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Abstract

In the pharmaceutical industry, artificial intelligence (Al) is revolutionizing individualized
therapy, research, and drug development. Al includes machine learning (ML) and deep learning
(DL), that are used to read enormous amounts of data, spot mysterious patterns, and find
possible medication candidates more quickly. Al is also improving clinical trials through better
patient recruitment, real-time data monitoring, and trial outcome prediction. It also customizes
care according on a person’s genetic composition, lifestyle, and environmental factors is
also supporting personalized medicine, a novel approach to healthcare. In, pharmaceutical
industries it is used to simplify medicine production procedures, enhancing quality control, and
streamlining supply chain management that saves the valuable time as well as billions of dollars.
This comprehensive review discusses the different impacts of Al-enabled technologies on each
stage of the pharmaceutical life cycle. It demonstrates that ML, data analytics and predictive
modelling can accelerate drug discovery, improve manufacturing processes, streamline quality
processes, enhance formulation approaches, and transform post-marketing surveillance, drug

repurposing, precision medicine, and nanobots.

Introduction

One of the world’s most research-intensive industries,
the pharmaceutical sector consistently produces cutting-
edge medications that enhance and save lives.! Traditional
drug discovery is time intensive and resource demanding,
often relying on interactive screening. The advent of
new technologies such as machine learning (ML) is
reshaping the conventional processes of drug discovery,
development, and even the entire lifecycle management in
the pharmaceutical industry.?

Artificial intelligence (AI) combines various smart
behaviours and processes. These are created by computer
models, algorithms, or a set of rules. They allow machines
to mimic human thinking skills such as learning and
problem-solving.’ In general we can conclude the process
of mimicking systems that behave like humans is called
Al ML is a part of AL It works by using data-trained
algorithms. Deep learning (DL) is a subset of ML that
somewhat based on how the human brain is structured.*
AI, ML and DL are increasingly pivotal in pharmaceutical
data analytics and automation. ' This review discusses
about the impact of AI around drug discovery,
development, supply chain management, quality control
and quality assurance pharmacovigilance, nanobots,
personalised medicine.’

Machine learning
Abranch of Al and computer science known as ML focuses
on algorithms and data to simulate human learning and
slowly enhance the accuracy of Al, as shown in Figure 1.
Significant opportunities arise from integrating proteomic
and genomic analytics with AI algorithms for drug
development.®

ML enhances drug discovery by aiding in repurposing,
drug-protein interaction prediction, efficacy assessment,
and toxicity prediction. It streamlines R&D, reduces costs,
increases lead optimization, and lessens animal testing,
while improving patient compliance and treatment
efficiency using real-world data.

Types of ML includes (as shown in Figure 1):

Supervised learning
Supervised learning uses labelled data to train algorithms
for prediction and classification tasks. It identifies
relationships between input variables and a target
output, enabling models to make accurate, task-specific
decisions based on verified data and explicit guidance for
determining outcomes.’

In pharmaceuticalindustry supervisedlearningis used to
predict drug efficacy and key pharmacokinetic properties,
including absorption, distribution, metabolism, and
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The role of Al in pharmaceutical industry

excretion (ADME). These models are typically trained on
large datasets containing thousands of drug compounds,
utilizing molecular descriptors like logP and molecular
weight as input features. They mainly classify a drug’s
metabolic stability by understanding its accuracy rates
frequently surpassing 80%. This predictive strength is
especially valuable in the early stages of drug development,

Table 1. Explanation of different techniques of supervised learning®

where it helps streamline the process by identifying high-
potential candidates, and reduce the costs.”

Supervised learning comprises of some significant
techniques such as support vector machines (SVMs),
k-nearest neighbours (kNNs), Naive Bayes, Decision
Trees, AdaBoost, Random Forests, which is as shown in

Table 1, Figure 1.

Supervised learning

. Description Application Reference
techniques P PP
Novel chemical series that are active against GPCR s have
SVMs have demonstrated strong performance in virtual  been successfully predicted by SVMs utilizing customized
SVMs screening by effectively identifying structurally diverse  training and validation datasets. They have also been used 89
compounds with similar biological activity. recently in precision psychiatry to diagnose mental illnesses like
Alzheimer's, schizophrenia, and depression.
. o - The kNNs algorithm is used to identify significant patterns
It is commonly applied in disease prediction. . L
, ) . ) related to prescribing activities such as class of drugs, doses that
kNNs’ algorithms, have drawn increased attention h - . o
kNNs A ) - are prescribed, and treatment procedure. Utilizing ML algorithms ;
in bioinformatic tasks, notably vaccination target ' . L ]
- such as KNN, in healthcare systems it helps in improving
prediction. . . . S
decision-making and improve efficiencies.
The Naive Bayes classifier assigns the class with the . . - -
) e By 8 . Naive bayes is used as a prediction model for myelotoxicity by
. highest likelihood as the most likely outcome by using : . . S 213
Naive Bayes , . s . drug induction. In one of the study is shows overall prediction :
Bayes' theorem to predict the probability of input data oo L
) . : accuracy is 94% for the training set and for the external test set.
belonging to a class based on independent attributes.
Decision trees are effective visual tools for risk analysis ~ Decision trees are used in pharmaceutical QSAR predictions,
Decision trees and decision-making, easily understood without handling diverse datasets and providing clear, interpretable 1415
complex math knowledge. outputs for complex, nonlinear relationships.
AdaBoost enhances classification by combining weak . S . .
B . : Drug-protein prediction is typically approached as a matrix
learners into a strong model. Its improved version treats ) .
S . S P completion or scoring task. We enhanced the AdaBoost .
AdaBoost drug-protein interaction prediction as a classification ; ) I .
o . . ) algorithm to reframe this problem as a classification task,
task, achieving higher accuracy in matrix completion . . -
) improving prediction performance.
on public datasets.
Random Forests facilitate feature selection, . . .
- S ) Random Forests have shown superior prediction, effectively
classification, and regression in drug discovery. P Lo .
. ) AP - classifying monoclonal antibodies with over 70% subcutaneous
They improve ligand-protein affinity prediction, S8

R fi . ) ;
andom forests handle incomplete data, and need little tuning. RFs

also enhance genomic analysis and drug response
prediction, boosting virtual screening accuracy.

bioavailability. In oral bioavailability studies, a simplified
RF model outperformed other ML methods by accurately
distinguishing compounds with high or low absorption.

SVM, support vector machine; kNN, k-nearest neighbour; RF, Random forest; ML, machine learning; GPCR, G-Protein coupled receptors; QSAR, Quality Structure

activity relationships.

Figure 1. Classification of Al
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Unsupervised learning comprises of some significant
techniques such as clustering algorithms, dimensionality
reduction, anomaly detection, association rule mining,
topic modelling as shown in Table 2.

Deep learning

DL, a subset of ML, uses multiple hierarchical layers
to process data, where each layer builds on simpler
abstractions from the previous one. These layers apply
linear and nonlinear transformations to extract features
at various levels. Models like long short-term memory
(LSTM), generative adversarial networks (GANs), and
deep convolutional neural networks (CNNs) enable
understanding of complex patterns directly from raw
data, allowing high-level abstraction and powerful data
representation, as shown in Figure 1.%

Generative adversarial networks

In the pharmaceutical product development industry,
generative adversarial networks are often used to create
novel chemical structures and thereafter improve
their properties. The GANs architecture consists of a
discriminative network that assesses the quality of the
new molecular entities and a generative network that
synthesizes these, which makes possible the development
of structural diversity and functionally optimized drug
candidates, as shown in Figure 1.

Long short-term memory

LSTMs are a subtype of recurrent neural networks
characterized by their excellent ability to recognize
and forecast temporal correlations. They have found
application in pharmacokinetics and pharmacodynamics,
assisting in predicting drug concentration-time curves
and evaluating the efficacy of drugs as shown in Figure 1.2

Convolutional neural networks
Inspired by the anatomical organisation of the visual
cortex in animals, this advanced class of DL architectures

was created especially for the processing of data with
a grid-like arrangement, like visual representations.
Convolutional, pooling, and fully connected layers are the
three basic layers (or core components) that are typically
used to form CNNs, which are essentially mathematical
constructs. While the final layer, the fully connected layer,
is in charge of converting the extracted features into the
final output, like classification results, the first two layers,
the convolutional and pooling layers, are mostly involved
in the feature extraction process as shown in Figure 1.%

Recurrent neural networks (RNNs)

These are DL models ideal for sequential data, retaining
pastinput context. They are used in time series forecasting,
speech recognition, and NLP, and in bioinformatics for
analysing protein, RNA, and DNA sequences, aiding in
gene prediction and protein structure analysis as shown
in Figure 1.%

Autoencoder

Is an auto-associative neural network that mimics its
input, having an output which is identical to the input.
The AE network employs a set of recognition weights to
transform an input vector into a code vector.”” From the
code vector, a rough reconstruction of the original input is
then reconstructed by a second set of generating weights.
This basic AE serves as the foundation for training deep
networks, allowing independent training of each layer
of the deep network while leveraging autoencoding
principles as shown in Figure 1.*!

Artificial neural networks (ANNs)

It was designed based on how the human brain operates.
Such networks consist of processing units linked together
in an artificial neurone, referred to at times as nodes or
perceptron’s, which receive inputs and generate outputs
accordingly.’® This process involves weighting and
aggregating the inputs through an activation function,
followed by computing the outputs using a predefined

Table 2. The description and application of different techniques under unsupervised learning

Unsupervised learning techniques Description

Application Reference

Clustering methods group data points based on inherent
similarities, revealing natural structures in complex
datasets. They are unsupervised in nature and help
uncover hidden patterns without prior labelling.

Clustering algorithms

These techniques reduce the number of variables in
high-dimensional datasets while preserving the essential
information, enhancing visualization and interpretation.

Dimensionality reduction

Anomaly detection identifies unusual data points that
significantly deviate from expected behaviour. This helps  entry errors, or unusual trends in clinical data for 222
highlight safety issues or data quality concerns.

Anomaly detection

A method to find significant relationships or co-
occurrences between variables in large datasets. It helps
generate interpretable rules from raw data.

Association Rule Mining

Topic modelling techniques extract hidden thematic
structures from large volumes of unstructured text using

Topic Modelling
probabilistic models like LDA.

Used for analysing chemical structures, gene
expression profiles, and patient datasets to enable 616
target identification and disease classification.

Applied in analysing imaging data, drug activity
datasets, and gene expression profiles to extract 1920
critical features and enable informed decisions.

Used in detecting adverse drug reactions, data

pharmacovigilance.

Supports identification of drug-drug interactions,
co-prescription patterns, and analysis of adverse 36
event reports.

Used to mine scientific literature, clinical reports,
and social media to uncover research trends, 24,25
patient opinions, or emerging fields.
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transfer function. By passing information through
multiple neurons, ANNs enable the transformation of
inputs into the final output as shown in Figure 1.*

Applications of AI in pharmaceutical sector

The application of AI in the pharmaceutical and
healthcare sectors encompasses a wide range of areas,
which includes: drug discovery and development,
pharmaceutical manufacturing, insulin development,
nanobots, personalised medicine, clinical application,
quality control and quality assurance, pharmacovigilance,
gene biomarker, drug repurposing as shown in Figure 2.

Al in drug design and discovery

By dramatically speeding up the process of finding and
developing novel therapies, from fundamental research to
the right candidate, Al is transforming the drug discovery

industry. Conventional drug discovery can be time
consuming and resources demanding relying on iterative
screening.* Algorithms based on Al can, however, analyse
such huge datasets as proteomic, clinical, and genomic
data rapidly to predict the efficacy of drug candidates, as
well as to find potential targets for the drugs, as shown
in Figure 2.

The first step in the drug development process is
the identification of new molecular targets. AI has
demonstrated good potential in the very first stage of the
drug discovery process that is the de novo drug design.
The next step in the process is determining the kinetic
parameters of binding to a specified target, its affinity, and
other relevant characteristics. *°

Target identification
Target identification in drug development involves finding

®
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Figure 2. Application of Al in different pharmaceutical domain

o Al Techniques:
Machine learning,
Deep learning.

« Using biological
datasets, identifying
novel drug targeting.

e Al Techniques:
Virtual screening,
predictive models

e Rapid screening of
chemical libraries
drug candidates.

e Al Techniques: QSAR
models, reinforcement
learning, patient analysis, machine
requirement algorithms. learning.

¢ Refining drug ¢ |dentify and report
candidates to improve adverse effect such as
efficacy and safety drug toxicity and
profiles. resistance.

e Al Techniques: NLP-
based sentiment

Figure 3. Al in drug discovery
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proteins or molecules whose activity changes disease
states, as shown in Figure 3. ML models use genomic,
proteomic, and interaction data to identify likely targets.
DL platforms like DeepChem and AlphaFold2, supported
by databases such as PubChem and ChEMBL, enhance
this process, as mentioned in Table 3. Graph-based
methods and GNNs uncover the causal links between
gene and disease. A decision tree meta-classifier trained
on network data—including transcription, metabolism,
and localization—has been used to predict druggable
genes, aiding precision in early-stage drug discovery.***

Screening of the compound with the help of AI

AT can forecast the interaction between medications and
proteins, approximate the bioactivities of compounds, and
assist with virtual screening and optimisation. Predictive
models that can identify compounds that are most
likely to bind to a target protein is one way Al performs
virtual screening. The models are trained on different
types of data, including molecular descriptors, structural
information, and known protein-ligand complexes,
as per Figure 3.3

Pre-clinical and clinical development

Predicting potential drug responses is a vital component
of the drug design process. Similarity-based or feature-
based ML methods can be employed to forecast the effect
of drug on individual cells and to assess the efficacy of
drug-target interactions based on binding affinity or free
energy of binding, as explained in Figure 3. Similarity
methods operate on the premise that drugs with similar
characteristics target similar proteins, while feature-based
methods identify specific features of drugs and targets,
which are then input into a classifier as a drug-target
feature vector. DL approaches, such as DeepConv-DTI
and DeepAffinity, exemplify these methods, as they learn
embeddings for drugs and targets using convolutional and
attention mechanisms.*

Al in FDA approval and post-marketing surveillance

Natural language processing (NLP) can be applied to
analyze scientific literature to identify and report adverse
effects, such as drug toxicity or resistance, and generate
automated assessments for regulatory approvals (like FDA)
or patent submissions. Additionally, NLP-based sentiment
analysis techniques can assist in recommending drugs, as
shown in Figure 3. ML systems can also predict potential
product sales, enabling pharmaceutical companies to
better allocate and optimize their business resources. **

Case Study

With an overview of the Al software in drug discovery, let’s
now consider real-world applications. The following case
studies illustrate the significant impact these technologies
have had in the field.

The case study “BenevolentAI — Using Al to Disrupt
the Traditional Drug Discovery Process” showcases how
UK-based BenevolentAl uses its Al platform, Bioscience
Machine Brain (BMB), to revolutionize drug discovery. By
cutting early-phase and preclinical testing from 3-6 years
to 1-2 years and reducing costs by 60%, BAI streamlines
development and boosts efficiency. The platform rapidly
identified promising compounds for ALS, now in clinical
trials. The study explores BAT’s potential to disrupt the
pharmaceutical industry amid growing Al competition.
As health-tech startups and pharma giants embrace Al
significant progress in treating severe diseases is becoming
increasingly achievable.

Al in clinical trials

Patient recruitment and retention remain critical
challenges in the clinical trial process, contributing to
significant delays and increased costs. Recruitment alone
can consume up to 30% of clinical trial timelines and costs,
often leading to extended delays and financial losses. AI
has emerged as a transformative tool to address these
issues, streamlining patient identification and engagement
through advanced data analytics. Al algorithms can
analyse vast repositories of electronic health records,
genomic data, and clinical histories to identify potential

Table 3. Some examples of existing database used in the drug discovery and development®”

Database Description

PubChem A free public dataset consisting of large information regarding chemical and bioactivity

ChemIDplus An open access resource containing standardized chemical structure and nomenclature flies.

DrugBank A large collection of drug’s pharmacokinetics, pharmacodynamics, mechanism of action of the drug, uses, side effects.
SIDER It consists of marketed medicine and its adverse drug reaction.

Kyoto Encyclopedia of genes and genomes

(KEGG) development
BindingDB

Manually Annotated Targets and Drugs
Online Resource (MATADOR)

Therapeutic target database (TTD)

A database consists of manually illustrated about the encapsulate molecular interactions and reactions for drug

It consists of information about the binding affinity between drug and the target.
The dataset consists of medical indications, adverse effects, drug metabolization, pathways, and gene ontology

A database consists of therapeutic target between protein and nucleic acid.

Human microRNA disease database (HMDD) A database that curated experiment-supported evidence for human microRNA (miRNA) and disease associations

GDSC A dataset consists of drug responses and genomic biomarker
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participants who meet the eligibility criteria, as shown
in Figure 2.%

Clinical trials for Alzheimer’s disease encounter several
difficulties, such as unequal participant distribution and
high screen failure rates. These issues can be effectively
resolved by artificial in AI, which is explained by
expanding volume and complexity of biological data.*

Without the need for explicit programming, ML
algorithms can improve predictive accuracy by revealing
hidden patterns in data. In one study, 321 ADNI
participants with baseline AT(N) biomarkers were
analysed using a DL model to differentiate between rapid
and slow disease progression. This was accomplished by
grouping patients according to the pattern of their disease
progression over time using an unsupervised time-
series technique called dynamic time warping (DTW) in
conjunction with Ward’s linkage clustering.”

Al is being used by Alto Neuroscience, a 2019 startup,
to create brain biomarkers for focused mental health
therapies. ALTO-100, ALTO-202, and ALTO-300 are
among the several medications for MDD and PTSD that
are undergoing clinical trials. Patients with Al-identified
biomarkers had greater response rates (61% vs. 33%),
according to positive Phase Ila results for ALTO-100.
Through partnerships and funding rounds, Alto has
raised more than $100 million to further its Al-driven
drug development.*

Al in pharmacovigilance
Al systems integrate diverse data sources—like EHRSs,
social media, and patient forums—to identify adverse
drug reactions (ADRs). This comprehensive approach
captures patient experiences often missed by traditional
methods, enhancing drug safety monitoring and post-
market surveillance.* There will be unstructured data
like social media comments or patient discussions in
forums. AI employs NLP to extract this data to analyse
such unstructured data. It identifies different patterns and
signals related to ADRs usually overlooked by traditional
methods.*> Pattern recognition uses ML algorithms
designed to recognize patterns in large datasets. Real-time
monitoring with the help of AI leads to the immediate
detection of ADRs as they occur, and facilitates quick
responses to potential safety issues. ADR detection is
more effective with Al as it relies mainly on the quality and
quantity of the data it processes, as shown in Figure 2.
Pharmacovigilance is being revolutionized by a number
of Al-powered tools that improve adverse event detection
and drug safety monitoring for example AstraZeneca’s
which uses Al-based system to detect adverse events and
support regulatory compliance, but it requires skilled
personnel and may miss rare events.119 IBM Watson
for Drug Safety uses ML and NLP to analyze a variety of
structured and unstructured data, improving decision-
making. Adverse Health Analytics used SignalMine to
monitor adverse event and risk assessment with increased

efficiency. Oracle’s Argus Safety uses Al to automate signal
detection and adverse event reporting.*

Al in pharmaceutical manufacturing

Advancements in pharmaceutical manufacturing are
increasingly driven by intelligent systems designed to
replicate human expertise in response to rising process
complexity and demands for efficiency and quality. Many
of the pharmaceutical processes we use today are capable
of being automated using more advanced methodologies
such as computational fluid dynamics (CFD), which
employs  Reynolds-Averaged Navier-Stokes solvers
to simulate agitation and stress in process equipment
including stirred tanks. The flow-related challenges, such
as turbulence, can also be addressed with techniques
such as large eddy simulations and direct numerical
simulations. In solid dosage forms, such as tablets, Alcan
help developers optimize formulations by evaluating
critical parameters during formulation development.®

Alcanalsohelp predictand evaluate the physicochemical
stability of oral formulations by reviewing vast data sets of
drug properties, formulation variables, and environmental
factors. For parenteral, transdermal, and mucosal drug
delivery systems, Al can help optimize development
workflows by predicting the behaviour of formulations
and automation can enhance TNM parameters, including
pH, solubility and stability, as well as viscosity.”

Al can also help track constituents or particulates
in formulations and provide recommendations on
inspection instruments and timelines in order to deliver
realistic quality assessments. When it comes to biological
products, Al can help design proteins, peptides and nucleic
acid therapeutics with improved properties, leveraging
databases on protein structures and functions, to design
models for optimizing therapeutic safety, efficacy, and
immunogenicity. These models aid in maximizing
immunogenicity, safety, and effectiveness of treatments,
as shown in Figure 2.

Use of Al in medical device
Al used in medical devices with sophisticated data
analysis and automation capabilities is revolutionizing
healthcare. It makes diagnosis and treatment quicker and
more precise, particularly for complicated neurological
disorders like stroke, Alzheimer’s, and epilepsy.*® Al
systems can effectively process the massive amounts of data
generated by traditional tools like MRI and EEG to identify
abnormalities in the nervous system. DL algorithms
enhance medical imaging analysis and image recognition,
including the detection of liver disease via ultrasound and
radiology. By recording real-time cellular signals, Al also
aids in vitro diagnostics, improving treatment results and
diagnostic accuracy, as per Figure 2.%

The operation of smart wearables, which are being
utilized more in the fields of healthcare, sports,
rehabilitation,  entertainment, and smart home
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monitoring, depends heavily on Al and ML. Because of
its accessibility and ease of use, the wrist is the preferred
location for these devices. Smart wristbands are used in
healthcare to track cardiovascular activity, diabetes, and
heart failure. In one study it shows using sensor data
analysed by ML, created a wrist-worn fall detection device
for the elderly that achieved 91% accuracy in order to
identify atrial fibrillation."

Al used in diverse domain such as diagnostic tools,
wearable device, surgical devices, medical management,
as shown in Figure 4.

Al in nanobots

Nanobots robots that are just a few nanometres in
width—provide fantastic promise in drug delivery
because nanotechnology enables drugs to be delivered
to specific sites, thereby decreasing side effects and
enhancing efficacy”® (as per Figure 2). Nanomedicine
uses nanorobots (0.5-3 pm) made of carbon materials
to navigate capillaries, detect tissue damage, and deliver
targeted therapies. These robots can be tracked by doctors
to ensure they reach specific sites, such as tumours, for
treatment.”

Creating nanorobots requires advances in molecular
manufacturing, including programmable diamond
like structures for strength. While proteins excel at
self-assembly, diamond-based nanomachines promise
superior performance. Within 10-20 years, these tools
may become standard in medicine, offering physicians
powerful means to fight disease, aging, and poor health.”

The electrical characteristics of muscle, fat, and skin
tissue will all be reviewed to be able to maximize biosensors
operation with in-body antennas without sacrificing data
transmission. Nano-biosensors that could be used with
a nanorobot may rely on cutting-edge materials such
as functionalized carbon nanotubes (CNTs), where the
protective layer will help provide longevity for the entire
device. Additionally, platinum nanoparticles will achieve
both enhanced catalytic surface area and selectivity, which
will be beneficial for future glucose monitoring with
nano-biosensors.”® A 2 um glucose-specific nanorobot

biosensor operates in the bloodstream for 3 months, then
self-degrades for immune clearance. Replacing 1,100
annual blood tests, it enables wireless diabetes monitoring
with quarterly injections, ensuring durability, selectivity,
and compliance with biomedical safety for efficient data
collection.”

Al in insulin delivery

For patients with type 1 diabetes (PwD), an ideal treatment
would mimic natural insulin secretion by using artificial
technology (Figure 2). Automated insulin delivery (AID)
systems aim to provide this by combining three main
components: (1) a continuous glucose monitor (rtCGM)
for real-time tracking of glucose levels, (2) a system, like an
insulin pump, for precise insulin delivery as needed, and
(3) an algorithm that calculates the correct insulin dose
based on glucose data from the rtCGM. These algorithms
typically run on a smartphone or directly on the insulin
pump, which has the necessary processing and display
capabilities, as shown in Figure 2.7

Optimal insulin dosing is challenging due to delays in
glucose sensing and insulin absorption. Unlike natural
insulin, injected insulin acts peripherally first. Bi-
hormonal AID systems, or “Bionic Pancreas,” combine
insulin and glucagon to improve regulation, but
require stable glucagon formulations for effective and
practical use. *

AID algorithms not only consider current glucose
levels but also predict future changes to keep glucose in a
safe range (70-180 mg/dL). Over recent decades, various
algorithms have been developed for AID systems, each
with unique strengths and limitations.

Since the mid-2010s, reliable insulin pumps and rtCGM
systems have been available, and algorithm development
has progressed as well. In the U.S. and EU, two hybrid
AID systems are on the market: the MiniMed 670G by
Medtronic (since 2016) and the t:slim X2 CONTROL
IQ by Tandem (since 2019).>* In the EU, the Diabeloop
system, available since 2019, uses a handheld device with
an installed algorithm compatible with commercially
available insulin pumps (Kaleido) and rtCGMs (Dexcom

Artificial Intelligence in Medical

Devices

I 1

Diagnostic tools Wearable devices

Surgical devices Medicine management

Al examines medical
pictures, such as MRIs, CT
scans, and ECGs, to identify
abnormalities and illnesses, heart rate, sleep patterns,

such as cancerous lesions. physical activity.

Wearable Al provides individualized
health insights by tracking health

parameters including blood sugar,

Using real-time data, artificial Smart pill dispensers and other

intelligence  (AI)  enables Al-enabled gadgets help with

robotic systems to support dosing, drug adherence

accurate, less surgical monitoring, and customized

procedures for better results. medicine advice.

Figure 4. Al in medical device
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G6). Diabeloop has also partnered with Roche Diabetes
Care to support additional pumps in the future.*> The
CamAPS FX algorithm, developed at the University of
Cambridge and available in the EU since 2020, can be used
on Android smartphones with compatible pumps (Soil’s
Dana) and rtCGMs (Dexcom G6). Other AID systems,
such as the Omnipod 5 from Insulet, are expected to hit
the market soon.*”

Al in quality control and quality assurance
Pharmaceutical quality control is being revolutionized
by Al especially in the area of drug release prediction,
as shown in Figure 2. Tablet geometry, drug loading, and
compaction pressure are some of the factors that affect
drug release, which is evaluated through in vitro and in
vivo studies and is crucial in the development of new
products.® Drug release research can be complicated and
time-consuming using traditional spectrophotometric
and analytical techniques. Accurate predictions of
dissolution profiles, drug release rates, and disintegration
times are now possible thanks to Al techniques like ANN,
SVM and regression analysis.*

Quality control is greatly improved when AI and ML
are incorporated into Six Sigma documentation. ML
algorithms can use predictive analytics to examine past
data in order to spot patterns and anticipate possible
quality problems, allowing for proactive interventions
and risk reduction. By tracking usage trends, predictive
maintenance also aids in anticipating equipment failures.”
One of the top pharmaceutical companies used ML
models and Al-powered data collection to automate the
documentation process, track important quality metrics,
and identify possible deviations early. Data integrity and
compliance were also guaranteed by AI-driven validation
checks. This strategy promoted operational excellence
and continuous improvement by increasing efficiency,
lowering compliance risks, and fortifying overall quality
assurance.”’

Al in personalized medicine
Personalized medicine tailors’ prevention and treatment
based on an individuals molecular, physiological,
ecological, and behavioural traits. Unlike standardized
care, it uses specific medical data to design precise
strategies for disease management and improved overall
health outcomes, as shown in Figure 2. The amalgamation
of AT with precision medicine has yielded a paradigm shift,
as it utilizes sophisticated computational methodologies
to analyze medical and family history, as well as genomic
information, and electronic health records (EHRs). The
capacity of Al to scrutinize these datasets exceeds human
proficiency in discerning correlations among disparate
datasets, thereby furnishing profound insights into the
etiology of diseases and their therapeutic interventions.
ML constitutes a transformative technological
advancement that has fundamentally altered the

methodologies employed for the analysis and
interpretation of large-scale datasets within the precision
medicine, consequently facilitating the personalization
of therapeutic strategies. Al assumes a diverse array of
functions within precision medicine, tackling numerous
critical domains as shown in Table 4.

Al in drug repurposing

Drug repurposing, often called drug repositioning, drug
reprofiling or re-tasking, is the process of giving an existing
or investigational medication, even those that might be
found not approved for the original indication, as shown in
Figure 2. The safety profile of many medications is usually
known prior to repurposing can potentially reduce drug
development timelines and costs to get drugs to patients.”
Virtual screening uses Al to repurpose approved drugs
by rapidly analysing vast chemical and biological data.
Techniques like DL, NLP, and predictive modelling help
extract insights from complex datasets. This enhances
drug-target interaction prediction, reveals novel drug-
disease links, and streamlines the drug repurposing
process with greater speed and accuracy.*

The study evaluated applying ML models to repurpose
180 pre-approved drugs with potential efficacy for Pitt-
Hopkins syndrome (PTHS). The Prestwick chemical
library was screened to identify 55 Kv7.1 and 93 Nav1.8
inhibitors, which we identified as lead therapeutics for
potential PTHS intervention.®® We then compared our
results to a Bayesian ML model’s prediction in Assay
Central with the Bayesian ML model identifying 35 Kv7.1
and 64 Navl.8 inhibitors. The study illustrates how the
combined capacity of high-throughput screening (HTS)
and ML can be a useful framework for drug repurposing,
especially when exploring therapies for rare diseases.®

Ethical and regulatory considerations
The overview of patient data management, drug
development, and clinical decision-making. While these
technologies have the potential to improve the accuracy
and speed of medical research and treatment, they also
raise complex ethical and regulatory challenges.®

The regulation of Al in healthcare has been on the
validation of these technologies within strict legal and
scientific standards and is monitored strictly. The U.S.
Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) have published comprehensive
guidance on the safe adoption of digital tools, including
Software as a Medical Device (SaMD), to ensure their
performance and trustworthiness throughout their use
in healthcare workflows and drug development.® The
Important frameworks such as Good Practice (GxP)
and evaluation protocols outlined by these agencies
is crucial to secure the accuracy and reliability of Al-
driven applications before they are embedded into
clinical practice.

Emphasizing of the World Health Organization (WHO)
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Table 4. Examples of some area where Al plays role in the development of personalised medicine.

Parameter Description

Genomic data
analysis

Personalized

treatment planning effects based on individual health profiles.*®

Real-time monitoring

and adjustments
) healthcare management.*®

Integration of

multimodal data s . .
guiding more effective, personalized treatments.*

Genomic data analysis is a pivotal area where Al demonstrates its potential, as understanding a disease's genetic profile for creating
targeted treatment plans. ML and DL technologies enable the analysis of vast datasets to identify mutations, gene expressions, and
genetic variations associated with various diseases.”

Al enhances personalized treatment by analyzing genetics, clinical data, and patient responses to recommend tailored therapies. For
example, in cancer care, algorithms assess tumour genetics to identify effective treatments, improving outcomes and minimizing side

Al enables real-time monitoring through wearables and health apps, analysing data to detect complications or poor treatment responses.
This allows timely care adjustments—like optimizing insulin doses for diabetics—improving outcomes through personalized, responsive

Al applied to multisource data—genetic, clinical, imaging, and lifestyle—enhances disease understanding and screening. By linking
genomic data with medical imaging, Al reveals correlations between genetic variations and disease traits, improving diagnosis and

globally, the need for robust oversight, ethical integrity, and
fairness in the application of Al to health that guides and
highlights the necessity for transparency, accountability,
and inclusive development processes to safeguard public
trust and equity during the digital transformation of
health systems.®* In case of digital healthcare, the priority
is to protect the patient privacy. The Al systems routinely
process vast repositories of sensitive personal health
information. Regulations such as the European General
Data Protection Regulation (GDPR) and the U.S. Health
Insurance Portability and Accountability Act (HIPAA)
establish stringent requirements for managing consent,
minimizing data use, and preventing unauthorized access,
making it mandatory for organizations to implement
strong safeguards throughout the lifecycle of patient data.

There are high chances of data breaches which is a
major concern apart from ethical guidelines which also
involves the possible introduction and amplification
of biases by AI models. Inaccurate or unrepresentative
datasets can skew predictions, leading to care disparities
and perpetuating inequities within the healthcare system
an issue that has prompted calls from policymakers and
global health authorities for routine audits and the use of
diverse datasets in AT model development.

Few of the major tools those are required to improve the
model transparency, explain ability tools such as SHapley
Additive exPlanations (SHAP) and Local Interpretable
Model-agnostic Explanations (LIME) have become
essential. These methods allow both practitioners and
regulators to understand which features most influence
an algorithms decision-making process, supporting
responsible  clinical deployment and regulatory
compliance.®%

Future of Al in pharma world

Al is rapidly transforming medicine through data
integration, aiding healthcare delivery and drug
development. Its collaboration with pharmaceutical
firms enhances patient care. Notable examples include
DeepMind’s partnership with the NHS on kidney injury
and the UK’s 100,000 Genomes Project, involving Roche,
Merck, Berg, and Biogen, to apply Al in rare disease

research. Atomwise is recognized as a leader in healthcare
Al, using DL for the first time to discover new small
molecule drugs. Benevolent Al is another form of AI now
being used in drug development. Numerate concentrates
on ligand chemistry, ADMET, and combinatorial ML
in conjunction with traditional approaches, placing
particular emphasis on the transformation of novel
medicinal discovery by addressing significant therapeutic
voids through the analysis of extensive datasets related
to drug development via algorithmic applications. These
improvements are expected to significantly facilitate
healthcare services, stratified medicine, clinical trial
efficiency, and other domains. At present, the estimated
cost of successfully launching a pharmaceutical product
onto the market is approximately US$3 billion covering a
15-year time frame.

Conclusion

In summary, implementing Al in pharmacy may totally
reform the profession and yield significant benefits for
patients and pharmacists alike. It may improve medication
management, enhance patient outcomes, facilitate drug
discovery, and accelerate new drug development through
greater accuracy and safety in medication administration.
Al-directed advancements may also help decrease
healthcare costs. While there are some hurdles facing Al
adoption in the pharmacy sector, its potential to transform
the pharmacy space is clear.

AT has impacted numerous areas in the pharmaceutical
sector, including drug discovery and development, as well
as manufacturing and QA. Where we have seen major
changes, mainly in terms of speeding up processes, making
them more efficient, and improving outcomes even just as
a result of the volume of data that can now be processed,
accelerated, and analysed, the ability to recognize and
generate patterns and make assumptions from data and
enhance decision making with data, and personalization
in individual therapies, have certainly been a large part
of the overall impact of AL It has also assisted regulatory
compliance, data security, and intellectual property areas
in which there are still issues to be addressed, and enhance
ongoing efforts in each of these areas.
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Overall, I feel that AI will play a significant role in the
advancement of the pharmaceutical industry, innovation
and development, and improving outcomes for patients in
the future, and it is likely to shape within the next decade,
the overall future of healthcare too.
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