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Introduction
Despite the proven effectiveness of hormone therapy, its 
clinical application is limited by the development of tumor 
resistance to hormones, which can be either primary or 
acquired, i.e., emerging during hormonal treatment.1 The 
mechanisms underlying hormonal resistance are well 
studied: resistance can arise due to an irreversible blockade 
of hormonal signaling (typically via suppression of the 
activity or expression of specific intracellular hormone 

receptors) or via activation of growth-regulating signaling 
pathways that bypass hormone-dependent signaling.2-5

In addition to reduced receptor levels, major factors 
contributing to hormonal resistance include: (i) an 
imbalance between receptor coactivators and corepressors; 
(ii) ligand-independent receptor activation; and (iii) 
stimulation of hormone-independent growth pathways 
(primarily mediated by tyrosine kinase receptors) that 
sustain tumor growth in the absence of hormones.
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Abstract
Purpose: The aim of this study was to elucidate the mechanisms underlying the formation and 
maintenance of drug resistance in cancer cells. Previously, we demonstrated that prolonged 
treatment of estrogen-dependent MCF-7 breast cancer cells with exosomes derived from 
estrogen-resistant MCF-7/T cells leads to a partial loss of estrogen sensitivity in MCF-7 cells. 
Moreover, repeated transfection with one of the exosomal microRNAs—microRNA-181a-2—
induced an irreversible decrease in hormonal sensitivity in the recipient cells. In the present 
work, to further investigate the possible mechanism of miR-181a-2-induced acquired resistance, 
we analyzed the effect of multiple miR-181a-2 transfections on the expression of cellular miR-
181a-2 and related signaling proteins.
Methods: miR-181a-2 was ectopically expressed by mimetic transfection or suppressed by 
antisense oligonucleotides. miR-181a-2 precursor/MIR181A2HG expression (qRT-PCR) and 
MIR181A2 locus copy number (qPCR) were assessed. wtSnail was expressed via transient 
transfection. Tamoxifen sensitivity was measured by MTT assay. Protein expression was studied 
by immunoblotting, estrogen receptor α/Snail transcriptional activity was evaluated by reporter 
analysis.
Results: We found that multiple transfections with miR-181a-2 resulted in a marked increase in 
cellular miR-181a-2 precursor levels, whereas single transfection had no such effect. Similarly, 
stable transfection with miR-181a-2 led to increased levels of cellular miR-181a-2 and its host 
gene, MIR181A2HG, which was associated with partial resistance to tamoxifen. Analysis of 
the genomic DNA encoding miR-181a-2 revealed no changes in copy number in transfected 
cells. Furthermore, we identified the transcription factor Snail as a key mediator of miR-181a-2–
induced resistance and demonstrated its role in the formation of an autoregulatory loop of miR-
181a-2 and the maintenance of cell resistance.
Conclusion: Overall, these results reveal a novel mechanism of resistance-associated signaling 
pathway rearrangement based on the formation of a miR-181a-2 autoregulatory loop.
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Primary resistance is typically associated with mutations 
in specific genes that disrupt hormonal signaling (e.g., 
repression of hormone receptors) and/or activation of 
hormone-independent growth signals (e.g., tyrosine 
kinase cascades). In contrast, acquired resistance is 
mainly driven by epigenetic mechanisms. Among these, 
microRNAs (miRNAs) play a particularly important role, 
acting directly as epigenetic regulators of gene expression 
and indirectly via modulation of DNA methylation and 
histone acetylation.6

To date, the involvement of miRNAs in hormonal 
resistance of tumors has been well documented. These 
include miRNAs negatively regulating estrogen receptor 
α (ERα) or its coactivator/corepressor proteins, as well as 
miRNAs controlling signaling proteins in the ERα cascade 
(HER2, EGFR, Akt, MAPK) and tumor suppressors.7-16

In recent years, increasing attention has been paid to 
resistance mediated by exosomes—small extracellular 
vesicles secreted by cells that can be incorporated into 
recipient cells. In our earlier studies on estrogen-dependent 
MCF-7 breast cancer cells and the tamoxifen-resistant 
MCF-7/T subline, we demonstrated that exosomes derived 
from resistant cells can transfer hormonal resistance to 
parental cells.17,18

Here, we show that stable overexpression of one 
exosomal miRNA—miR-181a-2—in MCF-7 cells 
promotes tamoxifen resistance. We observed a sustained 
increase in the intracellular precursor miR-181a-2 levels 
in cells transfected with exogenous miR-181a-2 and 
demonstrated the involvement of transcription factor 
Snail in establishing an autoregulatory loop of miR-
181a-2 that maintains cell resistance. Overall, these 
findings reveal a novel mechanism for reprogramming 
resistance-associated signaling pathways via an miR-
181a-2 autoregulatory loop.

Materials and Methods 
Cell lines and antiproliferative activity assay
MCF-7 breast cancer cells (ATCC, Manassas, VA, USA; 
HTB-22) were used. Cells were cultured in DMEM 
(PanEco, Moscow, Russia) supplemented with glucose (4.5 
g/L) and 10% fetal bovine serum (HyClone, Marlborough, 
MA, USA) at 37 °C in 5% CO2. Sensitivity to tamoxifen 
was evaluated using the MTT assay19 with modifications 
from the reference.20

miRNA and wtSnail transfection
miRNA oligonucleotides were synthesized by Syntol 
(Moscow, Russia) and annealed in buffer (10 mM Tris-
HCl pH 7.5, 50 mM NaCl, 1 mM EDTA) to obtain a 100 
µM solution. Annealing was performed at 95 °C followed 
by slow cooling to room temperature within 1 h. Transient 
transfections (single and multiple) with control (scrambled) 
or miR-181a-2 (final concentration 50 nM) were carried 
out using Lipofectamine 2000 (Thermo Fisher Scientific, 
Waltham, MA, USA). Multiple transfections (20 rounds) 

were performed every three days. To suppress miR-181a-2 
antisense DNA oligonucleotide with LNA-modified 
residues was used (the sequence ASO-181a-2-3p was the 
following:  5’-GG[ + T]ACAGTCAACGGTCAGT[ + G]
GT-3’, [ + N] – LNA modifications) synthesized by Syntol 
and being transfected into the cells. For ectopic expression 
of wild-type Snail, we used the plasmid pcDNA3-Snail-
HA kindly provided by Dr. Antonio Garcia de Herreros 
and the corresponding empty vector.21

Generation of cells stably expressing miR-181a-2
The miR-181a-2 sequence was cloned into the lentiviral 
vector pLKO.1-TRC (Addgene #10878) following 
standard protocols. The miR-181a-2 gene was amplified 
from genomic DNA of healthy donor lymphocytes 
using primers with AgeI and EcoRI restriction sites. The 
amplified fragment was inserted into pLKO.1-TRC, and 
the construct was verified by Sanger sequencing.

Lentiviral particles were produced by transfecting 
HEK293FT packaging cells (Thermo Fisher Scientific) 
with the pLKO.1-TRC-miR-181a-2 plasmid and packaging 
plasmids pΔR8.2 (#12263) and pVSV-G (#8454) using 
GenJect-39™ (Molecta, Moscow, Russia). Viral supernatant 
was collected 24–28 h post-transfection and added to 
MCF-7 cells with 8 µg/mL Polybrene (Sigma-Aldrich). 
Infected cells were selected with 1 µg/mL puromycin 
for 4–5 days.

RNA isolation and quantitative RT-PCR
Total RNA was extracted using TRIzol reagent (Invitrogen). 
cDNA synthesis was performed with Advanced cDNA 
Synthesis Kit (Bio-Rad) from 1 µg RNA. qRT-PCR was 
carried out using 5X qPCRmix-HS SYBR (Evrogen) with 
the following conditions: 95 °C for 3 min, followed by 40 
cycles of 95 °C for 15 s, 60 °C for 15 s, and 72 °C for 30 
s. Human β-actin (ACTB) served as the internal control. 
Relative expression levels were calculated using the 
ΔΔCt method.22

Immunoblotting
Cell lysates were prepared as described previously in the 
reference.23 Proteins were separated by 10% SDS-PAGE, 
transferred to nitrocellulose membranes (GE Healthcare), 
and blocked with 5% nonfat milk (Applichem). Membranes 
were incubated overnight at 4 °C with primary antibodies 
(Cell Signaling Technology), followed by HRP-conjugated 
secondary antibodies (Jackson ImmunoResearch). 
Detection of chemiluminescence was performed using 
ImageQuant LAS4000 and protocol from the reference.24 
Densitometry analysis for immunoblotting data was 
performed using ImageJ software (Wayne Rasband). 
The protocol for densitometry was provided by the 
University of Queensland with the recommendations 
from the reference.25

Reporter gene assay
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ERE-luciferase reporter activity was measured 
by cotransfecting cells with ERE-luciferase and 
β-galactosidase plasmids (control for transfection 
efficiency) as described in the reference.26 The ERE-Luc 
plasmid was kindly provided by George Reid and Frank 
Gannon.27 To measure Snail trans-repressor activity using 
E-cadherin reporter plasmid the same approach was used, 
the plasmid E-cadherin-Luc was kindly provided by Prof. 
Antonio Garcia de Herreros.21

DNA copy number quantification
DNA copy number at the MIR181A2HG locus was 
quantified by qPCR using serial fourfold dilutions of 
genomic DNA to construct standard curves. MIR181A2HG 
Ct values were normalized to ACTB. Primer sequences are 
provided in Table 1.

Statistical analysis
Experiments were performed in triplicate with three 
technical replicates. Data are expressed as mean ± SD. 
Mann-Whitney U test and unpaired t test were used to 
evaluate the experiments. Statistical significance was set at 
P < 0.05 (Microsoft Excel and GraphPad Prism 8).

Results 
Previously, we demonstrated that prolonged treatment 
of estrogen-dependent MCF-7 breast cancer cells with 
exosomes derived from the estrogen-resistant MCF-7/T 
subline leads to a partial loss of (anti)estrogen sensitivity 
in MCF-7 cells.17 Furthermore, we showed that multiple 
transfections (20 sequential rounds) with one of the 
exosomal microRNAs, miR-181a-2, induce a similar loss 
of hormonal sensitivity in recipient cells, which persists 
for at least two months after the last transfection.28 Here, to 
further investigate the potential mechanism of miR-181a-
2-induced acquired resistance, we analyzed the effects of 
multiple transfections on the expression of endogenous 
miR-181a-2 and associated signaling proteins.

Multiple transfections with miR-181a-2 and endogenous 
miR-181a-2 expression
Experiments were conducted on MCF-7 cells that 
underwent 20 rounds of miR-181a-2 transfection 
followed by maintenance in standard culture medium 
for at least two months. Specific PCR primers for the 
endogenous miR-181a-2 precursor were used to exclude 
contamination by exogenous miRNA mimetics and to 
evaluate only cellular miR-181a-2 expression. The data 
revealed a marked increase in endogenous miR-181a-2 

precursor levels in multiply transfected cells. In contrast, 
a single transfection with miR-181a-2 did not affect the 
levels of endogenous miR-181a-2 (Figure 1a, left panel).

The host gene for MIR181A2 is MIR181A2HG.29 This 
gene consists of two exons and one intron and encodes a 
long non-coding RNA; the intron harbors the MIR181A2 
gene itself (Figure 2). It can therefore be assumed that miR-
181a-2 is co-transcribed with MIR181A2HG. We next 
assessed MIR181A2HG transcription following single and 
multiple transfections with mature miR-181a-2. Similar to 
the precursor, MIR181A2HG expression increased after 
multiple transfections (Figure 1a, right panel).

One potential mechanism for the elevated miR-181a-2 
precursor after repeated transfections with synthetic 
miR-181a-2 could be amplification of the genomic region 
encoding MIR181A2. To test this, we measured DNA 
copy number in the MIR181A2 locus before and after 
transfection. No differences were observed, excluding gene 
amplification as the cause of miR-181a-2 upregulation 
(Figure 1b).

Table 1. Primer sequences

Gene Forward primer (5’-3’) Reverse primer (5’-3’) TaqMan probe

MIR181A2HG GCACAGCTGCAGGGATAGTAG GGCTGGAATTTCCTTCATTGT FAM-GCTCTCGATCCGTGGGAGGT-BHQ1

MIR181A2 precursor TATCAGGCCAGCCTTCAGAG AAATCCCAAACTCACCGACA FAM-GACTCCAAGGAACATTCAACGC-BHQ1

ACTB ATGTGGCCGAGGACTTTGATT AGTGGGGTGGCTTTTAGGATG Cy5-TCATTCCAAATATGAGATGCGTTGTTACAGGA-BHQ3

Figure 1. (a) Expression of cellular miR-181a-2 precursor and MIR181A2HG 
after multiple and single miR-181a-2 transfections, *p-value = 0.0286, Mann-
Whitney U test, data are presented as mean ± SD (n = 3); (b) copy number 
of miR-181a-2-encoded DNA in MCF-7 cells after multiple and single 
miR-181a-2 transfections, Mann-Whitney U test, data are presented as 
mean ± SD (n = 3)
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MiR-181a-2 and estrogen receptor α signaling
As noted, a single miR-181a-2 transfection induces only 
transient estrogen resistance, whereas 20 transfections 
confer irreversible tamoxifen resistance lasting at least 

two months after the final transfection.28 To further 
investigate the effects of continuous miR-181a-2 uptake 
on ERα signaling, we infected MCF-7 cells with a lentiviral 
construct expressing miR-181a-2. Similar to multiple 

Figure 2. Schematic representation of the MIR181A2HG and MIR181A2 genes and their genomic location. According to the UCSC Genome Browser (https://
genome.ucsc.edu/, accessed 5 July 2025), MIR181A2HG is a long non-coding RNA that harbors the MIR181A2 gene. Two boxes (EX1 and EX2) indicate two 
exons separated by an intron of the MIR181A2HG. The predicted secondary structure of the miR-181a-2 precursor is shown in the lower panel. The mature forms 
miR-181a-2-5p and miR-181a-2-3p are highlighted in purple. The MIR181A2 gene is located within an intron of its host gene MIR181A2HG and is transcribed in 
the same direction. Genomic coordinates are provided according to the GRCh37/hg19 assembly: MIR181A2HG (chr9:127420715–127460907) and MIR181A2 
(chr9:127454721–127454830)

Figure 3. (a) Expression of cellular miR-181a-2 precursor and MIR181A2HG in MCF-7 cells stably infected with miR-181a-2, *P value = 0.0032, unpaired 
t-test, data are presented as mean ± SD (n = 3); (b) sensitivity of MCF-7/Ctr and MCF-7/miR-181a-2 cells to tamoxifen, assessed by MTT assay, *P value = 0.0317, 
unpaired t test, data are presented as mean ± SD (n = 3); (c) Western blot analysis of ERα-dependent proteins in MCF-7/Ctr and MCF-7/miR-181a-2 cells. The blot 
shows results representative of three independent experiments; t-test, *P = 0.0012 for GREB1, 0.013 for PR-B, 0.015 for PR-A, 0.031 for erα (d) reporter assay of 
ERα transcriptional activity in MCF-7/Ctr and MCF-7/miR-181a-2. Relative luciferase activity was calculated as the ratio of luciferase to β-galactosidase activity 
(arbitrary units); *P value = 0.016, unpaired t test, data are presented as mean ± SD (n = 3)

https://genome.ucsc.edu/
https://genome.ucsc.edu/
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transfections, lentivirus-infected cells displayed stably 
increased levels of both the miR-181a-2 precursor and 
MIR181A2HG RNA (Figure 3a). Tamoxifen sensitivity 
assays revealed partial resistance in the transfected cells 
(Figure 3b). Moreover, miR-181a-2-overexpressing 
cells showed irreversible suppression of ERα signaling, 
including inhibition of ERα expression and transcriptional 
activity and downregulation of ERα-dependent proteins 
GREB1 and PR (Figure 3c, d). These results confirm a 
direct link between miR-181a-2 overexpression and ERα 
pathway suppression.

MiR-181a-2 and signaling protein expression
Analysis of growth-related proteins in miR-181a-2-
transfected cells revealed stable activation of CDK6, cyclin 
D1, and Snail, whereas major effectors of mTOR and 
PI3K/Akt pathways were unaffected (Figure 4a).

To identify factors responsible for sustained 
endogenous miR-181a-2 overexpression, we examined 
the relationship between miR-181a-2 and Snail, a 

resistance-associated protein.30-32 We observed direct 
accumulation of endogenous miR-181a-2 in Snail-
overexpressing cells, highlighting Snail’s involvement in 
the positive regulation and maintenance of miR-181a-2 
levels (Figure 4b). Furthermore, miR-181a-2 transfection 
resulted in the activation of Snail trans-repressor activity 
(Figure 4c, left panel), whereas knockdown of miR-181a-2 
using antisense (ASO) DNA oligonucleotides showed 
a slight tendency toward Snail suppression (Figure 4c, 
right panel). The modest effect observed in the latter 
case may be due to the relatively low number of ASO 
copies compared to endogenous cellular miR-181a-2 
levels. Taken together, these findings suggest the possible 
formation of an autoregulatory loop between Snail and 
miR-181a-2, which may be responsible for maintenance 
of this signaling pathway.

Overall, we uncovered a phenomenon of reciprocal 
activation: continuous uptake of exogenous miR-181a-2 
mimetics induces sustained endogenous miR-181a-2 
upregulation, forming an autoregulatory loop that 

Figure 4. (a) Western blot analysis of growth-related proteins in MCF-7/Ctr and MCF-7/miR-181a-2 cells. The blot shows results representative of three independent 
experiments; t-test, *P = 0.034 for Snail, 0.035 for CDK6, 0.045 for cyclin D1 (b) expression of cellular miR-181a-2 precursor (left panel, *P value = 0.0005, 
unpaired t test) and MIR181A2HG (right panel, *P value = 0.0002, unpaired t test) in MCF-7 cells following wtSnail transfection, data are presented as mean ± SD 
(n = 3); (c) reporter assay of E-cadherin transcriptional activity in the cells after transfection of scrambled miR/miR-181a-2 (left panel, *P value = 0.0007, unpaired t 
test) and after transfection of antisense (Aso) DNA oligonucleotides scrambled/Aso-miR-181a-2 (right panel, *P value = 0.0398, unpaired t test), data are presented 
as mean ± SD (n = 3)
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contributes to hormonal resistance. This loop appears to 
be supported, at least in part, by Snail activation.

Discussion
Breast cancer is predominantly hormone-dependent, with 
estrogen receptors expressed in over 70% of cases, making 
them critical therapeutic targets. Hormone therapy—
aimed at ERα inactivation or depletion of endogenous 
estrogens—is limited by the emergence of drug resistance, 
which can be either primary (present at diagnosis) or 
acquired (developing during therapy). Primary resistance 
is often associated with gene mutations disrupting 
hormonal signaling (e.g., receptor repression) or 
activating hormone-independent growth pathways (e.g., 
tyrosine kinase cascades). Acquired resistance is usually 
epigenomic in nature, with microRNAs playing key 
roles by directly suppressing specific genes or indirectly 
modulating DNA methylation and acetylation.

Numerous microRNAs have been implicated in the 
development of hormonal resistance in tumors. These 
include ERα-negative regulators such as miR-342,33 Let-7b/
Let-7i,34 and miR-1280.35 Additionally, miRNAs targeting 
ERα coactivators/corepressors are involved: miR-17-5p 
regulates SRC-336; miR-10 targets the nuclear corepressor 
NCOR2;16 miR-451 regulates HER2, EGFR, and MAPK 
signaling12; and miR-101 influences Akt signaling in 
resistant cells.13 Among tumor suppressors, PTEN is 
particularly notable as a frequent miRNA target linked 
to hormonal resistance.37-39 Several of these miRNAs are 
known to be exosome-transported, supporting their role 
in resistance transfer.40,41

Recently, increasing attention has focused on exosome-
mediated resistance formation. Exosomes—microvesicles 
secreted by cells into the extracellular environment—can 
be taken up by recipient cells, transferring regulatory 
miRNAs that affect hormone signaling.12,13,16,36 These 
miRNAs can modulate proliferation and expression of key 
proteins.42-44 However, the duration of miRNA influence on 
signaling and involvement of proteins not directly targeted 
by specific miRNAs remain unclear. Given that miRNAs 
are delivered in complex mixtures containing hundreds of 
species, it is crucial to identify specific miRNAs and link 
them to defined cellular signaling changes.

In our previous work with estrogen-dependent 
MCF-7 cells and tamoxifen-resistant MCF-7/T cells, 
we demonstrated that exosomes from resistant cells 
can induce hormonal resistance in parental cells. 
Profiling of microRNAs in “resistant” exosomes revealed 
overexpression of multiple ERα-targeting miRNAs, 
including miR-181a-2. We subsequently confirmed 
miR-181a-2 as a key driver of tamoxifen resistance.28 
These findings are consistent with other studies linking 
miR-181 to drug resistance in various models.45-47 
Nonetheless, the mechanisms underlying long-term 
maintenance of resistance in newly generated resistant 
cells remain unclear.

Here, for the first time, we describe hyperexpression 
of endogenous miR-181a-2 precursor in MCF-7 cells 
following multiple (20 rounds) transfections with 
exogenous miR-181a-2 mimetics. Elevated precursor 
levels persisted for at least two months post-transfection. 
Multiply transfected cells exhibited partial hormonal 
insensitivity, suppression of estrogen signaling, DNMT3A 
inhibition, and increased expression of growth-
related proteins, consistent with known properties 
of miR-181.14,47-50 

Among these proteins, we identified Snail—an EMT 
regulator and indirect miR-181 target. Our results are 
consistent with the data of other researchers who have 
demonstrated the increase in Snail level in the miR-181-
overexpressed cells.51-53 Partially, the recent observations 
have shown the ability of miR-181a, along with TMBIM6 
protein, to increase Snail level through the activation of 
ERK pathway in breast cancer cells.51

We and others have previously shown that Snail 
contributes to resistance to hormonal drugs.30-32 
Consistent with this, we observed an association between 
Snail overexpression and elevated miR-181a-2 precursor 
levels, implicating Snail as a key mediator of miR-181a-
2-induced resistance. Finally, we have demonstrated 
the formation of autoregulatory loop between Snail and 
mir-181a-2 that may be responsible for cell resistance 
phenotype.

Conclusion
We propose a mechanism of cancer cell resistance based 
on an autoregulatory loop sustaining high levels of 
resistance-associated factors, such as miR-181a-2. Snail 
plays a central role in this loop: it both activates miR-
181a-2 and is itself a target of miR-181a-2. The precise 
mediators transmitting signals from Snail to miR-181a-2, 
the mechanisms by which this loop is preserved during 
cell division, and its role in biochemical imprinting and 
broader phenotypic adaptation of cancer cells remain 
open questions for future investigation.
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