibiting 
melanogenesis. Lipidic vesicular delivery systems including liposomes, ethosomes, niosomes, 
transferosomes and phytosomes showed extensive capability in the delivery of TA into deeper 
epidermal layers with improved stability and penetration efficacy. Multiple studies have shown that 
lipidic vesicular formulations of TA offer improved safety and efficacy compared to conventional 
delivery methods. However, further research and clinical trials will be necessary to verify the 
long-term safety and feasibility and to set up standardized protocols for this novel delivery 
system. Therefore, this review aims to scrutinize the potential of lipidic vesicles as a cutting-edge 
novel approach for the enhancement of TA’s efficacy in melasma hyperpigmentation treatment, 
as well as offering possibilities for future research and clinical applications in dermatology.
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of research. 
Tranexamic acid (TA) has recently gained recognition 

as a promising therapeutic agent for melasma. Its’ first 
documented dermatological application was in 1979 
by Sadako from Japan who observed a significant 
reduction in melasma severity within 2 weeks.12 TA is a 
synthetic lysine analogue with antifibrinolytic activity 
that hinders paracrine melanogenic mediators which 
induce melanocytes synthesis and has historically been 
used to prevent haemorrhagic episodes.13 Furthermore, 
TA competitively binds to the lysine-site of plasminogen, 
thereby inhibiting its conversion to plasmin and stabilizing 
the fibrin matrix. Additionally, TA directly inhibits 
tyrosinase activity thereby downregulating melanogenesis 
and reducing hyperpigmentation.14 Researchers have 
studied TA in topical, oral, intradermal and microneedle-
assisted formulations reporting measurable reductions 
in pigmentation indices and improvements in patient 
satisfaction scores as a skin-lightening agent. Meta-
analyses confirm that oral TA effectively reduces melasma 
pigmentation and is additionally beneficial in other skin 
diseases like eczema.15-19 Oral TA increases cutaneous 
vascularity and mast-cell density while attenuating 
epidermal hyperpigmentation.18,20 However, extensive 
oral administration may lead to multiple side effects 
like headaches, menstrual irregularities, gastrointestinal 
disturbances and rare thromboembolic events.21-23 On the 
other hand, OTC topical TA gels, creams and solutions 
have demonstrated favourable safety profiles.24,25 Multiple 
studies reported that topical TA yields moderate to 
marked pigment reduction with lesser systemic adverse 
effects compared with oral therapy.26,27 

Nevertheless, topical TA suffers from poor epidermal 
penetration and retention which severely compromises 
therapeutic efficacy.16,28 This is mainly due to its 
hydrophilic and zwitterionic structure causes repulsion by 
the lipophilic stratum corneum (SC) barrier, preventing 
adequate delivery to melanocyte-rich basal epidermis. 
Moreover, rapid systemic absorption reduces epidermal 
residence time which further attenuate its melanogenic 
impact.29-31 Consequently, topical TA treatment durations 
exceeding 3 months are often required to achieve visible 
improvement with recurrence frequently observed.18 To 
overcome these limitations, several methods especially 
the nanostructured delivery systems including lipidic 
vesicular system and polymeric based have been explored 
to enhance TA skin penetration.32 Among these, lipidic 
vesicular systems are especially promising due to their 
unique physicochemical features where their bilayer 
structure simultaneously solubilizes hydrophilic drugs and 
fuses with SC lipids, thereby improving drug deposition 
while maintaining safety. This review article therefore 
focused on exploring the novel concept of lipidic vesicular 
delivery system as a rational solution to the delivery 
limitations of topical TA, improving its efficacy and safety 
for melasma management.

Melasma and hyperpigmentation
Overview of melasma and hyperpigmentation
Melanogenesis is a complex biological process occurring 
within the melanocytes where melanin, the pigment 
responsible for photoprotection and integumentary 
coloration is produced. However, excessive melanin 
production by hyperactive melanocytes can lead to 
pigmentation disorders including melasma. Melasma 
is a common cosmetic ailment that can be identified by 
symmetrically distributed brownish facial patches and 
décolletage which worsen with extreme sun exposure.3,6 
It has been categorized into three histologic variants: 
epidermal, dermal, and mixed which is distinguishable 
through Wood’s lamp examination and visible light 
assessment. The epidermal type is marked by increased 
melanin deposition across the epidermis, accompanied 
by enlarged melanocytes and a higher density of 
melanosomes. The dermal type is defined by the presence 
of melanophages in both the superficial and deep dermis 
whereas the mixed type exhibits histopathological 
characteristics of both epidermal and dermal patterns.16,28 
The Melasma Area and Severity Index (MASI) score is 
the commonly used and validated tool for evaluating 
melasma severity and therapeutic outcomes.33 Although 
the precise pathogenesis remains unclear, multiple factors 
have been identified to aggravate melasma onset including 
UVR, genetic predisposition, hormonal dysregulation and 
medications shown in Figure 1.34

Pathogenesis of melasma and hyperpigmentation
Numerous pathological explanations have been made in 
which UVR from sun exposure being the primary inducer 
of melanogenesis and melanosome transfer, triggering 
tyrosinase activity and leading to pigmentation as well 
as contributing to skin photoaging. Recent studies have 
confirmed the strong association between UVR and 

Figure 1. Key contributing factors of melasma: excessive sun UVR exposure, 
genetic predisposition, hormonal influences and drugs
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melasma development. Alcantara et al35 observed increased 
epidermal melanogenic response in both melasma-
affected and adjacent normal skin after UVR exposure, 
regardless of extended exposure with photoprotection 
or brief uncontrolled exposure. Similarly, Sarkar et al36 
reported that more than 50% of male melasma patients 
in their study were outdoor labourers and nearly 30% 
resided in mountainous regions with high sun exposure. 
These findings establish UVR as the major contributing 
factor to melasma development as it selectively darkens 
affected areas more than normal skin. UVR can activate 
melanocytes by inducing keratinocytes, fibroblasts 
and endothelial cells to secrete paracrine mediators 
that upregulate melanogenesis.5,32,37 The melanogenesis 
mechanism triggered by UVR is illustrated in Figure 2.

Additionally, melasma involves dysregulation of more 
than 150 genes associated with both immediate and 
long-term modulation of pigmentation pathways. An 
individual’s inherent melanocyte count which governs 
melanin synthesis and skin colour is primarily determined 
by their genetic makeup.38 Significant ethnic variability 
in melasma prevalence has been observed, with familial 
clustering further implicating genetic predisposition as 
a major risk factor.39 These findings were in accordance 
with a multinational study by Ortonne et al40 involving 
324 women where they reported 48% of the subjects 
exhibited a family history of melasma with 97% restricted 
to immediate relatives. Similarly, Tamega et al41 reported 
a familial history in 56% of 302 Brazilian patients 
involving identical twin sisters’ cases, supporting the 
genetic foundation of the condition. Facial melasma has 

been hypothesized to be inherited in a dominant fashion 
with environmental factors triggering onset in genetically 
susceptible individuals.42 Furthermore, darker skin 
individuals tend to have higher level of basal melanin 
and larger melanosomes which may further increase 
susceptibility.43 

Hormonal factors also contribute in melasma 
pathophysiology particularly oestrogen suggesting an 
increased risk in pregnant women, post-pubertal females 
and oral contraceptive users.44 Epidemiological studies 
suggest wide variability in hormone-related melasma 
prevalence across populations. For instance, Tamega et 
al41 reported that 36.4% of subjects in a Brazilian cohort 
experienced melasma onset during pregnancy, while 
16.2% was caused by oral contraceptive use. Similarly, a 
cross-sectional study conducted in Indonesia revealed a 
melasma prevalence of 91.7% among 36 women taking 
oral contraceptives, demonstrating a positive correlation 
between incidence and usage duration.45 Elevated 
expression of oestrogen receptors (ER) and progesterone 
receptors (PR) has been consistently observed in 
melasma-affected dermal tissues at the molecular level.46-48 
Upon binding to ERs, oestrogen activates rate-limiting 
tyrosinase in melanogenesis, thereby enhancing synthesis 
of melanin. Moreover, the upregulation of ion-exchange 
regulatory protein PDZ domain-containing kidney 1 
(PDZK1) in melasma lesions has been found to potentially 
facilitating interactions between oestrogen signalling and 
ion transport mechanisms that promote melanogenesis 
and melanosome transfer.39,49,50 It was also postulated 
that oestrogen contributed to keratinocyte growth factor 
(KGF) production which affects melanocyte proliferation, 
tyrosinase activity and melanosome transfer ultimately 
resulting in melasma.34,51 

Tranexamic acid (TA)
Overview of TA
TA is a haemostatic agent conventionally used since 1979 
for the clinical management of irregular bleeding then 
repurposed for skin hyperpigmentation treatment.12,52 As a 
promising depigmentation agent, TA offers a viable topical 
treatment option for melasma individuals across varying 
degrees of severity. TA exhibits superior physicochemical 
stability with an oxidation half-life exceeding 24 hours at 
40 °C as compared to other depigmentation agents such 
as arbutin, ascorbic acid, azelaic acid and glycolic acid 
which display variable stability and inconsistent success 
rates in melasma management.53-54 In a randomized 
controlled trial by Atefi et al,26 topical TA demonstrated 
non-inferiority to 5% hydroquinone achieving a 
mMASI score reduction to 2.30 as compared with HQ 
(P = 0.850) with a similar result reported by Sandeep et al55 
Furthermore, direct comparisons with arbutin which is 
another standard agent remain limited but available data 
suggest TA achieves numerically greater MASI reductions 
(6.2 vs 3.4) without reaching statistical significance Figure 2. UV-induced pathway of melanin biosynthesis
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in small cohorts. Mechanistically, TA functions as a 
plasmin inhibitor thereby reducing the production of 
inflammatory mediators essential for melanogenesis.56 
It can be administered via topical (2%-5%), intravenous 
intradermal (4 mg/mL) and oral dosing (500-1000 mg 
daily) with combination therapy often employed to 
enhance depigmentation efficacy.49 However, long term 
oral administration specifically more than 6 months 
is associated with a 2-4 % incidence of gastrointestinal 
disturbance and < 0.1% absolute risk of thromboembolic 
events. In contrast, topical or intradermal TA is associated 
with mild, transient erythema or irritation ( < 15% 
incidence) and no reported vascular events.18,21

Mechanism of TA in melasma hyperpigmentation
The precise mechanism by which TA attenuates melasma 
hyperpigmentation remains under investigation. 
Limited studies suggest that TA primarily acts through 
suppression of plasmin activity, thereby disrupting 
melanocyte activation and melanin synthesis. TA 
inhibits plasminogen’s lysine-binding sites, effectively 
suppressing its conversion to plasmin and subsequently 
downregulating melanocyte-keratinocyte interactions 
that drive melanogenesis.57 Maeda and Tomita58 
demonstrated that TA impedes melanocytes’ melanin 
synthesis by blocking the plasminogen-plasmin pathway 
and preventing melanocyte-keratinocyte interaction. 
Similarly, Maeda and Naganuma59 reported that TA 
reduced melanocyte tyrosinase activity in UVR-
induced hyperpigmentation guinea pigs by preventing 
plasminogen binding to keratinocytes. Additionally, TA 
may suppress melanogenesis by inhibiting plasminogen-
keratinocyte interaction which reduce prostaglandin 
and free arachidonic acid synthesis as well as tyrosinase 
activity. These findings were supported by a split-face 
study involving 40 melasma patients.60 Renckens et al61 

suggested that TA inhibits plasmin activity on fibrin and 
cells by competitively interacting to plasminogen’s high-
affinity lysine sites. Thus, it prevents the surface-mediated 
conversion of plasminogen to plasmin.

Beyond melanocyte regulation, plasmin is also crucial 
in angiogenesis. Plasmin-mediated degradation of 
extracellular matrix-bound vascular endothelial growth 
factor (VEGF) generates diffusible VEGF forms that 
promote neovascularization. As a plasmin inhibitor, TA 
ceases basic fibroblast growth factor (bFGF)-induced 
angiogenesis, thereby indirectly reducing pigmentation.62-63 
Zhu et al1 reported that TA significantly inhibited 
tyrosinase activity, melanin synthesis and VEGF-induced 
melanogenic protein expression when VEGF receptors 
were neutralized. Similarly, in a clinical study involving 
25 melasma women, topical TA demonstrated its ability 
to suppress bFGF and VEGF-mediated angiogenesis, 
resulting in decreased melanogenesis.20 Additionally, 
TA exhibits structural resemblance to tyrosine, enabling 

competitive inhibition of tyrosinase which further 
enhance its depigmentation efficacy.14,15 Although the exact 
molecular pathways remain incompletely defined, current 
evidence suggests that TA exerts its anti-melanogenic 
effects through two mechanisms: (i) plasmin inhibition 
which disrupts inflammatory and angiogenic pathways, 
and (ii) direct enzymatic inhibition of tyrosinase. 
Collectively, these mechanisms contribute to the clinical 
efficacy of TA in reducing melasma pigmentation across 
diverse patient populations. 

Pharmacologic of TA for melasma hyperpigmentation 
treatment
Pharmacological therapy of TA for melasma involves oral 
or topical administration. Oral administration remains 
the most conventional approach with multiple clinical 
trials confirming its efficacy in managing melasma-related 
hyperpigmentation. A placebo-controlled randomized 
study administering 250 mg of TA twice daily for 3 
months to patients with moderate-to-severe melasma 
demonstrated significant improvements particularly 
in severe cases but effects were not sustained post-
treatment.18 Furthermore, Bhattacharjee et al64 further 
compared TA administered at 250 mg and 500 mg two 
times per day, observing equivalent therapeutic outcomes 
with no notable differences in tolerability. Similarly, Wang 
et al14 assessed 250 mg TA administered twice versus thrice 
daily over 12 weeks, revealing comparable therapeutic 
outcomes. A prospective clinical trial examined oral TA 
dosages from 500 to 1500 mg/d over treatment periods 
from one month to two years, finding progressive MASI 
score reductions across all groups with no significant 
differences between doses.65 These findings indicate that 
oral TA is effective starting at 250 mg, with therapeutic 
effectiveness more dependent on duration than dosage. 
However, prolonged use may reduce adherence due to 
common side effects such as gastrointestinal damages and 
menstrual irregularities.18,21-23 

In addition to the oral  administration route, TA has 
demonstrated skin-lightening effects when applied 
topically at concentrations between 2-5%.20,32 In a study 
by Yoo et al27 reported substantial melasma improvement 
over 10 weeks with a TA-containing cream, finding MASI 
score reduction and high patient satisfaction. Another trial 
showed that 2% TA cream reduced hyperpigmentation in 
mild melasma patients with no adverse effects observed 
after three months.24 According to Fox’s25 clinical study, 
80% of subjects experienced significant melasma 
improvement after using a TA emulsion for 6 months 
with no adverse effects. Similarly, a comparative trial 
between 5% TA solution to a 2% hydroquinone (HQ) 
solution in 60 women with epidermal melasma found 
TA particularly effective. The TA group reported a 33.3% 
satisfaction rate which is greater than 6.7% observed 
from HQ group, attributed to faster visible effects and 
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minimal side effects.26 These findings suggest that topical 
TA can effectively reduce melasma severity, although its 
onset of action may be slower than oral administration. 
Therefore, further research is required to optimize topical 
TA formulations for improved skin penetration and to 
accelerate visible clinical results.

Novel lipidic vesicular approach in TA delivery 
Overview of lipidic vesicular system 
Lipidic vesicular systems have gained significant attention 
in cell membrane biology emerging as a promising 
approach for trans-epidermal drug administration.66 
Their ability to facilitate delivery of encapsulated drugs 
while acting as a depot system enhances stratum corneum 
(SC) penetration and facilitates continuous drug release by 
acting as a membrane barrier that controls skin absorption 
rates.67-69 Lipidic vesicles are organized spherical structures 
containing single or multiple concentric bilayers, formed 
through amphiphilic molecules’ self-assembly in water.70 
Various types of lipidic vesicular drug delivery systems 
such as liposomes, ethosomes, niosomes, transfersomes 
and phytosomes have been developed for the delivery 
enhancement of depigmenting agents and TA to improve 

melasma hyperpigmentation treatment (Table 1). 
Figure 3 provides a schematic illustration of various vesicle 
structural organizations. 

Liposomes
Liposomes were initially used in membrane research in 
1965 and were later proposed as drug delivery systems in 
1972.71 Conventional liposomes primarily composed of 
phospholipids and cholesterol. Amphiphilic phospholipids 
with polar heads and nonpolar tails are the main building 
blocks of liposomes which enable them to encapsulate 
both water and lipid soluble substances.72 Consequently, 
liposomes represent a significant advancement in drug 
and cosmetic delivery by enhancing stability, possessing 
high biocompatibility and low toxicity. Empty liposomes 
exhibited 100% cell viability, while drug-loaded liposomes 
maintained over 50% cell viability following 24 hours 
exposure at a 5.37 µg/mL concentration in Vero cell line 
cultures derived from monkey kidney. The observed 
cytotoxicity was found to be concentration-dependent, 
with increasing drug concentrations corresponding to a 
higher percentage of cell growth inhibition.85 This finding 
aligns with Nguyen et al86 observations who suggested 
that increased cytotoxicity associated with liposomal 

Table 1. Various lipidic vesicular carriers with their advantages and drawbacks

Lipidic carriers Characteristics Advantages Disadvantages Ref.

Liposomes

-	 Composed of phospholipids and 
cholesterol

-	 Amphiphilic hollow lipid 
bilayer sphere

-	 Able to encapsulate both 
hydrophobic and hydrophilic drug 
molecules

-	 Non-toxic and biodegradable

-	 Large particle size
-	 Susceptible to oxidation and degradation
-	 High manufacturing cost

71-74

Ethosomes
-	 Composed of 20-45% 

ethanol, phosphatidylcholine, 
cholesterol and water

-	 High elasticity
-	 Superior skin penetration and 

systemic circulation

-	 May cause skin irritation if ethanol content 
exceeds 30%

-	 Solubility and compatibility issues for 
certain drugs

75-77

Niosomes

-	 Single or multilamellar
-	 Developed from non-ionic 

surfactants in combination with 
cholesterol

-	 More stable and lower formulation 
cost than liposomes

-	 Non-ionic surfactants enhance 
vesicle stability

-	 Time consuming process for manufacturing
-	 Limited long-term in vivo safety data
-	 Potential surfactant toxicity

66,78-80

Transferosomes

-	 Ultra-flexible vesicle
-	 Aqueous core encapsulated 

within a phospholipid bilayer 
with edge activator

-	 Highly elastic and deformable
-	 Effective for large and hydrophilic 

molecules

-	 Difficulty in encapsulating hydrophobic 
drugs

-	 Complex physicochemical optimization 
needed

66-67,81-

82

Phytosomes
-	 Molecular complexes formed 

between phospholipids and 
polyphenols

-	 Cost-effective
-	 Synergistic enhancement of 

bioactive compound delivery and 
therapeutic efficacy.

-	 Reduce concentration of active ingredient 
due to dependency on plant material

-	 Limited clinical data for safety and efficacy

83-84

Figure 3. Schematic representation of lipidic vesicular systems including liposomes, ethosomes, niosomes, transferosomes and phytosomes
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formulations may result from enhanced cellular uptake. 
According to studies, liposomes also enable targeted drug 

delivery and improved pharmacokinetics.66,87 Liposomes 
enhance drug delivery by fusing with cell membranes 
and disrupting SC lipid organization, thereby facilitating 
transdermal penetration.68,87 Additionally, factors such 
as drug molecule size, oil-water distribution coefficient 
and lipid membranes interactions can influence delivery 
efficiency within liposomes.72 Studies by Kirjavainen 
et al88 and Maghraby, Williams, and Barry89 suggested 
that liposomes promote drug absorption by modifying 
the skin’s outermost layer, thereby enabling increased 
pharmaceutical uptake and enhance skin penetration. 
However, liposomes clinical application may be limited 
by high production costs with expenses exceeding over 
US$ 1000 per gram of active pharmaceutical ingredient 
and requiring cold-chain storage which further increases 
logistical complexity and cost.73-74

Liposome have been widely utilized for various drugs 
notably for TA, where the presence of lipids within 
liposomes may reduce irritation and provide long-lasting 
moisturizing benefits.90,91 TA is incorporated within 
the aqueous phase of liposomes due to its hydrophilic 
nature. According to studies, it was hypothesized that 
liposomes enhanced TA percutaneous transport through 
merging the phospholipid bilayer with intercellular lipid 
to create transient hydrophilic channels that circumvent 
the intact SC and improved drug accumulation in 
follicular openings.92,93 Liposomes have demonstrated 
effective transdermal delivery of TA using various lipid 
compositions with diverse surface charges, including 
hydrogenated soya phosphatidylcholine, cholesterol, 
stearyl amine and dicetyl-phosphate.94 Moreover, TA-
entrapped liposomes exhibit enhanced physical stability, 
high drug entrapment efficiency ( > 90% for up to two 
months) and smaller particle sizes, which enhance skin 
penetration and sustain drug release.95 However, these 
formulations exhibit increased leakage and degradation 
at elevated storage temperatures. This temperature-
dependent instability is attributed to increased lipid 
fluidity which facilitates drug leakage, underscoring the 
importance of maintaining storage conditions at 4 °C to 
ensure product stability. 

In a 12 weeks split-face clinical study involving 
30 women, Banihashemi et al96 evaluated 5% topical 
liposomal TA with no reported discomfort while yielding 
significant superior MASI scores reduction as compared 
to conventional treatments. These findings highlight 
its potential as a novel and safe therapeutic modality 
for melasma. Similarly, a study using 1.8% liposomal 
TA in 60 patients with melasma demonstrated over 
50% improvement, further supporting its efficacy.97 
Furthermore, Politranexamide® which is a patented 
liposomal TA emulsion achieved a significant MASI 
score reduction from 10.73 to 7.75 in facial melasma 
treatment.98 Choo and Tey93 conducted a comprehensive 

study evaluating the in vitro skin-lightening effects of TA 
encapsulated in poly(lactic-co-glycolic acid) (PLGA)-
based polymeric nanoparticles and in liposomes. 
Liposomal-TA demonstrated superior efficacy, achieving 
greater reduction in melanin content despite containing 
only half the concentration of TA (0.25% vs 0.5%) as 
compared with PLGA-TA. This enhanced penetration 
may be attributed to the compositional similarity between 
liposomal phospholipids to skin membrane lipids, which 
facilitates permeation across the SC via both intracellular 
and transcellular pathways.92

Ethosomes
Ethosomes are specialized lipidic vesicles containing 
phospholipids, water and 20-45% (v/v) ethanol, first 
reported by Touitou et al75 which markedly improve 
transdermal drug delivery.76 According to studies, the 
interaction between ethanol, vesicles and skin’s lipid 
bilayer significantly impact SC fluidity, enhances skin 
compatibility and drug penetration. Its mechanism of 
action involves ethanol-induced SC lipid fluidisation, 
dissolution of intercellular lipids and a downward shift in 
the SC-phase transition temperature thereby increasing 
membrane permeability, facilitating drug penetration and 
retention.99-102 Compared with liposomes (EE ≈ 60-70%), 
ethosomes exhibit 1.5-2 times higher entrapment efficiency 
(EE ≈ 85-95%) and 3-4 times greater deformability 
index, enabling 2-6 times deeper permeation into viable 
epidermis in ex-vivo Franz-cell studies utilising excised 
rat skin.103 They outperform conventional liposomes in 
exhibiting higher drug-entrapment efficiency and superior 
deformability, facilitating the efficient delivery of water 
and lipid soluble drugs through the SC into deeper viable 
layers of the skin.75,104,105 Consequently, ethosomes have 
been investigated for various skin conditions treatment 
including acne, psoriasis, melasma and atopic dermatitis, 
yet < 10% of these studies have progressed beyond ex-vivo 
human to controlled clinical trials.106 

Nonetheless, the presence of ethanol in ethosomes 
formulation possess several drawbacks including volatility, 
risk of cutaneous irritation and reduced stability which 
may negatively impact formulation quality and shelf life. 
In contrast, Mehmood et al107 reported that a vitamin 
D-loaded ethosomal gel did not produce any irritation on 
rabbit skin after 24 hours of application in their in vivo 
study. These findings suggest that ethosomes may be 
considered relatively safe and non-toxic for topical use. 
An increase in ethanol concentration has been shown to 
improve drug molecules diffusion across skin barrier with 
optimal effects observed at concentrations up to 30%. This 
enhancement is attributed to ethanol’s ability to fluidize 
lipid bilayers and increase membrane permeability. 
However, further increase of ethanol content beyond 
30% specifically at 45% has been reported to inhibit 
the diffusion efficiency of the active compound due to 
excessive permeability of the ethosomal membrane.77 
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This destabilization of the ethosomes structure ultimately 
compromises the integrity and performance of the delivery 
system.102 Hence, modified ethosomal systems utilizing 
propylene-glycol, glycerol or phytoconstituent such as 
curcumin have been developed as ethanol substitutes 
with the purpose of mitigating these limitations. These 
alternatives provide better stability, lower volatility and 
enhanced sensitive skin compatibility.108,109 

A study by Niu et al110 demonstrated that drug-loaded 
ethosomes fusing with SC lipids and breaching the barrier 
to reach the viable epidermis with an EE of 78.21% and 
up to 95% of drug permeation in ex-vivo transdermal 
diffusion cell study in excised pig skin. Furthermore, 
Guo et al29 conducted a randomized double-blind clinical 
trial (n = 88, Fitzpatrick III-IV) investigating 0.5% TA-
loaded ethosomes with 30% ethanol for melasma. Results 
showed that vascularization-related melasma significantly 
improved in the TA-loaded ethosomes group likely due 
to the elevated ethanol concentration which disrupts 
the SC enhancing drug delivery by passive transport.111 
Shaji and Parab112 introduced transethosomes (ethosomes 
containing edge activators) that achieved 94% of EE and 
93.97% in TA deposition within the viable epidermis 
in excised porcine abdomen skin showing enhanced 
flexibility and penetration capability. These optimized 
ethosomes offer a simple production process, improved 
scalability and a reduced TA dosage requirement, 
thereby minimizing toxicity risks and improving patient 
compliance.113 However, TA-loaded ethosomes have 
received limited research attention compared to other 
drugs and further clinical studies with objective biomarkers 
and irritation scoring are necessary to thoroughly evaluate 
their safety and effectiveness against melasma.114-116 

Niosomes
Niosomes are described as nanocarrier vesicles that are 
formed through the self-assembly of non-ionic surfactants 
with size distributions between 10 and 1000 nm. The 
surfactants most utilised in niosomes are polyoxyethylene 
alkyl ethers and sorbitan esters which are non-toxic, 
biodegradable, biocompatible and chemically stable.78,79 
For instance, span60/cholesterol-based niosomes loaded 
with mangosteen extract for wound healing applications 
preserved ≥ 80% viability of murine fibroblast cells across 
all tested concentrations (10%-100%) and were classified 
as non-irritating in in vivo rabbit skin studies. The reported 
irritation index was 0.29, with no observable signs of 
erythema or oedema up to 72 hours post-application.117 
Research on niosomes has substantially increased in 
recent years due to their nanoscale size and amphiphilic 
characteristics which permit the encapsulation of a 
wide range of pharmacological molecules and enhances 
cutaneous penetration.118 Niosomes were  designed as 
chemically stable and economical liposomes substitutes, 
offering improved bilayer rigidity and achieving up to 
90% entrapment efficiency with approximately 85% 

drug release.119 Unlike liposomes, niosomes avoid 
oxidative degradation, reduce raw material costs by 30%-
50% and minimize variability by replacing oxidation-
prone phospholipids with non-ionic surfactants.66,80 
Furthermore, niosomes functions as intradermal drug 
depots, facilitating sustained drug release and enable 
targeted delivery while reducing dosage requirements.120-123 
Its mechanism of action involves surfactants-induced 
SC lipid fusion and modification of thermodynamic 
activity gradient thereby promoting transdermal drug 
penetration.68,124,125

Niosomes were first identified for cosmetic applications 
in 1972. However, peer-reviewed investigations specifically 
addressing TA-loaded niosomes remain limited with ≤ 10 
studies indexed in PubMed/Web of Science as of July 
2024, highlighting a critical knowledge gap that requires 
systematic exploration. The first commercial niosomal 
anti-aging cream was introduced by Lancôme in 1987, 
followed by L’Oréal’s patented “Niosôme™” technology 
which further validated industrial-scale reproducibility 
with > 95 % batch uniformity.126,127 Given their unique 
physicochemical properties, niosomes have been widely 
studied as delivery systems for active compounds including 
cannabidiol, forskolin, caffeine and aescin, offering 
hydrating, anti-aging, antioxidant, anti-inflammatory 
and skin-whitening benefits.124,128,129 Their ability to 
improve chemical stability and enhance cutaneous 
absorption especially for poorly soluble drugs, makes 
them highly attractive for cosmetic and dermatological 
applications.130,131 In a study published in 2010, Shatalebi 
et al132 demonstrated that N-acetyl glucosamine-loaded 
niosomes (500-4500 nm) increased skin retention by 42% 
relative to control solution and maintained up to 24 hours 
of steady-state flux, indicating promising efficacy for 
hyperpigmentation treatment. 

Further studies have investigated the development 
of hydroquinone-loaded niosomal gel to enhance skin 
depigmentation. Hydroquinone is a commonly used 
depigmenting agent where excessive concentrations may 
cause skin irritation including burning and redness. 
Ammar et al133 formulated a Span-80/cholesterol niosomal 
topical gel with 98% of EE and achieving 97% in vitro 
hydroquinone release. A randomized comparative clinical 
trial further demonstrated up to 85% improvement in 
therapeutic impact over 12 weeks treatment period. This 
trial also reported minimal to no adverse effects, which were 
attributed to the high encapsulation efficiency in niosomes 
that reduce hydroquinone direct contact on skin. Similar 
findings were also reported by Divanbeygikermani et al.134 
Moreover, several other studies have also confirmed the 
efficacy of niosomes in cosmeceutical applications.135,136 
Focusing on transdermal delivery, niosomes has 
outperformed both liposomes and ethosomes in terms 
of drug release kinetics and entrapment efficacy. This 
is primarily attributed to surfactants incorporation 
which stabilizes vesicle membrane and impart high 
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deformability, hence enhancing penetration through 
SC bypass.137 Nevertheless, optimization of niosomes’ 
formulation specifically TA-loaded remain under-
investigated.138 Systematic investigations are required to 
determine the optimal surfactant-to-cholesterol molar 
ratios, preparation methods and concentration of TA to 
facilitate clinical translation for hyperpigmentation and 
melasma treatment.

Transferosomes
Transferosomes are recognized as a novel variant of 
liposomes distinguished by their superior deformability. 
They are primarily composed of phospholipids forming a 
bilayer membrane, an edge activator (10%-25%), ethanol 
( < 10%), and water as the dispersion medium. These 
vesicles typically exhibit particle sizes under 300 nm, 
possess exceptional elasticity through the incorporation 
of edge activators that destabilize and alter the lipid 
bilayer. Commonly employed edge activators comprise 
non-ionic surfactants (Tweens, Spans) and bile salts (etc. 
sodium deoxycholate).66 Structurally, transferosomes 
consist of a phospholipid bilayer enclosed aqueous core 
where hydrophilic active agents are encapsulated in 
the core and hydrophobic compounds are solubilized 
within the membrane. The inclusion of edge activators 
reduces interfacial tension and alters bilayer assembly, 
making transferosomes highly malleable and capable 
of intercalating into the SC lipid matrix without 
compromising vesicle integrity or cargo retention.67 This 
extreme deformability enables transferosomes to bypass 
the SC barrier, where they gradually release their payload 
into deeper skin layers while simultaneously protecting 
the active compounds from metabolic degradation.81 

In comparison to conventional liposomes, 
transferosomes are not only non-toxic, biocompatible and 
biodegradable but also exhibit superior physical stability 
and enhanced transdermal penetration efficiency.82 In 
a study by Wadher et al,139 blank phospholipid/sodium-
deoxycholate transferosomes exhibited no cytotoxic effects 
on normal human cell lines across concentrations ranging 
from 0-15 mg/mL. Given their superior deformability and 
non-cytotoxicity, transferosomes are particularly suitable 
for cosmeceutical applications, especially in the topical 
delivery of antioxidants. For instance, Li et al140 developed 
ascorbic palmitate (AP)-loaded for improved melasma 
treatment. Both in-vitro and in-vivo studies demonstrated 
a 14.1-fold increase in AP skin permeability and superior 
anti-melasma efficacy, with effective attenuation of 
oxidative stress and inflammation, and no observable 
signs of skin irritation. Similarly, Lee et al141 formulated 
niacinamide-loaded transferosomes which demonstrated 
markedly enhanced skin penetration and whitening 
efficacy relative to conventional liposomes, highlighting 
their potential in melasma and hyperpigmentation 
management. However, to date, the development of 
TA-loaded transferosomes remains largely unexplored. 

Owing to the high deformability of transferosomes, it is 
scientifically reasonable that TA-loaded transferosomes 
could bypass the SC and enhanced transdermal absorption 
efficacy,82 where further investigation is required. 

Phytosomes 
Phytosomes also known as phytophospholipid complexes, 
are advanced lipidic vesicular systems that integrate 
phospholipids with biologically active phytochemicals 
through bonding of hydrogen, typically between the 
hydrophilic regions of both molecules. This delivery 
technology was first introduced by Indena Company 
in the late 1980s to address poor oral bioavailability 
of certain plant-derived compounds that suffer from 
extensive first-pass metabolism and limited membrane 
permeability which restricts their therapeutic potential.83 
Structurally, phytosomes resemble conventional 
liposomes but offering more advantages, including higher 
encapsulation efficiency, superior physicochemical 
stability and significantly enhanced absorption and 
bioavailability of active ingredients.84 Transdermal 
delivery of bioactive molecules via phytosomes can 
occur through various pathways across the SC including 
intercellular (sweat and sebaceous glands, hair follicles) 
and intracellular (lipid matrix and corneocytes) routes. 
It has been reported that drug encapsulation within 
phytosomes results in a lipid-soluble complex that can 
interact with both lipid and water-based environments 
thereby increasing the drug’s diffusion coefficient and 
enhancing its partitioning into the SC can significantly 
improve skin permeability.142,143 

Phytosomes are typically fabricated within a particle 
size range of 50 nm to several 100mm, allowing for 
formulation flexibility tailored to specific application 
requirements.83 Over the past decade, numerous botanical 
extracted phytochemicals have been successfully 
incorporated into phytosomes for both dermatological 
and cosmetic applications. For instance, Priani et al144 
formulated a topical phytosome serum loaded with 
cocoa-pod extract which demonstrated high EE of 91% 
with a particle size of 672 nm. This formulation also 
exhibited strong antioxidant activity with an IC50 value 
of 199.98 ppm which is comparable to a commercial 
whitening product (Hadalabo Ultimate Whitening Milk). 
Similarly, Patel et al145 developed and optimized arbutin/
phosphatidylcholine complexes to address the limited skin 
permeability of arbutin as a skin-whitening agent. The 
optimized formulation showed an enhanced in-vitro drug 
release profile as compared to aqueous formulation (84.8% 
vs 53.15%), indicating improved cutaneous absorption. 
In comparison to other vesicular carriers, phytosomes 
represent a unique class of bioactive delivery systems in 
which the phospholipids not only serve as a vehicle but 
also exhibit membrane-repair and anti-inflammatory 
benefits.146 Therefore, the integration of phytosomes with 
TA may present promising approach to improve skin 
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permeability and bioavailability while potentially exerting 
synergistic effects through both active components.
Limitations and Challenges
Lipid-based vesicular drug delivery systems have 
attracted considerable attention in contemporary 
research, particularly in dermatology and cosmeceuticals. 
Nonetheless, the development of TA-loaded lipidic vesicles 
faces substantial challenges in formulation, regulation 
and clinical translation. From a formulation perspective, 
liposomal TA requires ≥ 98% of ultra-pure phospholipids 
and specialized techniques such as thin-film hydration, 
both of which significantly increase production costs.147 
In addition, liposomes are highly susceptible to oxidation 
and degradation which compromises long-term stability. 
Ethosomes containing > 30% ethanol also exhibit reduced 
stability and drug leakage under elevated temperature or 
humidity, complicating storage and transportation. High 
ethanol concentrations may further induce skin irritation 
or erythema if not carefully optimized and can negatively 
impact drug solubility, stability and bioavailability.148 
Other vesicular systems including transferosomes, 
niosomes and phytosomes present additional challenges 
related to complex physicochemical behaviour, excipient 
interactions and a lack of robust in vivo safety data. In 
particular, the edge activators and surfactants utilised 
which are essential for improving deformability and 
penetration may also pose long-term toxicity risks if 
not optimized.149

Beyond formulation, regulatory gaps further complicate 
translation. Currently, no country has established 
legislation specifically dedicated to nano-systems in 
dermatology or cosmetics. For instance, neither the 
U.S. Food and Drug Administration (FDA) nor the 
Malaysian National Pharmaceutical Regulatory Agency 
(NPRA) has developed comprehensive guidelines for 
functional cosmetics employing vesicular nanocarriers. 
Lipidic vesicular formulations are classified as non-
biological complex drugs (NBCDs) requiring robust 
characterisation of primary quality indicators such as 
particle size, zeta potential, encapsulation efficiency and 
lipid composition.150,151 Additionally, FDA has published 
a guidance specifically for generic liposomes to enhance 
research quality, consumer transparency and regulatory 
rigor.152 However, no equivalent framework exists for 
other lipid-based nano-systems which continue to be 
investigated and marketed with comparatively fewer 
regulatory safeguards.130

Furthermore, although formulation and regulatory 
barriers are being addressed, the clinical evidence for 
TA-loaded vesicular systems remains insufficient. Most 
trials are underpowered, with nearly 90% enrolling fewer 
than 100 participants. The largest study of n = 88 reported 
MASI score reduction by 48%, but with wide confidence 
interval (21%-75%) and low statistical power (β = 0.26) 
limit reliability.86 Besides that, follow-up intervals are 
relatively short ≤ 12 weeks) preventing evaluation of 

long-term risks such as rebound pigmentation, ethanol-
induced SC barrier disruption and rare thromboembolic 
events.18,29,99 Methodological inconsistencies also further 
undermine validity where outcome measures vary between 
modified MASI and global 5-point physician scales, while 
standardised photography and objective tools such as 
dermoscopy or Wood’s lamp necessary for differentiating 
between epidermal and dermal forms of melasma are 
rarely incorporated.29,105 Therefore, addressing these gaps 
will be critical for TA-loaded vesicular systems to progress 
from experimental formulations to guideline-supported 
therapies for melasma.

Conclusion
Melasma is a chronic and relapsing skin disorder that 
is multifactorial in origin involving prolonged UVR 
exposure, genetic susceptibility, hormonal fluctuations 
and hyperpigmentation triggered by medications 
or underlying illnesses. Despite advancements in 
technology and drug development, effective treatment 
remains challenging. A wide range of interventions 
including topical formulations, systemic medications and 
procedural interventions have been explored but many of 
them demonstrate limited clinical efficacy, high rate of 
recurrence and undesirable side effects. TA has recently 
gained recognition as a promising melasma therapeutic 
option with extensive research conducted on different TA 
formulations, particularly oral and topical applications. 
While topical TA alone is considered less effective, it 
is often preferred due to better patient compliance and 
lesser side effects. Lipidic vesicular system incorporated 
with TA represents a promising advancement in melasma 
treatment, offering enhanced delivery profile, minimized 
adverse effects and enhanced patient compliance 
in comparison to conventional methods. However, 
clinical application remains hindered by several critical 
challenges: (i) the high cost manufacturing and regulatory 
complexity, (ii) limited shelf-life and temperature-
dependent formulation stability, and (iii) the absence of 
standardized, validated quality control assays for vesicle 
characterisation and drug release. 

Future Perspectives
Moving forward, TA’s incorporation within lipidic 
vesicles alongside complementary therapeutics such as 
hyaluronic acid (HA) and microneedle holds potential for 
optimizing treatment outcomes. These approaches may 
enhance drug absorption, improve skin hydration and 
promote overall skin health. Furthermore, innovations 
in lipidic vesicular nanotechnology could pave the way 
for personalized dermatological treatments. Future 
TA formulations may be customized to different types 
of skin, melasma severity and genetic predispositions, 
potentially enhancing therapeutic outcomes and patient 
satisfaction. While significant progress has been made, 
further research especially multicentred, randomized 
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and dose-ranging clinical trials are needed to optimize 
standardized protocols, incorporate long-term safety 
monitoring as well as explore new therapeutic possibilities. 
Nevertheless, this article underscores the potential of 
lipidic vesicular formulations for TA to emerge as the 
first line melasma treatment in the foreseeable future 
(Supplementary file 1, Table S1). This advancement is 
contingent upon continued innovation and collaborative 
efforts within the field to hold the promise of delivering 
safer, more effective and personalized treatment 
options to patients.
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