
Adv Pharm Bull. 2025;15(3):588-593
doi: 10.34172/apb.025.43725

https://apb.tbzmed.ac.ir

An Insight Into the Aerosolization Pattern of Formoterol 
Fumarate Dry Powder Inhalation Formulation Actuated Via 
Two Different Inhaler Devices
Leila Asadollahi1,2 ID , Reza Ghanbari3, Soheil Abbaspour-Ravasjani2, Hamed Hamishehkar2,4* ID , Ali Nokhodchi5* ID

1Student Research Committee and Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
3Department of Materials Science and Engineering, North Carolina State University, Raleigh, USA
4Research Center of New Material and Green Chemistry, Khazar University, AZ1096, Baku, Azerbaijan
5School of Life Sciences, University of Sussex, Brighton, UK

Introduction
Chronic obstructive pulmonary disease (COPD) and 
asthma are two of the most common respiratory conditions 
worldwide. According to the World Health Organization 
(WHO), COPD was the fourth leading cause of death 
globally in 2021, responsible for 3.5 million deaths, mostly 
in low- and middle-income countries with high exposure 
to tobacco smoke and household air pollution. Asthma, 
meanwhile, affected an estimated 262 million people 
in 2019 and caused over 450,000 deaths, particularly 
in regions with limited access to proper diagnosis and 
treatment. Although both conditions are incurable, 
inhaled medications remain essential for long-term 
symptom management and quality of life improvement.1,2 
Therefore, optimizing pulmonary drug delivery, especially 
through dry powder inhalers (DPIs), is vital for achieving 
effective and consistent treatment outcomes.

DPIs are widely used to deliver medications to the 
lungs via breath-actuated dispersion of micronized 
powder, providing both local and systemic effects.3 
Their effectiveness relies not only on the stability and 
characteristics of the powder formulation, but also device’s 
internal design and the patient’s inhalation technique.4 
For example, capsule-based DPIs require adequate user 
dexterity and a fast inhalation to disperse the powder.5 
Notably, many commercial DPIs exhibit relatively low 
efficiency: reported fine-particle fractions (percentage 
of the emitted dose < 5 µm) are often only 20–30% at a 
flow rate of 60 L/min.6 In this study, we used formoterol 
fumarate, a long-acting β₂-agonist widely prescribed for 
asthma and COPD maintenance therapy, as the test drug 
to evaluate and compare device performance.7,8 

Since the emergence of the COVID-19 pandemic, 
inhalation therapy has received renewed attention, with 
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Abstract
Purpose: Effective inhaled drug delivery is essential for managing bronchial asthma and chronic 
obstructive pulmonary disease (COPD). This study compared the aerosolization efficiency of two 
different dry powder inhalers (DPIs), the Aerolizer and Revolizer, using a fixed formulation of 
formoterol fumarate.
Methods: Aerodynamic particle size distribution was measured using a next-generation impactor 
(NGI), and delivered dose uniformity was assessed with a dosage unit sampling apparatus 
(DUSA), both at a fixed flow rate of 60 L/min. Drug content was quantified using a validated 
high-performance liquid chromatography (HPLC) method, and performance metrics were 
analyzed using CITDAS software. Data were averaged (mean ± SD) and compared by statistical 
tests (e.g., ANOVA or t-tests), with P < 0.05 indicating significance.
Results: The Aerolizer achieved a fine particle dose (FPD) of 4.71 µg, which was 2.39 times higher 
than that of the Revolizer (1.97 µg). It also delivered approximately 20% greater overall dose and 
showed more consistent deposition in the NGI stages. While both devices demonstrated similar 
fine particle fractions (FPFS), the difference in FPD was primarily due to the higher emitted dose 
from the Aerolizer. The use of a fixed flow rate allowed direct comparison of device performance.
Conclusion: These findings highlight the significant influence of device design on DPI 
performance, even when the formulation remains constant. The Aerolizer, a low-resistance 
inhaler, showed superior delivery efficiency than the Revolizer under standardized conditions. 
Future studies should include pressure-drop–adjusted or patient-simulated testing to better reflect 
clinical inhalation profiles and further explore how device mechanics influence drug delivery.
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clinicians emphasizing the continued use of controller 
medications and reports noting a 14.5% relative 
increase in adherence to asthma and COPD inhalers 
during the first lockdown, reflecting heightened patient 
awareness of respiratory health risks.9,10 In response, 
many pharmaceutical companies have shifted toward 
producing unit-dose inhalation capsules without a 
paired device, leaving patients or providers to select 
an appropriate inhaler. This may lead to variability in 
treatment outcomes, as device performance depends on 
design, powder formulation, and patient factors such as 
age and inspiratory flow, highlighting the importance 
of regulatory oversight and consideration of device 
reliability alongside innovation.11 This study compares 
two commercially available capsule-based DPIs, the low-
resistance Aerolizer and the medium-resistance Revolizer, 
under controlled conditions.12,13 Aerodynamic particle 
size distribution and delivered dose were measured at a 
standardized pharmacopeial flow of 60 L/min, which 
is in the mid-range of flows achievable by most patients 
and coincides with prior findings that the Aerolizer’s 
aerosolization is optimized near 65 L/min, and the 
Revolizer likewise achieves high lung deposition around 
60 L/min.6,14,15 Unlike many earlier studies that varied both 
device and formulation or tested each inhaler at different 
flow rates, our experimental design holds the formulation 
and flow rate constant for both DPIs. This novel approach 
allows a direct comparison of how device architecture, 
such as airflow pathways, capsule chamber geometry, 
and deaggregation mechanism, independently affects 
aerosolization performance. The results are intended 
to inform future DPI design and regulatory evaluation, 
and to support evidence-based selection of inhalers in 
clinical practice. 

Materials and methods
Materials
Formoterol fumarate DPIs and Aerolizer (including batch 
numbers: BVC23) utilized in this study were obtained 
from Novartis Pharma Stein AG, Basel, Switzerland. 
Each capsule used in the study was a Foradil® (Novartis) 
unit-dose DPI capsule containing 12 µg of micronized 
pharmaceutical-grade formoterol fumarate blended with 
inhalation-grade lactose monohydrate as the carrier. 
The total capsule fill weight is approximately 25 mg. The 
Revolizer was sourced from Cipla, Mumbai, India. Type 
A/E-1 glass fiber filter paper was purchased from Pall 
Life Sciences, Germany. All solvents and chemicals used 
in the study were of HPLC grade and obtained from Dr. 
Mojallali’s company, Tehran, Iran. Additional chemicals 
were procured from Merck & Co., Inc., New York, USA.

Methods
Characteristics of devices
Figure 1 provides detailed descriptions of the two 
employed devices.

Assessment of fine particles using next-generation impactor 
and delivered dose uniformity with dosage unit sampling 
apparatus (DUSA)
The aerodynamic particle size distribution of formoterol 
fumarate delivered via Aerolizer and Revolizer was 
evaluated using a Next-Generation Impactor (NGI, 
Copley Scientific, UK) with a USP induction port and pre-
separator. Testing was performed at a calibrated flow rate 
of 60 L/min, as specified in USP < 601 > , using a critical 
flow controller (TPK 2000) and a vacuum pump (HCP5). 
The pressure drop measured across the device was close 
to 4 kPa. The actuation duration was set to 4 seconds to 
deliver 4 L of air. Ten capsules were tested per run, with 
each run repeated three times for both inhalers. A fixed 
flow rate of 60 L/min was applied to both devices. Before 
each run, NGI cups were coated with 1% (w/v) Tween 80 
and dried. After actuation, the USP induction port, pre-
separator, NGI stages 1–7, and the micro-orifice collector 
(MOC) were dismantled and washed using a solvent system 
consistent with the HPLC mobile phase: acetonitrile and 
phosphate buffer (30 mM sodium dihydrogen phosphate 
monohydrate, 3.5 mM phosphoric acid, pH 3.1 ± 0.1). 
Washing volumes were as follows: 10 mL for the capsule 
and induction port, 35 mL for the pre-separator, and 4 mL 
for each NGI stage and the MOC. The drug content in 
each wash was quantified using the validated HPLC assay 
described in Section 2.2.3.16

To examine the uniformity of the delivered dose of 
formoterol, a DUSA apparatus (Copley Scientific, UK) 
was employed. For analysis, a 47-mm diameter Type 
A/E−1 glass fiber filter paper from Pall Life Sciences, 
Germany, was placed between the sample collection 
tube and the filter-support base. In each assessment, 
one capsule was tested with 10 repetitions at a constant 
flow rate of 60 L/min using the Aerolizer and Revolizer 
devices within the DUSA apparatus. After actuation, the 
DUSA assembly was dismantled, and all components were 
washed with 10 mL of solvent to ensure complete recovery 
of the drug content. The amount of formoterol remaining 
in different parts was then evaluated and measured using 
the HPLC system.17

For DUSA testing, the airflow duration was set to 
2 seconds (equivalent to 2 L of air at 60 L/min), as per 

Figure 1. Comparison of inhaler devices (a) Aerolizer, (b) Revolizer
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USP < 601 > requirements for delivered dose uniformity 
assessment. 

Data Analysis was conducted using Copley Inhaler 
Testing Data Analysis Software (CITDAS, version 3.10), 
which calculated parameters such as fine particle fraction 
(FPF), mass median aerodynamic diameter (MMAD), and 
geometric standard deviation (GSD). MMAD represents 
the particle size at which 50% of the aerosol mass is 
smaller and 50% is larger.18 FPF indicates the proportion 
of the emitted dose represented by drug particles with an 
aerodynamic diameter smaller than 5 μm.19

Formoterol fumarate HPLC assay and homogeneity
The amount of formoterol fumarate was measured using 
a validated high-performance liquid chromatography 
(HPLC) method according to the European Pharmacopoeia 
6.0. Separation was performed using an HPLC system 
(1260 Infinity II LC System, Agilent Technologies, Santa 
Clara, CA) on an octadecyl silyl silica gel C18 column 
(25 cm × 4.6 mm, 5 µm). The column temperature was 
maintained at 25 °C, with a flow rate of 1 ml/min and an 
injection volume of 20 μl. The mobile phase consisted of 
acetonitrile (Phase A) and a buffer solution of 30 mM 
sodium dihydrogen phosphate monohydrate and 3.5 mM 
phosphoric acid, pH adjusted to 3.1 ± 0.1 (Phase B).

Gradient elution method was used in the HPLC 
procedure. Initially, 16% phase A and 84% phase B were 
employed followed by transitioning to 70% phase A and 
30% phase B from 10 to 37 minutes, and returning to 
16% phase A and 84% phase B from 37 to 40 minutes. 
The solvents were held constant from 40 to 55 minutes, 
followed by column washing and reconditioning.

Chromatograms were obtained at 214 nm, where 
formoterol fumarate exhibits maximum absorbance. 
Compound identification relied on comparing retention 
time and UV spectra (200 to 400 nm) with the standard. 
Quantification was performed using standard curves 
with regression coefficients (R2) ≥ 0.99. Data analysis was 
conducted using Chrom Gate Client/Server, version 3.1.7, 
to calculate the area under the curve for the formoterol 
fumarate peak.

Statistical analysis
Each experiment was replicated three times, and the 
resulting data were analyzed using GraphPad Prism 
9.0.2 software (GraphPad Software, San Diego, CA). The 
independent two-way analysis of variance (ANOVA) 
variance test was used with multiple comparisons between 
data using the LSD significant difference test. A p-value 
less than 0.05 was considered statistically significant. The 
ANOVA as well as the designed general linear model for 
the logarithmically transformed data (concentration) 
obtained from DUSA were carried out according to 
drug analysis guidance documents (USA, Canada).20 
All statistical analyses for DUSA were performed using 
SPSS 16. After obtaining the SPSS tables, to compare and 

analyze the data, the geometric mean ratio (GMR), the 
ratio estimate, and inter- and intra-capsule coefficient 
variation parameters were calculated using the following 
formulas:

( )        % *100
   

geometric mean RevolizerThe geometric meanratio
geometric mean Aerolizer

=

( ) ( ) geometric mean  Revolizer  geometric mean  Aerolizer  Ratio estimate % 100 e −=

Mean Square Inter CapsulesInter capsule coefficient variation 100  1e= −

Mean Square Error Intra capsule coefficient variation 100  1e= −

Results and Discussion
Figure 2 shows the aerodynamic particle size distribution 
of formoterol fumarate from the Aerolizer and Revolizer 
at a flow rate of 60 L/min, based on ten capsules per 
run. Both inhalers exhibited distinct size distribution 
profiles across NGI stages, indicating device-dependent 
differences in aerosolization. 

The Revolizer retained 15.16-fold more drug in the 
capsule after actuation compared to the Aerolizer, 
suggesting reduced emission efficiency likely due to capsule 
motion or airflow dynamics. In contrast, the Aerolizer 
released more drug but also retained approximately 2.3 
times more in the pre-separator, possibly reflecting partial 
aggregation or incomplete deagglomeration. Despite this 
pre-separator loss, the Aerolizer achieved a significantly 
higher fine particle dose (FPD), 4.71 µg compared with 
1.97 µg for the Revolizer (P < 0.05), and total delivered 
dose at downstream impactor stages. The FPF was similar 
for both devices at approximately 37%. This similarity 
arose because both emitted dose and FPD were low in 
the Revolizer, while both were substantially higher in the 
Aerolizer, indicating more efficient dispersion. Overall, 
the Aerolizer showed greater deposition at every impactor 
stage, with statistically significant improvements in 
both FPD and delivered dose (Table 1). Although high 
standard deviations were observed for some parameters, 
such variability is expected in capsule-based DPIs due to 
factors such as piercing characteristics, airflow resistance, 
and turbulence.21 

Our experiments confirmed that device design critically 

Figure 2. Formoterol deposition in the next-generation impactor using 
Aerolizer and Revolizer. Data presented as mean ± SD (n = 3). ns: not 
significant, *P < 0.1, ** P < 0.01, *** P < 0.001, and **** P < 0.0001 compared 
to multiple comparisons
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affects DPI performance.22 According to previous studies, 
particles around 5 µm deposit mainly in the upper airways, 
2–5 µm in central airways, and 0.5–2 µm in peripheral 
lung regions.23 Both the Aerolizer and Revolizer produced 
aerosol particles within the ideal MMAD range of 1–5 
µm, necessary for deep-lung deposition.24 The Aerolizer 
generated an MMAD of 3.32 µm and the Revolizer 2.93 
µm, both within the target range. However, the particle 
size distribution was more uniform for the Aerolizer, with 
a GSD of 1.96 compared to 2.16 for the Revolizer. A GSD 
below 2 indicates a narrower size distribution, suggesting 
that the Aerolizer could provide more consistent 
deposition and better therapeutic uniformity.25 

The delivered dose differed substantially between 
devices. The Aerolizer reached 98.51% of the label claim, 
compared to 78.85% for the Revolizer under identical 
testing conditions. The statistical analysis of DUSA data 
was performed using a general linear model, and results 
were reported in three key metrics: (A) the significance 
value and 90% confidence interval (CI) for the parameter 
being analyzed; (B) the GMR and ratio estimate (%) of 
mean concentrations between the Aerolizer and Revolizer; 
and (C) the inter- and intra-capsule coefficient of variation 
(CV) for each device. Comparative results are presented 
in Table 2 and Table 3, which also include within-capsule 
variance estimates, mean square error for CI calculation, 
and significance levels.

Given the non-normal distribution of concentration 
data in biological studies, geometric statistics were used 
instead of arithmetic values.26 Accordingly, concentrations 
were log-transformed, and the resulting mean and 
standard deviation of Ln concentrations were converted 
into geometric means (GMs) and GSDs. The model 
showed that device type had a statistically significant effect 
on delivered dose (P = 0.049), while capsule substitution 
did not (P = 0.158), indicating that swapping capsules 
between devices did not influence the outcome. The 
GMR of Aerolizer to Revolizer concentrations was 90%, 
corresponding to a ratio estimate of 78.66%, indicating 
lower delivered concentrations from the Revolizer, and the 
90% confidence interval (64.93%–95.52%) fell outside the 
pre-specified equivalence range (80%–125%), confirming 
a significant non-equivalence in aerosol delivery. Within- 
and between-capsule coefficients of variation were both 
under 30%, demonstrating acceptable reproducibility. 
Overall, the Aerolizer consistently outperformed the 
Revolizer, delivering a higher FPD with less variability 
under standardized 60 L/min flow conditions.20 

Our principal finding is that inhaler internal design, not 

airflow resistance alone, significantly influences aerosol 
performance. Despite being a low-resistance device, 
the Aerolizer delivered a larger FPD than the medium-
resistance Revolizer. This may seem counterintuitive, as 
higher-resistance DPIs are often associated with more 
efficient powder deagglomeration at lower flow rates.25,27 
However, the Aerolizer’s superior performance can be 
explained by its optimized internal architecture, including 
airflow pathways and capsule dispersion chamber 
geometry, which likely enhanced turbulence and powder 
deagglomeration.28 In contrast, the Revolizer’s internal 
airflow structure resulted in greater powder retention 
and a lower delivered dose, despite its higher resistance. 
Quantitatively, the Aerolizer’s delivered dose exceeded the 
Revolizer’s by approximately 20%, and the 90% confidence 
interval confirmed significant non-equivalence in 
performance.

Although the effect size for device type was modest, 
the GMR of 90% suggests improvement in drug delivery, 
which may have clinical relevance, especially for patients 
with limited inspiratory capacity. These results align 
with prior literature emphasizing that patient-generated 
pressure drop, rather than peak flow rate alone, is a key 
driver of DPI performance. A pressure drop of ≥ 1 kPa 
is generally sufficient for effective lung delivery.29 So, 
both the Revolizer and the Aerolizer achieved efficient 
aerosolization under the standardized 60 L/min flow used 
in this study. Previous investigations also demonstrate that 
small structural changes, such as air inlet size, mouthpiece 
length, and grid geometry, can significantly alter FPF 
and drug retention.22 These observations support our 
finding that subtle differences in device architecture have 
measurable effects on aerosol output. Computational fluid 
dynamics studies further confirm that turbulence patterns 

Table 1. Key data from the NGI analysis of formoterol with both Aerolizer and Revolizer

Device FPDa (µg) FPFb (%) MMADc (µm) GSDd Average of the mean delivered dose (%)

Aerolizer 4.71 ± 0.32 37.41 ± 1 3.32 ± 0.06 1.96 ± 0.06 98.51 ± 25.24

Revolizer 1.97 ± 0.31e 37.33 ± 4.99 ns 2.93 ± 0.17 ns 2.16 ± 0.14 ns 78.85 ± 29.98f

a: Fine particle dose; b: Fine particle fraction; c: Mass median aerodynamic diameter; d: Geometric standard deviation.
Note: The results were calculated as the mean ± standard deviation (n = 3). ns: not significant, e P = 0.0024, and f P = 0.049, as compared Aerolizer.

Table 2. The ANOVA for the design model for the dependent variable of Ln 
concentration from DUSA

Source
Sum of 
Squares

df a Mean 
Square

F b Significant c

Corrected Model 1.284 10 0.128 2.316 0.111

Intercept 107.512 1 107.512 1938.989 0.000

DPIs 0.285 1 0.285 5.144 0.049

Capsules 0.999 9 0.111 2.001 0.158

Error 0.499 9 0.055

Total 109.295 20

Corrected Total 1.783 19

Inter Capsules 0.027

a. Variable degrees of freedom; b. Fisher–Snedecor parameter; c. Significant 
less than 0.05 was considered statistically significant.
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inside inhalers strongly influence powder dispersion and 
deposition, providing additional insight into airflow 
optimization.30,31

While this study evaluated only two devices, both were 
selected for clinical relevance and differing resistance 
profiles. Using identical capsule formulations and a 
fixed flow rate eliminated confounding variables related 
to formulation or patient effort, allowing the isolated 
assessment of device architecture. Inter- and intra-capsule 
variability remained low (< 30%), indicating reliable and 
reproducible results. Nevertheless, real-world inhalation 
profiles vary with patient effort and lung function, 
particularly in severe asthma or COPD. Future studies 
incorporating patient-simulated flows, pressure-drop–
adjusted conditions, and a broader range of DPI designs 
would provide more generalizable insights.

Conclusion
In conclusion, this study demonstrates that inhaler 
design significantly influences the performance of 
DPIs, independent of formulation. Both the Aerolizer 
and Revolizer generated aerosols within the optimal 
aerodynamic size range for lung deposition, but the 
Aerolizer consistently achieved a higher FPD and overall 
delivered dose, reflecting superior deposition efficiency. 
These findings highlight that low-resistance devices 
with optimized internal airflow geometry and dispersion 
mechanisms may offer clinical advantages, particularly for 
patients with limited inspiratory capacity, such as those 
with asthma or COPD. For clinicians and regulators, 
this underscores the importance of considering not only 
airflow resistance but also internal device architecture 
when selecting or approving inhalers. Expanding future 
research to include a wider range of devices, patient 
inhalation profiles, and pressure-drop–adjusted testing 
will help refine inhaler selection strategies and ultimately 
improve therapeutic outcomes in chronic respiratory 
disease management.
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