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Introduction

Abstract

Purpose: The aim of this study was to elucidate the mechanisms underlying the formation and
maintenance of drug resistance in cancer cells. Previously, we demonstrated that prolonged
treatment of estrogen-dependent MCF-7 breast cancer cells with exosomes derived from
estrogen-resistant MCF-7/T cells leads to a partial loss of estrogen sensitivity in MCF-7 cells.
Moreover, repeated transfection with one of the exosomal microRNAs—microRNA-18Ta-2—
induced an irreversible decrease in hormonal sensitivity in the recipient cells. In the present
work, to further investigate the possible mechanism of miR-181a-2-induced acquired resistance,
we analyzed the effect of multiple miR-181a-2 transfections on the expression of cellular miR-
181a-2 and related signaling proteins.

Methods: miR-181a-2 was ectopically expressed by mimetic transfection or suppressed by
antisense oligonucleotides. miR-181a-2 precursor/MIR181A2HG expression (qRT-PCR) and
MIR18TA2 locus copy number (qPCR) were assessed. wtSnail was expressed via transient
transfection. Tamoxifen sensitivity was measured by MTT assay. Protein expression was studied
by immunoblotting, estrogen receptor a/Snail transcriptional activity was evaluated by reporter
analysis.

Results: We found that multiple transfections with miR-181a-2 resulted in a marked increase in
cellular miR-181a-2 precursor levels, whereas single transfection had no such effect. Similarly,
stable transfection with miR-181a-2 led to increased levels of cellular miR-181a-2 and its host
gene, MIRT81A2HG, which was associated with partial resistance to tamoxifen. Analysis of
the genomic DNA encoding miR-181a-2 revealed no changes in copy number in transfected
cells. Furthermore, we identified the transcription factor Snail as a key mediator of miR-181a-2—
induced resistance and demonstrated its role in the formation of an autoregulatory loop of miR-
181a-2 and the maintenance of cell resistance.

Conclusion: Overall, these results reveal a novel mechanism of resistance-associated signaling
pathway rearrangement based on the formation of a miR-181a-2 autoregulatory loop.

receptors) or via activation of growth-regulating signaling

Despite the proven effectiveness of hormone therapy, its
clinical application is limited by the development of tumor
resistance to hormones, which can be either primary or
acquired, i.e., emerging during hormonal treatment.! The
mechanisms underlying hormonal resistance are well
studied: resistance can arise due to an irreversible blockade
of hormonal signaling (typically via suppression of the
activity or expression of specific intracellular hormone

pathways that bypass hormone-dependent signaling.**

In addition to reduced receptor levels, major factors
contributing to hormonal resistance include: (i) an
imbalance between receptor coactivators and corepressors;
(ii) ligand-independent receptor activation; and (iii)
stimulation of hormone-independent growth pathways
(primarily mediated by tyrosine kinase receptors) that
sustain tumor growth in the absence of hormones.
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miR-18Ta-2 mimetic and MCF-7 drug resistance

Primary resistance is typically associated with mutations
in specific genes that disrupt hormonal signaling (e.g.,
repression of hormone receptors) and/or activation of
hormone-independent growth signals (e.g., tyrosine
kinase cascades). In contrast, acquired resistance is
mainly driven by epigenetic mechanisms. Among these,
microRNAs (miRNAs) play a particularly important role,
acting directly as epigenetic regulators of gene expression
and indirectly via modulation of DNA methylation and
histone acetylation.®

To date, the involvement of miRNAs in hormonal
resistance of tumors has been well documented. These
include miRNAs negatively regulating estrogen receptor
a (ERa) or its coactivator/corepressor proteins, as well as
miRNAs controlling signaling proteins in the ERa cascade
(HER2, EGFR, Akt, MAPK) and tumor suppressors.”'¢

In recent years, increasing attention has been paid to
resistance mediated by exosomes—small extracellular
vesicles secreted by cells that can be incorporated into
recipient cells. In our earlier studies on estrogen-dependent
MCEF-7 breast cancer cells and the tamoxifen-resistant
MCF-7/T subline, we demonstrated that exosomes derived
from resistant cells can transfer hormonal resistance to
parental cells.'”!8

Here, we show that stable overexpression of one
exosomal ~miRNA—miR-181a-2—in  MCF-7  cells
promotes tamoxifen resistance. We observed a sustained
increase in the intracellular precursor miR-181a-2 levels
in cells transfected with exogenous miR-181la-2 and
demonstrated the involvement of transcription factor
Snail in establishing an autoregulatory loop of miR-
181a-2 that maintains cell resistance. Overall, these
findings reveal a novel mechanism for reprogramming
resistance-associated signaling pathways via an miR-
181a-2 autoregulatory loop.

Materials and Methods

Cell lines and antiproliferative activity assay

MCEF-7 breast cancer cells (ATCC, Manassas, VA, USA;
HTB-22) were used. Cells were cultured in DMEM
(PanEco, Moscow, Russia) supplemented with glucose (4.5
g/L) and 10% fetal bovine serum (HyClone, Marlborough,
MA, USA) at 37 °C in 5% CO,. Sensitivity to tamoxifen
was evaluated using the MTT assay" with modifications
from the reference.”

miRNA and wtSnail transfection

miRNA oligonucleotides were synthesized by Syntol
(Moscow, Russia) and annealed in buffer (10 mM Tris-
HCI pH 7.5, 50 mM NaCl, 1 mM EDTA) to obtain a 100
uM solution. Annealing was performed at 95 °C followed
by slow cooling to room temperature within 1 h. Transient
transfections (singleand multiple) with control (scrambled)
or miR-181a-2 (final concentration 50 nM) were carried
out using Lipofectamine 2000 (Thermo Fisher Scientific,
Waltham, MA, USA). Multiple transfections (20 rounds)

were performed every three days. To suppress miR-181a-2
antisense DNA oligonucleotide with LNA-modified
residues was used (the sequence ASO-181a-2-3p was the
following:  5-GG[+T]ACAGTCAACGGTCAGT] +G]
GT-3; [+ N] - LNA modifications) synthesized by Syntol
and being transfected into the cells. For ectopic expression
of wild-type Snail, we used the plasmid pcDNA3-Snail-
HA kindly provided by Dr. Antonio Garcia de Herreros
and the corresponding empty vector.?!

Generation of cells stably expressing miR-181a-2
The miR-181a-2 sequence was cloned into the lentiviral
vector pLKO.1-TRC (Addgene #10878) following
standard protocols. The miR-181a-2 gene was amplified
from genomic DNA of healthy donor lymphocytes
using primers with Agel and EcoRI restriction sites. The
amplified fragment was inserted into pLKO.1-TRC, and
the construct was verified by Sanger sequencing.
Lentiviral particles were produced by transfecting
HEK293FT packaging cells (Thermo Fisher Scientific)
with the pLKO.1-TRC-miR-181a-2 plasmid and packaging
plasmids pAR8.2 (#12263) and pVSV-G (#8454) using
GenJect-39™ (Molecta, Moscow, Russia). Viral supernatant
was collected 24-28 h post-transfection and added to
MCEF-7 cells with 8 ug/mL Polybrene (Sigma-Aldrich).
Infected cells were selected with 1 pg/mL puromycin
for 4-5 days.

RNA isolation and quantitative RT-PCR

Total RNA was extracted using TRIzol reagent (Invitrogen).
cDNA synthesis was performed with Advanced cDNA
Synthesis Kit (Bio-Rad) from 1 pg RNA. qRT-PCR was
carried out using 5X qPCRmix-HS SYBR (Evrogen) with
the following conditions: 95 °C for 3 min, followed by 40
cycles of 95 °C for 15 s, 60 °C for 15 s, and 72 °C for 30
s. Human f-actin (ACTB) served as the internal control.
Relative expression levels were calculated using the
AACt method.”

Immunoblotting

Cell lysates were prepared as described previously in the
reference.”® Proteins were separated by 10% SDS-PAGE,
transferred to nitrocellulose membranes (GE Healthcare),
and blocked with 5% nonfat milk (Applichem). Membranes
were incubated overnight at 4 °C with primary antibodies
(Cell Signaling Technology), followed by HRP-conjugated
secondary antibodies (Jackson ImmunoResearch).
Detection of chemiluminescence was performed using
ImageQuant LAS4000 and protocol from the reference.?
Densitometry analysis for immunoblotting data was
performed using Image] software (Wayne Rasband).
The protocol for densitometry was provided by the
University of Queensland with the recommendations
from the reference.”

Reporter gene assay
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ERE-luciferase  reporter activity ~was measured
by cotransfecting cells with ERE-luciferase and
B-galactosidase plasmids (control for transfection
efficiency) as described in the reference.?® The ERE-Luc
plasmid was kindly provided by George Reid and Frank
Gannon.” To measure Snail trans-repressor activity using
E-cadherin reporter plasmid the same approach was used,
the plasmid E-cadherin-Luc was kindly provided by Prof.

Antonio Garcia de Herreros.?!

DNA copy number quantification

DNA copy number at the MIRI8IA2HG locus was
quantified by qPCR using serial fourfold dilutions of
genomic DNA to construct standard curves. MIR181A2HG
Ct values were normalized to ACTB. Primer sequences are
provided in Table 1.

Statistical analysis

Experiments were performed in triplicate with three
technical replicates. Data are expressed as mean+SD.
Mann-Whitney U test and unpaired t test were used to
evaluate the experiments. Statistical significance was set at
P<0.05 (Microsoft Excel and GraphPad Prism 8).

Results

Previously, we demonstrated that prolonged treatment
of estrogen-dependent MCF-7 breast cancer cells with
exosomes derived from the estrogen-resistant MCF-7/T
subline leads to a partial loss of (anti)estrogen sensitivity
in MCF-7 cells."” Furthermore, we showed that multiple
transfections (20 sequential rounds) with one of the
exosomal microRNAs, miR-181a-2, induce a similar loss
of hormonal sensitivity in recipient cells, which persists
for at least two months after the last transfection.?® Here, to
further investigate the potential mechanism of miR-181a-
2-induced acquired resistance, we analyzed the effects of
multiple transfections on the expression of endogenous
miR-181a-2 and associated signaling proteins.

Multiple transfections with miR-181a-2 and endogenous
miR-181a-2 expression

Experiments were conducted on MCF-7 cells that
underwent 20 rounds of miR-181a-2 transfection
followed by maintenance in standard culture medium
for at least two months. Specific PCR primers for the
endogenous miR-181a-2 precursor were used to exclude
contamination by exogenous miRNA mimetics and to
evaluate only cellular miR-181a-2 expression. The data
revealed a marked increase in endogenous miR-181a-2

Table 1. Primer sequences

precursor levels in multiply transfected cells. In contrast,
a single transfection with miR-181a-2 did not affect the
levels of endogenous miR-181a-2 (Figure 1a, left panel).

The host gene for MIR181A2 is MIRI8IA2HG.” This
gene consists of two exons and one intron and encodes a
long non-coding RNA; the intron harbors the MIRI8IA2
gene itself (Figure 2). It can therefore be assumed that miR-
181a-2 is co-transcribed with MIRI8IA2HG. We next
assessed MIR181A2HG transcription following single and
multiple transfections with mature miR-181a-2. Similar to
the precursor, MIRI8IA2HG expression increased after
multiple transfections (Figure 1a, right panel).

One potential mechanism for the elevated miR-181a-2
precursor after repeated transfections with synthetic
miR-181a-2 could be amplification of the genomic region
encoding MIRI81A2. To test this, we measured DNA
copy number in the MIRI8IA2 locus before and after
transfection. No differences were observed, excluding gene
amplification as the cause of miR-181a-2 upregulation
(Figure 1b).
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Figure 1. (a) Expression of cellular miR-181a-2 precursor and MIR181A2HG
after multiple and single miR-181a-2 transfections, *p-value=0.0286, Mann-
Whitney U test, data are presented as mean+SD (n=3); (b) copy number
of miR-181a-2-encoded DNA in MCF-7 cells after multiple and single
miR-181a-2 transfections, Mann-Whitney U test, data are presented as
mean+SD (n=3)

Gene Forward primer (5’-3’) Reverse primer (5’-3') TagMan probe

MIRT8TA2HG GCACAGCTGCAGGGATAGTAG  GGCTGGAATTTCCTTCATTGT FAM-GCTCTCGATCCGTGGGAGGT-BHQ1

MIR181A2 precursor TATCAGGCCAGCCTTCAGAG AAATCCCAAACTCACCGACA FAM-GACTCCAAGGAACATTCAACGC-BHQ1

ACTB ATGTGGCCGAGGACTTTGATT  AGTGGGGTGGCTTTTAGGATG  Cy5-TCATTCCAAATATGAGATGCGTTGTTACAGGA-BHQ3
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MiR-181a-2 and estrogen receptor o signaling two months after the final transfection.”® To further
As noted, a single miR-181a-2 transfection induces only investigate the effects of continuous miR-181a-2 uptake
transient estrogen resistance, whereas 20 transfections on ERa signaling, we infected MCEF-7 cells with a lentiviral
confer irreversible tamoxifen resistance lasting at least construct expressing miR-181a-2. Similar to multiple
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Figure 2. Schematic representation of the MIR181A2HG and MIR181A2 genes and their genomic location. According to the UCSC Genome Browser (https:/
genome.ucsc.edu/, accessed 5 July 2025), MIR181A2HG is a long non-coding RNA that harbors the MIRT181A2 gene. Two boxes (EXT and EX2) indicate two
exons separated by an intron of the MIR181A2HG. The predicted secondary structure of the miR-181a-2 precursor is shown in the lower panel. The mature forms
miR-181a-2-5p and miR-181a-2-3p are highlighted in purple. The MIR181A2 gene is located within an intron of its host gene MIR181A2HGC and is transcribed in
the same direction. Genomic coordinates are provided according to the GRCh37/hg19 assembly: MIR181A2HGC (chr9:127420715-127460907) and MIR181A2
(chr9:127454721-127454830)
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Figure 3. (a) Expression of cellular miR-181a-2 precursor and MIR181A2HGC in MCF-7 cells stably infected with miR-181a-2, *P value=0.0032, unpaired
t-test, data are presented as mean+SD (n=3); (b) sensitivity of MCF-7/Ctr and MCF-7/miR-181a-2 cells to tamoxifen, assessed by MTT assay, *P value=0.0317,
unpaired t test, data are presented as mean+SD (n=3); (c) Western blot analysis of ERa-dependent proteins in MCF-7/Ctr and MCF-7/miR-181a-2 cells. The blot
shows results representative of three independent experiments; t-test, *P=0.0012 for GREB1, 0.013 for PR-B, 0.015 for PR-A, 0.031 for era (d) reporter assay of
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(arbitrary units); *P value=0.016, unpaired t test, data are presented as mean+SD (n=3)
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transfections, lentivirus-infected cells displayed stably
increased levels of both the miR-181a-2 precursor and
MIR181A2HG RNA (Figure 3a). Tamoxifen sensitivity
assays revealed partial resistance in the transfected cells
(Figure 3b). Moreover, miR-181a-2-overexpressing
cells showed irreversible suppression of ERa signaling,
including inhibition of ERa expression and transcriptional
activity and downregulation of ERa-dependent proteins
GREBI and PR (Figure 3c, d). These results confirm a
direct link between miR-181a-2 overexpression and ERa
pathway suppression.

MiR-181a-2 and signaling protein expression

Analysis of growth-related proteins in miR-181a-2-
transfected cells revealed stable activation of CDKS6, cyclin
D1, and Snail, whereas major effectors of mTOR and
PI3K/Akt pathways were unaffected (Figure 4a).

To identify factors responsible for

endogenous miR-181a-2 overexpression, we examined
the relationship between miR-181a-2 and Snail, a
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resistance-associated protein.***> We observed direct
accumulation of endogenous miR-181a-2 in Snail-
overexpressing cells, highlighting Snail’s involvement in
the positive regulation and maintenance of miR-181a-2
levels (Figure 4b). Furthermore, miR-181a-2 transfection
resulted in the activation of Snail trans-repressor activity
(Figure 4c, left panel), whereas knockdown of miR-181a-2
using antisense (ASO) DNA oligonucleotides showed
a slight tendency toward Snail suppression (Figure 4c,
right panel). The modest effect observed in the latter
case may be due to the relatively low number of ASO
copies compared to endogenous cellular miR-181a-2
levels. Taken together, these findings suggest the possible
formation of an autoregulatory loop between Snail and
miR-181a-2, which may be responsible for maintenance
of this signaling pathway.

Overall, we uncovered a phenomenon of reciprocal
activation: continuous uptake of exogenous miR-181a-2
mimetics induces sustained endogenous miR-181a-2
upregulation, forming an autoregulatory loop that
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Figure 4. (a) Western blot analysis of growth-related proteins in MCF-7/Ctr and MCF-7/miR-181a-2 cells. The blot shows results representative of three independent
experiments; t-test, *P=0.034 for Snail, 0.035 for CDK6, 0.045 for cyclin D1 (b) expression of cellular miR-181a-2 precursor (left panel, *P value=0.0005,
unpaired t test) and MIR181A2HG (right panel, *P value=0.0002, unpaired t test) in MCF-7 cells following wtSnail transfection, data are presented as mean+SD
(n=3); (c) reporter assay of E-cadherin transcriptional activity in the cells after transfection of scrambled miR/miR-181a-2 (left panel, *P value=0.0007, unpaired t
test) and after transfection of antisense (Aso) DNA oligonucleotides scrambled/Aso-miR-181a-2 (right panel, *P value=0.0398, unpaired t test), data are presented

as mean+SD (n=3)
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contributes to hormonal resistance. This loop appears to
be supported, at least in part, by Snail activation.

Discussion

Breast cancer is predominantly hormone-dependent, with
estrogen receptors expressed in over 70% of cases, making
them critical therapeutic targets. Hormone therapy—
aimed at ERa inactivation or depletion of endogenous
estrogens—is limited by the emergence of drug resistance,
which can be either primary (present at diagnosis) or
acquired (developing during therapy). Primary resistance
is often associated with gene mutations disrupting
hormonal signaling (e.g., receptor repression) or
activating hormone-independent growth pathways (e.g.,
tyrosine kinase cascades). Acquired resistance is usually
epigenomic in nature, with microRNAs playing key
roles by directly suppressing specific genes or indirectly
modulating DNA methylation and acetylation.

Numerous microRNAs have been implicated in the
development of hormonal resistance in tumors. These
include ERa-negative regulators such as miR-342,% Let-7b/
Let-71,* and miR-1280. Additionally, miRNAs targeting
ERa coactivators/corepressors are involved: miR-17-5p
regulates SRC-3; miR-10 targets the nuclear corepressor
NCOR2;'® miR-451 regulates HER2, EGFR, and MAPK
signaling'’; and miR-101 influences Akt signaling in
resistant cells.”” Among tumor suppressors, PTEN is
particularly notable as a frequent miRNA target linked
to hormonal resistance.”” Several of these miRNAs are
known to be exosome-transported, supporting their role
in resistance transfer.**!

Recently, increasing attention has focused on exosome-
mediated resistance formation. Exosomes—microvesicles
secreted by cells into the extracellular environment—can
be taken up by recipient cells, transferring regulatory
miRNAs that affect hormone signaling.'>"*!** These
miRNAs can modulate proliferation and expression of key
proteins.*** However, the duration of miRNA influence on
signaling and involvement of proteins not directly targeted
by specific miRNAs remain unclear. Given that miRNAs
are delivered in complex mixtures containing hundreds of
species, it is crucial to identify specific miRNAs and link
them to defined cellular signaling changes.

In our previous work with estrogen-dependent
MCEF-7 cells and tamoxifen-resistant MCF-7/T cells,
we demonstrated that exosomes from resistant cells
can induce hormonal resistance in parental cells.
Profiling of microRNAs in “resistant” exosomes revealed
overexpression of multiple ERa-targeting miRNAs,
including miR-181a-2. We subsequently confirmed
miR-181a-2 as a key driver of tamoxifen resistance.?®
These findings are consistent with other studies linking
miR-181 to drug resistance in various models.”*
Nonetheless, the mechanisms underlying long-term
maintenance of resistance in newly generated resistant
cells remain unclear.

Here, for the first time, we describe hyperexpression
of endogenous miR-181a-2 precursor in MCEF-7 cells
following multiple (20 rounds) transfections with
exogenous miR-181a-2 mimetics. Elevated precursor
levels persisted for at least two months post-transfection.
Multiply transfected cells exhibited partial hormonal
insensitivity, suppression of estrogen signaling, DNMT3A
inhibition, and increased expression of growth-
related proteins, consistent with known properties
of miR-181.1447-%0

Among these proteins, we identified Snail—an EMT
regulator and indirect miR-181 target. Our results are
consistent with the data of other researchers who have
demonstrated the increase in Snail level in the miR-181-
overexpressed cells.”’** Partially, the recent observations
have shown the ability of miR-181a, along with TMBIM6
protein, to increase Snail level through the activation of
ERK pathway in breast cancer cells.*

We and others have previously shown that Snail
contributes to resistance to hormonal drugs.’**
Consistent with this, we observed an association between
Snail overexpression and elevated miR-181a-2 precursor
levels, implicating Snail as a key mediator of miR-181a-
2-induced resistance. Finally, we have demonstrated
the formation of autoregulatory loop between Snail and
mir-181a-2 that may be responsible for cell resistance
phenotype.

Conclusion

We propose a mechanism of cancer cell resistance based
on an autoregulatory loop sustaining high levels of
resistance-associated factors, such as miR-181a-2. Snail
plays a central role in this loop: it both activates miR-
181a-2 and is itself a target of miR-181a-2. The precise
mediators transmitting signals from Snail to miR-181a-2,
the mechanisms by which this loop is preserved during
cell division, and its role in biochemical imprinting and
broader phenotypic adaptation of cancer cells remain
open questions for future investigation.
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