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Introduction
One of the world’s most research-intensive industries, 
the pharmaceutical sector consistently produces cutting-
edge medications that enhance and save lives.1 Traditional 
drug discovery is time intensive and resource demanding, 
often relying on interactive screening. The advent of 
new technologies such as machine learning (ML) is 
reshaping the conventional processes of drug discovery, 
development, and even the entire lifecycle management in 
the pharmaceutical industry.2

Artificial intelligence (AI) combines various smart 
behaviours and processes. These are created by computer 
models, algorithms, or a set of rules. They allow machines 
to mimic human thinking skills such as learning and 
problem-solving.3 In general we can conclude the process 
of mimicking systems that behave like humans is called 
AI. ML is a part of AI. It works by using data-trained 
algorithms. Deep learning (DL) is a subset of ML that 
somewhat based on how the human brain is structured.4 
AI, ML and DL are increasingly pivotal in pharmaceutical 
data analytics and automation. 1 This review discusses 
about the impact of AI around drug discovery, 
development, supply chain management, quality control 
and quality assurance pharmacovigilance, nanobots, 
personalised medicine.3

Machine learning
A branch of AI and computer science known as ML focuses 
on algorithms and data to simulate human learning and 
slowly enhance the accuracy of AI, as shown in Figure 1. 
Significant opportunities arise from integrating proteomic 
and genomic analytics with AI algorithms for drug 
development.5 

ML enhances drug discovery by aiding in repurposing, 
drug-protein interaction prediction, efficacy assessment, 
and toxicity prediction. It streamlines R&D, reduces costs, 
increases lead optimization, and lessens animal testing, 
while improving patient compliance and treatment 
efficiency using real-world data.6

Types of ML includes (as shown in Figure 1):

Supervised learning
Supervised learning uses labelled data to train algorithms 
for prediction and classification tasks. It identifies 
relationships between input variables and a target 
output, enabling models to make accurate, task-specific 
decisions based on verified data and explicit guidance for 
determining outcomes.5 

In pharmaceutical industry supervised learning is used to 
predict drug efficacy and key pharmacokinetic properties, 
including absorption, distribution, metabolism, and 
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excretion (ADME). These models are typically trained on 
large datasets containing thousands of drug compounds, 
utilizing molecular descriptors like logP and molecular 
weight as input features. They mainly classify a drug’s 
metabolic stability by understanding its accuracy rates 
frequently surpassing 80%. This predictive strength is 
especially valuable in the early stages of drug development, 

where it helps streamline the process by identifying high-
potential candidates, and reduce the costs.7

Supervised learning comprises of some significant 
techniques such as support vector machines (SVMs), 
k-nearest neighbours (kNNs), Naïve Bayes, Decision 
Trees, AdaBoost, Random Forests, which is as shown in 
Table 1, Figure 1.

Table 1. Explanation of different techniques of supervised learning6

Supervised learning 
techniques

Description Application Reference

SVMs
SVMs have demonstrated strong performance in virtual 
screening by effectively identifying structurally diverse 
compounds with similar biological activity.

Novel chemical series that are active against GPCR s have 
been successfully predicted by SVMs utilizing customized 
training and validation datasets. They have also been used 
recently in precision psychiatry to diagnose mental illnesses like 
Alzheimer's, schizophrenia, and depression.

8,9

 kNNs

It is commonly applied in disease prediction. 
kNNs’ algorithms, have drawn increased attention 
in bioinformatic tasks, notably vaccination target 
prediction.

The kNNs algorithm is used to identify significant patterns 
related to prescribing activities such as class of drugs, doses that 
are prescribed, and treatment procedure. Utilizing ML algorithms 
such as KNN, in healthcare systems it helps in improving 
decision-making and improve efficiencies.

10,11

Naïve Bayes

The Naive Bayes classifier assigns the class with the 
highest likelihood as the most likely outcome by using 
Bayes' theorem to predict the probability of input data 
belonging to a class based on independent attributes.

Naïve bayes is used as a prediction model for myelotoxicity by 
drug induction. In one of the study is shows overall prediction 
accuracy is 94% for the training set and for the external test set.

12,13

Decision trees
Decision trees are effective visual tools for risk analysis 
and decision-making, easily understood without 
complex math knowledge.

Decision trees are used in pharmaceutical QSAR predictions, 
handling diverse datasets and providing clear, interpretable 
outputs for complex, nonlinear relationships.

14,15

AdaBoost

AdaBoost enhances classification by combining weak 
learners into a strong model. Its improved version treats 
drug-protein interaction prediction as a classification 
task, achieving higher accuracy in matrix completion 
on public datasets.

Drug-protein prediction is typically approached as a matrix 
completion or scoring task. We enhanced the AdaBoost 
algorithm to reframe this problem as a classification task, 
improving prediction performance.

16,17

Random forests

Random Forests facilitate feature selection, 
classification, and regression in drug discovery. 
They improve ligand-protein affinity prediction, 
handle incomplete data, and need little tuning. RFs 
also enhance genomic analysis and drug response 
prediction, boosting virtual screening accuracy.

Random Forests have shown superior prediction, effectively 
classifying monoclonal antibodies with over 70% subcutaneous 
bioavailability. In oral bioavailability studies, a simplified 
RF model outperformed other ML methods by accurately 
distinguishing compounds with high or low absorption.

5,18

SVM, support vector machine; kNN, k-nearest neighbour; RF, Random forest; ML, machine learning; GPCR, G-Protein coupled receptors; QSAR, Quality Structure 
activity relationships.

Figure 1. Classification of AI
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Unsupervised learning comprises of some significant 
techniques such as clustering algorithms, dimensionality 
reduction, anomaly detection, association rule mining, 
topic modelling as shown in Table 2.

Deep learning
DL, a subset of ML, uses multiple hierarchical layers 
to process data, where each layer builds on simpler 
abstractions from the previous one. These layers apply 
linear and nonlinear transformations to extract features 
at various levels. Models like long short-term memory 
(LSTM), generative adversarial networks (GANs), and 
deep convolutional neural networks (CNNs) enable 
understanding of complex patterns directly from raw 
data, allowing high-level abstraction and powerful data 
representation, as shown in Figure 1.26

Generative adversarial networks 
In the pharmaceutical product development industry, 
generative adversarial networks are often used to create 
novel chemical structures and thereafter improve 
their properties. The GANs architecture consists of a 
discriminative network that assesses the quality of the 
new molecular entities and a generative network that 
synthesizes these, which makes possible the development 
of structural diversity and functionally optimized drug 
candidates, as shown in Figure 1.27 

Long short-term memory 
LSTMs are a subtype of recurrent neural networks 
characterized by their excellent ability to recognize 
and forecast temporal correlations. They have found 
application in pharmacokinetics and pharmacodynamics, 
assisting in predicting drug concentration-time curves 
and evaluating the efficacy of drugs as shown in Figure 1.28 

Convolutional neural networks 
Inspired by the anatomical organisation of the visual 
cortex in animals, this advanced class of DL architectures 

was created especially for the processing of data with 
a grid-like arrangement, like visual representations. 
Convolutional, pooling, and fully connected layers are the 
three basic layers (or core components) that are typically 
used to form CNNs, which are essentially mathematical 
constructs. While the final layer, the fully connected layer, 
is in charge of converting the extracted features into the 
final output, like classification results, the first two layers, 
the convolutional and pooling layers, are mostly involved 
in the feature extraction process as shown in Figure 1. 29

Recurrent neural networks (RNNs)
These are DL models ideal for sequential data, retaining 
past input context. They are used in time series forecasting, 
speech recognition, and NLP, and in bioinformatics for 
analysing protein, RNA, and DNA sequences, aiding in 
gene prediction and protein structure analysis as shown 
in Figure 1.30

Autoencoder 
Is an auto-associative neural network that mimics its 
input, having an output which is identical to the input. 
The AE network employs a set of recognition weights to 
transform an input vector into a code vector.17 From the 
code vector, a rough reconstruction of the original input is 
then reconstructed by a second set of generating weights. 
This basic AE serves as the foundation for training deep 
networks, allowing independent training of each layer 
of the deep network while leveraging autoencoding 
principles as shown in Figure 1.31 

Artificial neural networks (ANNs)
It was designed based on how the human brain operates. 
Such networks consist of processing units linked together 
in an artificial neurone, referred to at times as nodes or 
perceptron’s, which receive inputs and generate outputs 
accordingly.18 This process involves weighting and 
aggregating the inputs through an activation function, 
followed by computing the outputs using a predefined 

Table 2. The description and application of different techniques under unsupervised learning

Unsupervised learning techniques Description Application Reference

Clustering algorithms

Clustering methods group data points based on inherent 
similarities, revealing natural structures in complex 
datasets. They are unsupervised in nature and help 
uncover hidden patterns without prior labelling.

Used for analysing chemical structures, gene 
expression profiles, and patient datasets to enable 
target identification and disease classification.

6,16

Dimensionality reduction
These techniques reduce the number of variables in 
high-dimensional datasets while preserving the essential 
information, enhancing visualization and interpretation.

Applied in analysing imaging data, drug activity 
datasets, and gene expression profiles to extract 
critical features and enable informed decisions.

19,20

Anomaly detection
Anomaly detection identifies unusual data points that 
significantly deviate from expected behaviour. This helps 
highlight safety issues or data quality concerns.

Used in detecting adverse drug reactions, data 
entry errors, or unusual trends in clinical data for 
pharmacovigilance.

21,22

Association Rule Mining
A method to find significant relationships or co-
occurrences between variables in large datasets. It helps 
generate interpretable rules from raw data.

Supports identification of drug-drug interactions, 
co-prescription patterns, and analysis of adverse 
event reports.

23,6

Topic Modelling
Topic modelling techniques extract hidden thematic 
structures from large volumes of unstructured text using 
probabilistic models like LDA.

Used to mine scientific literature, clinical reports, 
and social media to uncover research trends, 
patient opinions, or emerging fields.

24,25
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transfer function. By passing information through 
multiple neurons, ANNs enable the transformation of 
inputs into the final output as shown in Figure 1.32 

Applications of AI in pharmaceutical sector
The application of AI in the pharmaceutical and 
healthcare sectors encompasses a wide range of areas, 
which includes: drug discovery and development, 
pharmaceutical manufacturing, insulin development, 
nanobots, personalised medicine, clinical application, 
quality control and quality assurance, pharmacovigilance, 
gene biomarker, drug repurposing as shown in Figure 2.33

AI in drug design and discovery
By dramatically speeding up the process of finding and 
developing novel therapies, from fundamental research to 
the right candidate, AI is transforming the drug discovery 

industry. Conventional drug discovery can be time 
consuming and resources demanding relying on iterative 
screening.34 Algorithms based on AI can, however, analyse 
such huge datasets as proteomic, clinical, and genomic 
data rapidly to predict the efficacy of drug candidates, as 
well as to find potential targets for the drugs, as shown 
in Figure 2. 

The first step in the drug development process is 
the identification of new molecular targets. AI has 
demonstrated good potential in the very first stage of the 
drug discovery process that is the de novo drug design. 
The next step in the process is determining the kinetic 
parameters of binding to a specified target, its affinity, and 
other relevant characteristics. 35

Target identification
Target identification in drug development involves finding 

Figure 2. Application of AI in different pharmaceutical domain

Figure 3. AI in drug discovery
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proteins or molecules whose activity changes disease 
states, as shown in Figure 3. ML models use genomic, 
proteomic, and interaction data to identify likely targets. 
DL platforms like DeepChem and AlphaFold2, supported 
by databases such as PubChem and ChEMBL, enhance 
this process, as mentioned in Table 3. Graph-based 
methods and GNNs uncover the causal links between 
gene and disease. A decision tree meta-classifier trained 
on network data—including transcription, metabolism, 
and localization—has been used to predict druggable 
genes, aiding precision in early-stage drug discovery.34,36 

Screening of the compound with the help of AI
AI can forecast the interaction between medications and 
proteins, approximate the bioactivities of compounds, and 
assist with virtual screening and optimisation. Predictive 
models that can identify compounds that are most 
likely to bind to a target protein is one way AI performs 
virtual screening. The models are trained on different 
types of data, including molecular descriptors, structural 
information, and known protein-ligand complexes, 
as per Figure 3.34,36

Pre-clinical and clinical development 
Predicting potential drug responses is a vital component 
of the drug design process. Similarity-based or feature-
based ML methods can be employed to forecast the effect 
of drug on individual cells and to assess the efficacy of 
drug-target interactions based on binding affinity or free 
energy of binding, as explained in Figure 3. Similarity 
methods operate on the premise that drugs with similar 
characteristics target similar proteins, while feature-based 
methods identify specific features of drugs and targets, 
which are then input into a classifier as a drug-target 
feature vector. DL approaches, such as DeepConv-DTI 
and DeepAffinity, exemplify these methods, as they learn 
embeddings for drugs and targets using convolutional and 
attention mechanisms.34

AI in FDA approval and post-marketing surveillance

Natural language processing (NLP) can be applied to 
analyze scientific literature to identify and report adverse 
effects, such as drug toxicity or resistance, and generate 
automated assessments for regulatory approvals (like FDA) 
or patent submissions. Additionally, NLP-based sentiment 
analysis techniques can assist in recommending drugs, as 
shown in Figure 3. ML systems can also predict potential 
product sales, enabling pharmaceutical companies to 
better allocate and optimize their business resources. 34

Case Study
With an overview of the AI software in drug discovery, let’s 
now consider real-world applications. The following case 
studies illustrate the significant impact these technologies 
have had in the field.

The case study “BenevolentAI – Using AI to Disrupt 
the Traditional Drug Discovery Process” showcases how 
UK-based BenevolentAI uses its AI platform, Bioscience 
Machine Brain (BMB), to revolutionize drug discovery. By 
cutting early-phase and preclinical testing from 3–6 years 
to 1–2 years and reducing costs by 60%, BAI streamlines 
development and boosts efficiency. The platform rapidly 
identified promising compounds for ALS, now in clinical 
trials. The study explores BAI’s potential to disrupt the 
pharmaceutical industry amid growing AI competition. 
As health-tech startups and pharma giants embrace AI, 
significant progress in treating severe diseases is becoming 
increasingly achievable.

AI in clinical trials
Patient recruitment and retention remain critical 
challenges in the clinical trial process, contributing to 
significant delays and increased costs. Recruitment alone 
can consume up to 30% of clinical trial timelines and costs, 
often leading to extended delays and financial losses. AI 
has emerged as a transformative tool to address these 
issues, streamlining patient identification and engagement 
through advanced data analytics. AI algorithms can 
analyse vast repositories of electronic health records, 
genomic data, and clinical histories to identify potential 

Table 3. Some examples of existing database used in the drug discovery and development37 

Database Description

PubChem A free public dataset consisting of large information regarding chemical and bioactivity

ChemIDplus An open access resource containing standardized chemical structure and nomenclature flies.

DrugBank A large collection of drug’s pharmacokinetics, pharmacodynamics, mechanism of action of the drug, uses, side effects.

SIDER It consists of marketed medicine and its adverse drug reaction.

Kyoto Encyclopedia of genes and genomes 
(KEGG)

A database consists of manually illustrated about the encapsulate molecular interactions and reactions for drug 
development

BindingDB It consists of information about the binding affinity between drug and the target.

Manually Annotated Targets and Drugs 
Online Resource (MATADOR)

The dataset consists of medical indications, adverse effects, drug metabolization, pathways, and gene ontology

Therapeutic target database (TTD) A database consists of therapeutic target between protein and nucleic acid.

Human microRNA disease database (HMDD) A database that curated experiment-supported evidence for human microRNA (miRNA) and disease associations

GDSC A dataset consists of drug responses and genomic biomarker
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participants who meet the eligibility criteria, as shown 
in Figure 2.38

Clinical trials for Alzheimer’s disease encounter several 
difficulties, such as unequal participant distribution and 
high screen failure rates. These issues can be effectively 
resolved by artificial in AI, which is explained by 
expanding volume and complexity of biological data.39

Without the need for explicit programming, ML 
algorithms can improve predictive accuracy by revealing 
hidden patterns in data. In one study, 321 ADNI 
participants with baseline AT(N) biomarkers were 
analysed using a DL model to differentiate between rapid 
and slow disease progression. This was accomplished by 
grouping patients according to the pattern of their disease 
progression over time using an unsupervised time-
series technique called dynamic time warping (DTW) in 
conjunction with Ward’s linkage clustering.39 

AI is being used by Alto Neuroscience, a 2019 startup, 
to create brain biomarkers for focused mental health 
therapies. ALTO-100, ALTO-202, and ALTO-300 are 
among the several medications for MDD and PTSD that 
are undergoing clinical trials. Patients with AI-identified 
biomarkers had greater response rates (61% vs. 33%), 
according to positive Phase IIa results for ALTO-100. 
Through partnerships and funding rounds, Alto has 
raised more than $100 million to further its AI-driven 
drug development.40

Al in pharmacovigilance
AI systems integrate diverse data sources—like EHRs, 
social media, and patient forums—to identify adverse 
drug reactions (ADRs). This comprehensive approach 
captures patient experiences often missed by traditional 
methods, enhancing drug safety monitoring and post-
market surveillance.41 There will be unstructured data 
like social media comments or patient discussions in 
forums. AI employs NLP to extract this data to analyse 
such unstructured data. It identifies different patterns and 
signals related to ADRs usually overlooked by traditional 
methods.42 Pattern recognition uses ML algorithms 
designed to recognize patterns in large datasets. Real-time 
monitoring with the help of AI leads to the immediate 
detection of ADRs as they occur, and facilitates quick 
responses to potential safety issues. ADR detection is 
more effective with AI as it relies mainly on the quality and 
quantity of the data it processes, as shown in Figure 2.43

Pharmacovigilance is being revolutionized by a number 
of AI-powered tools that improve adverse event detection 
and drug safety monitoring for example AstraZeneca’s 
which uses AI-based system to detect adverse events and 
support regulatory compliance, but it requires skilled 
personnel and may miss rare events.119 IBM Watson 
for Drug Safety uses ML and NLP to analyze a variety of 
structured and unstructured data, improving decision-
making. Adverse Health Analytics used SignalMine to 
monitor adverse event and risk assessment with increased 

efficiency. Oracle’s Argus Safety uses AI to automate signal 
detection and adverse event reporting.44

AI in pharmaceutical manufacturing
Advancements in pharmaceutical manufacturing are 
increasingly driven by intelligent systems designed to 
replicate human expertise in response to rising process 
complexity and demands for efficiency and quality. Many 
of the pharmaceutical processes we use today are capable 
of being automated using more advanced methodologies 
such as computational fluid dynamics (CFD), which 
employs Reynolds-Averaged Navier-Stokes solvers 
to simulate agitation and stress in process equipment 
including stirred tanks. The flow-related challenges, such 
as turbulence, can also be addressed with techniques 
such as large eddy simulations and direct numerical 
simulations. In solid dosage forms, such as tablets, AIcan 
help developers optimize formulations by evaluating 
critical parameters during formulation development.6

AI can also help predict and evaluate the physicochemical 
stability of oral formulations by reviewing vast data sets of 
drug properties, formulation variables, and environmental 
factors. For parenteral, transdermal, and mucosal drug 
delivery systems, AI can help optimize development 
workflows by predicting the behaviour of formulations 
and automation can enhance TNM parameters, including 
pH, solubility and stability, as well as viscosity.45

AI can also help track constituents or particulates 
in formulations and provide recommendations on 
inspection instruments and timelines in order to deliver 
realistic quality assessments. When it comes to biological 
products, AI can help design proteins, peptides and nucleic 
acid therapeutics with improved properties, leveraging 
databases on protein structures and functions, to design 
models for optimizing therapeutic safety, efficacy, and 
immunogenicity. These models aid in maximizing 
immunogenicity, safety, and effectiveness of treatments, 
as shown in Figure 2.45 

Use of AI in medical device
AI used in medical devices with sophisticated data 
analysis and automation capabilities is revolutionizing 
healthcare. It makes diagnosis and treatment quicker and 
more precise, particularly for complicated neurological 
disorders like stroke, Alzheimer’s, and epilepsy.46 AI 
systems can effectively process the massive amounts of data 
generated by traditional tools like MRI and EEG to identify 
abnormalities in the nervous system. DL algorithms 
enhance medical imaging analysis and image recognition, 
including the detection of liver disease via ultrasound and 
radiology. By recording real-time cellular signals, AI also 
aids in vitro diagnostics, improving treatment results and 
diagnostic accuracy, as per Figure 2.46 

The operation of smart wearables, which are being 
utilized more in the fields of healthcare, sports, 
rehabilitation, entertainment, and smart home 
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monitoring, depends heavily on AI and ML. Because of 
its accessibility and ease of use, the wrist is the preferred 
location for these devices. Smart wristbands are used in 
healthcare to track cardiovascular activity, diabetes, and 
heart failure. In one study it shows using sensor data 
analysed by ML, created a wrist-worn fall detection device 
for the elderly that achieved 91% accuracy in order to 
identify atrial fibrillation.47

AI used in diverse domain such as diagnostic tools, 
wearable device, surgical devices, medical management, 
as shown in Figure 4.

AI in nanobots
Nanobots robots that are just a few nanometres in 
width—provide fantastic promise in drug delivery 
because nanotechnology enables drugs to be delivered 
to specific sites, thereby decreasing side effects and 
enhancing efficacy48 (as per Figure 2). Nanomedicine 
uses nanorobots (0.5–3 μm) made of carbon materials 
to navigate capillaries, detect tissue damage, and deliver 
targeted therapies. These robots can be tracked by doctors 
to ensure they reach specific sites, such as tumours, for 
treatment.49 

Creating nanorobots requires advances in molecular 
manufacturing, including programmable diamond 
like structures for strength. While proteins excel at 
self-assembly, diamond-based nanomachines promise 
superior performance. Within 10–20 years, these tools 
may become standard in medicine, offering physicians 
powerful means to fight disease, aging, and poor health.49

The electrical characteristics of muscle, fat, and skin 
tissue will all be reviewed to be able to maximize biosensors 
operation with in-body antennas without sacrificing data 
transmission. Nano-biosensors that could be used with 
a nanorobot may rely on cutting-edge materials such 
as functionalized carbon nanotubes (CNTs), where the 
protective layer will help provide longevity for the entire 
device. Additionally, platinum nanoparticles will achieve 
both enhanced catalytic surface area and selectivity, which 
will be beneficial for future glucose monitoring with 
nano-biosensors.50 A 2 µm glucose-specific nanorobot 

biosensor operates in the bloodstream for 3 months, then 
self-degrades for immune clearance. Replacing 1,100 
annual blood tests, it enables wireless diabetes monitoring 
with quarterly injections, ensuring durability, selectivity, 
and compliance with biomedical safety for efficient data 
collection.51

 
AI in insulin delivery
For patients with type 1 diabetes (PwD), an ideal treatment 
would mimic natural insulin secretion by using artificial 
technology (Figure 2). Automated insulin delivery (AID) 
systems aim to provide this by combining three main 
components: (1) a continuous glucose monitor (rtCGM) 
for real-time tracking of glucose levels, (2) a system, like an 
insulin pump, for precise insulin delivery as needed, and 
(3) an algorithm that calculates the correct insulin dose 
based on glucose data from the rtCGM. These algorithms 
typically run on a smartphone or directly on the insulin 
pump, which has the necessary processing and display 
capabilities, as shown in Figure 2.52

Optimal insulin dosing is challenging due to delays in 
glucose sensing and insulin absorption. Unlike natural 
insulin, injected insulin acts peripherally first. Bi-
hormonal AID systems, or “Bionic Pancreas,” combine 
insulin and glucagon to improve regulation, but 
require stable glucagon formulations for effective and 
practical use. 53

AID algorithms not only consider current glucose 
levels but also predict future changes to keep glucose in a 
safe range (70-180 mg/dL). Over recent decades, various 
algorithms have been developed for AID systems, each 
with unique strengths and limitations. 

Since the mid-2010s, reliable insulin pumps and rtCGM 
systems have been available, and algorithm development 
has progressed as well. In the U.S. and EU, two hybrid 
AID systems are on the market: the MiniMed 670G by 
Medtronic (since 2016) and the t:slim X2 CONTROL 
IQ by Tandem (since 2019).54 In the EU, the Diabeloop 
system, available since 2019, uses a handheld device with 
an installed algorithm compatible with commercially 
available insulin pumps (Kaleido) and rtCGMs (Dexcom 

Figure 4. AI in medical device
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G6). Diabeloop has also partnered with Roche Diabetes 
Care to support additional pumps in the future.32 The 
CamAPS FX algorithm, developed at the University of 
Cambridge and available in the EU since 2020, can be used 
on Android smartphones with compatible pumps (Soil’s 
Dana) and rtCGMs (Dexcom G6). Other AID systems, 
such as the Omnipod 5 from Insulet, are expected to hit 
the market soon.55

AI in quality control and quality assurance
Pharmaceutical quality control is being revolutionized 
by AI, especially in the area of drug release prediction, 
as shown in Figure 2. Tablet geometry, drug loading, and 
compaction pressure are some of the factors that affect 
drug release, which is evaluated through in vitro and in 
vivo studies and is crucial in the development of new 
products.56 Drug release research can be complicated and 
time-consuming using traditional spectrophotometric 
and analytical techniques. Accurate predictions of 
dissolution profiles, drug release rates, and disintegration 
times are now possible thanks to AI techniques like ANN, 
SVM and regression analysis.56

Quality control is greatly improved when AI and ML 
are incorporated into Six Sigma documentation. ML 
algorithms can use predictive analytics to examine past 
data in order to spot patterns and anticipate possible 
quality problems, allowing for proactive interventions 
and risk reduction. By tracking usage trends, predictive 
maintenance also aids in anticipating equipment failures.57 
One of the top pharmaceutical companies used ML 
models and AI-powered data collection to automate the 
documentation process, track important quality metrics, 
and identify possible deviations early. Data integrity and 
compliance were also guaranteed by AI-driven validation 
checks. This strategy promoted operational excellence 
and continuous improvement by increasing efficiency, 
lowering compliance risks, and fortifying overall quality 
assurance.57

AI in personalized medicine
Personalized medicine tailors’ prevention and treatment 
based on an individual’s molecular, physiological, 
ecological, and behavioural traits. Unlike standardized 
care, it uses specific medical data to design precise 
strategies for disease management and improved overall 
health outcomes, as shown in Figure 2. The amalgamation 
of AI with precision medicine has yielded a paradigm shift, 
as it utilizes sophisticated computational methodologies 
to analyze medical and family history, as well as genomic 
information, and electronic health records (EHRs). The 
capacity of AI to scrutinize these datasets exceeds human 
proficiency in discerning correlations among disparate 
datasets, thereby furnishing profound insights into the 
etiology of diseases and their therapeutic interventions. 

ML constitutes a transformative technological 
advancement that has fundamentally altered the 

methodologies employed for the analysis and 
interpretation of large-scale datasets within the precision 
medicine, consequently facilitating the personalization 
of therapeutic strategies. AI assumes a diverse array of 
functions within precision medicine, tackling numerous 
critical domains as shown in Table 4. 

AI in drug repurposing
Drug repurposing, often called drug repositioning, drug 
reprofiling or re-tasking, is the process of giving an existing 
or investigational medication, even those that might be 
found not approved for the original indication, as shown in 
Figure 2. The safety profile of many medications is usually 
known prior to repurposing can potentially reduce drug 
development timelines and costs to get drugs to patients.59 
Virtual screening uses AI to repurpose approved drugs 
by rapidly analysing vast chemical and biological data. 
Techniques like DL, NLP, and predictive modelling help 
extract insights from complex datasets. This enhances 
drug-target interaction prediction, reveals novel drug-
disease links, and streamlines the drug repurposing 
process with greater speed and accuracy.60 

The study evaluated applying ML models to repurpose 
180 pre-approved drugs with potential efficacy for Pitt–
Hopkins syndrome (PTHS). The Prestwick chemical 
library was screened to identify 55 Kv7.1 and 93 Nav1.8 
inhibitors, which we identified as lead therapeutics for 
potential PTHS intervention.60 We then compared our 
results to a Bayesian ML model’s prediction in Assay 
Central with the Bayesian ML model identifying 35 Kv7.1 
and 64 Nav1.8 inhibitors. The study illustrates how the 
combined capacity of high-throughput screening (HTS) 
and ML can be a useful framework for drug repurposing, 
especially when exploring therapies for rare diseases.61

Ethical and regulatory considerations
The overview of patient data management, drug 
development, and clinical decision-making. While these 
technologies have the potential to improve the accuracy 
and speed of medical research and treatment, they also 
raise complex ethical and regulatory challenges.62

The regulation of AI in healthcare has been on the 
validation of these technologies within strict legal and 
scientific standards and is monitored strictly. The U.S. 
Food and Drug Administration (FDA) and the European 
Medicines Agency (EMA) have published comprehensive 
guidance on the safe adoption of digital tools, including 
Software as a Medical Device (SaMD), to ensure their 
performance and trustworthiness throughout their use 
in healthcare workflows and drug development.63 The 
Important frameworks such as Good Practice (GxP) 
and evaluation protocols outlined by these agencies 
is crucial to secure the accuracy and reliability of AI-
driven applications before they are embedded into 
clinical practice.

Emphasizing of the World Health Organization (WHO) 
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globally, the need for robust oversight, ethical integrity, and 
fairness in the application of AI to health that guides and 
highlights the necessity for transparency, accountability, 
and inclusive development processes to safeguard public 
trust and equity during the digital transformation of 
health systems.64 In case of digital healthcare, the priority 
is to protect the patient privacy. The AI systems routinely 
process vast repositories of sensitive personal health 
information. Regulations such as the European General 
Data Protection Regulation (GDPR) and the U.S. Health 
Insurance Portability and Accountability Act (HIPAA) 
establish stringent requirements for managing consent, 
minimizing data use, and preventing unauthorized access, 
making it mandatory for organizations to implement 
strong safeguards throughout the lifecycle of patient data.

There are high chances of data breaches which is a 
major concern apart from ethical guidelines which also 
involves the possible introduction and amplification 
of biases by AI models. Inaccurate or unrepresentative 
datasets can skew predictions, leading to care disparities 
and perpetuating inequities within the healthcare system 
an issue that has prompted calls from policymakers and 
global health authorities for routine audits and the use of 
diverse datasets in AI model development.

Few of the major tools those are required to improve the 
model transparency, explain ability tools such as SHapley 
Additive exPlanations (SHAP) and Local Interpretable 
Model-agnostic Explanations (LIME) have become 
essential. These methods allow both practitioners and 
regulators to understand which features most influence 
an algorithm’s decision-making process, supporting 
responsible clinical deployment and regulatory 
compliance.65,66

Future of AI in pharma world
AI is rapidly transforming medicine through data 
integration, aiding healthcare delivery and drug 
development. Its collaboration with pharmaceutical 
firms enhances patient care. Notable examples include 
DeepMind’s partnership with the NHS on kidney injury 
and the UK’s 100,000 Genomes Project, involving Roche, 
Merck, Berg, and Biogen, to apply AI in rare disease 

research. Atomwise is recognized as a leader in healthcare 
AI, using DL for the first time to discover new small 
molecule drugs. Benevolent AI is another form of AI now 
being used in drug development. Numerate concentrates 
on ligand chemistry, ADMET, and combinatorial ML 
in conjunction with traditional approaches, placing 
particular emphasis on the transformation of novel 
medicinal discovery by addressing significant therapeutic 
voids through the analysis of extensive datasets related 
to drug development via algorithmic applications. These 
improvements are expected to significantly facilitate 
healthcare services, stratified medicine, clinical trial 
efficiency, and other domains. At present, the estimated 
cost of successfully launching a pharmaceutical product 
onto the market is approximately US$3 billion covering a 
15-year time frame. 

Conclusion
In summary, implementing AI in pharmacy may totally 
reform the profession and yield significant benefits for 
patients and pharmacists alike. It may improve medication 
management, enhance patient outcomes, facilitate drug 
discovery, and accelerate new drug development through 
greater accuracy and safety in medication administration. 
AI-directed advancements may also help decrease 
healthcare costs. While there are some hurdles facing AI 
adoption in the pharmacy sector, its potential to transform 
the pharmacy space is clear. 

AI has impacted numerous areas in the pharmaceutical 
sector, including drug discovery and development, as well 
as manufacturing and QA. Where we have seen major 
changes, mainly in terms of speeding up processes, making 
them more efficient, and improving outcomes even just as 
a result of the volume of data that can now be processed, 
accelerated, and analysed, the ability to recognize and 
generate patterns and make assumptions from data and 
enhance decision making with data, and personalization 
in individual therapies, have certainly been a large part 
of the overall impact of AI. It has also assisted regulatory 
compliance, data security, and intellectual property areas 
in which there are still issues to be addressed, and enhance 
ongoing efforts in each of these areas. 

Table 4. Examples of some area where AI plays role in the development of personalised medicine.

Parameter Description

Genomic data 
analysis

Genomic data analysis is a pivotal area where AI demonstrates its potential, as understanding a disease's genetic profile for creating 
targeted treatment plans. ML and DL technologies enable the analysis of vast datasets to identify mutations, gene expressions, and 
genetic variations associated with various diseases.58

Personalized 
treatment planning

AI enhances personalized treatment by analyzing genetics, clinical data, and patient responses to recommend tailored therapies. For 
example, in cancer care, algorithms assess tumour genetics to identify effective treatments, improving outcomes and minimizing side 
effects based on individual health profiles.58

Real-time monitoring 
and adjustments

AI enables real-time monitoring through wearables and health apps, analysing data to detect complications or poor treatment responses. 
This allows timely care adjustments—like optimizing insulin doses for diabetics—improving outcomes through personalized, responsive 
healthcare management.58

Integration of 
multimodal data

AI applied to multisource data—genetic, clinical, imaging, and lifestyle—enhances disease understanding and screening. By linking 
genomic data with medical imaging, AI reveals correlations between genetic variations and disease traits, improving diagnosis and 
guiding more effective, personalized treatments.58
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Overall, I feel that AI will play a significant role in the 
advancement of the pharmaceutical industry, innovation 
and development, and improving outcomes for patients in 
the future, and it is likely to shape within the next decade, 
the overall future of healthcare too. 
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