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Introduction
Cell death is an essential process in the development, tissue 
homeostasis and integrity of multicellular organisms. 
The cell proliferation and elimination is necessary to 
maintain a homeostasis physiological processes in the 
adult organism.1,2 The unwanted cells removed during the 
process of metamorphosis, embryogenesis, pathogenesis 
as well as tissue turnover.3,4 Cell death typically involves 
two broadly defined mechanisms: programmed cell death 
and necrosis (Figure 1).5 Cell death which includes a 
genetically programmed process of cell suicide in response 
to particular signals is called programmed cell death.6,7 
Usually, programmed cell death controlled by a variety of 
extracellular and intracellular signals which are directed 
by the environment of the cell and intracellular signals.8 
Programmed cell death distinguished from cell necrosis 
as it has distinct morphological characteristics, maintains 
tissue homeostasis and regulates the proper number of 
cells in multicellular organisms by eliminating unwanted 
cells.3,9 Different endogenous tissue-specific agents and 
exogenous cell-damaging agents initiate programmed cell 
death in particular cell type under critical physiological 
conditions.10 Exogenous activations of programmed cell 
death include physical agents and infectious agents that act 
on most types of cells. Physical agents include radiation, 
physical trauma, and chemotherapeutic drugs while 

infectious agents include viruses and bacterial toxins.11 
Further, internal imbalances such as growth factors 
withdrawal, ablation of a trophic hormone, treatment 
with glucocorticoids and loss of matrix attachment can 
trigger apoptosis.10 Although various research groups 
have often equated programmed cell death with apoptosis, 
recent studies have proven that non-apoptotic forms of 
programmed cell death also exist which lacks involvement 
of the mechanism of apoptosis. Therefore, programmed 
cell death and apoptosis should never be considered 
synonymous.12,13 Kerr et al proposed the term apoptosis 
used to describe a morphologically distinct pattern of cell 
death.14,15 

Apoptosis extensively described as a significant 
mechanism of regulated death that occurs not only as a 
result of cell damage or external stress but it also takes 
place during normal development, and morphogenesis.16 
Apoptosis tightly regulated by different groups of the 
executioner and regulatory molecules. Mechanism of 
action of apoptotic cell death typically characterized by 
condensation of chromatin material, fragmentation of 
DNA occurred in the nucleus, cell shrinkage, dynamic 
membrane blebbing, and loss of adhesion to extracellular 
matrices. Further, biochemical alterations include; 
externalization of phosphatidylserine, and the activation 
of cysteine aspartyl proteases, called caspases which leads 
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Abstract

Various physiological processes involve appropriate tissue developmental process and 
homeostasis - the pathogenesis of several diseases connected with deregulatory apoptosis process. 
Apoptosis plays a crucial role in maintaining a balance between cell death and division, evasion 
of apoptosis results in the uncontrolled multiplication of cells leading to different diseases such 
as cancer. Currently, the development of apoptosis targeting anticancer drugs has gained much 
interest since cell death induced by apoptosis causes minimal inflammation. The understanding 
of complexities of apoptosis mechanism and how apoptosis is evolved by tumor cells to oppose 
cell death has focused research into the new strategies designed to induce apoptosis in cancer 
cells. This review focused on the underlying mechanism of apoptosis and the dysregulation of 
apoptosis modulators involved in the extrinsic and intrinsic apoptotic pathway, which include 
death receptors (DRs) proteins, cellular FLICE inhibitory proteins (c-FLIP), anti-apoptotic Bcl-2 
proteins, inhibitors of apoptosis proteins (IAPs), tumor suppressor (p53) in cancer cells along 
with various current clinical approaches aimed to selectively induce apoptosis in cancer cells. 
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to the cell death.14,16-20

Apoptosis typically distinguished from necrosis, which 
was assumed to represent an opposite way of an unordered 
cellular explosion in response to severe and irresistible 
trauma. Interest in non-apoptotic forms of programmed 
cell death is gradually increasing as more information on 
this type of cell death is collected.21 Non-apoptotic cell 
death types include autophagy, necroptosis, and apoptosis-
like programmed cell death. Autophagy or autophagic 
cell death termed as type II cell death. Autophagic cell 
death is a self-degradative process, and it plays a vital 
role in the degradation of cellular components inside 
the dying cell in autophagic vacuoles. Autophagy is also 
known as vacuolar cell death and is very common in the 
invertebrate tissue.22,23 Necroptosis is a programmed form 
of necrotic death, and it initiated by same death signals 
that induce apoptosis.24 Necroptosis is very common in 
vivo, in physical traumas, death inflicted by infection and 
in diverse forms of neurodegeneration. It believed that 
apoptosis and necroptosis (a regulated and programmed 
form of cell death) shares several vital processes. Several 
death receptors (DRs) such as FAS and TNFR that are 
known to induce apoptosis also induce necroptosis in 
different cell types.25 However, programmed necrosis has 
been seen only under a specific condition when apoptosis 
has been chemically or genetically repressed or blocked.16 
Moreover, another form is apoptosis-like programmed 
cell death describe the type of cell death which involve 
apoptotic features, but the cell death occurs in a caspase-
independent manner.26

Necrosis might happen during several diseases 
including cancer, neurodegenerative and autoimmune 
diseases. Necrosis traditionally considered as random, 
uncontrolled process which is usually initiated by 
certain stimuli like toxic trauma or physical damage.27,28 
Necrosis morphologically characterized by the swelling 
of cytoplasm and organelles (endoplasmic reticulum 
and mitochondria), the disruption of the plasma 

Figure 1. General mode of cancer cell death. Cancer cell death involves 
two broadly defined mechanisms: programmed cell death and necrosis. 
Programmed cell death mainly apoptosis and nonapoptosis base cell death, 
such as autophagy, necroptosis and apoptosis like programmed cell death.

Figure 2. Hallmark of cancer. Various acquire features of cancer cell, include 
selective proliferative advantage, vascularization, immune modulation, 
metabolic rewiring, an abetting microenvironment, tissue invasion/metastasis 
and altered stress response.

membrane leading to the release of cellular components 
and cell lysis.16,29 Cell death by necrosis linked to chronic 
inflammation, caused by necrosis could enhance the 
proliferation of tumors.30 However, there is another 
perception that necrosis could also be programmed in 
nature as well. Programmed necrosis has been seen only 
under a specific condition in which apoptosis is chemically 
or genetically repressed or inhibited.31 Various anti-
apoptotic proteins of the Bcl-2 family have been shown 
to inhibit both apoptotic and necrotic. Intracellular ATP 
depletion can switch an apoptotic response to a necrotic 
one. Hence, apoptosis and necrosis are not necessarily 
independent pathways. Instead, they may share some 
common messengers, activators, and inhibitors.32

Understanding apoptosis pathways for cancer therapeutics
The word cancer was first named by a physician 
Hippocrates around 460-370 B.C. and originated from 
a Greek word “karkinos” which means carcinoma.33 
Cancer defined as an uncontrolled growth of the cell 
in an abnormal manner which alters the structure of 
surrounding tissues.34 Cancer cell genotypes demonstrate 
seven essential alterations in cell physiology which leads 
to its progression and metastasis.35 Figure 2 shows the 
seven “hallmark of cancer” which contribute towards 
tumor development. The carcinogenesis comprised of 
complex multiple steps process where single cell converted 
to the tumor and move to another site via the process of 
metastasis. Apoptosis is the vital and crucial mechanism 
which maintains the balance between survival and death 
in cells to prevent cancer and other related diseases.36

Recent advances in cancer research are focused on the 
development of new drugs that halt the escape behavior 
of cancer cells via the execution of apoptosis. To this 
context, novel apoptotic inducers or sensitizers have been 
used with the combination of current drugs. Defects in 
the apoptosis-inducing pathways can eventually lead 
to the multiplication of neoplastic cells. The resistance 
of apoptosis stimulates aberrant cellular multiplication 
which eventually leads to tumorigenesis and is a 
significant hurdle to active cancer treatment.37,38 The 
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induction of apoptosis in cancer cells and limit concurrent 
death of normal cells is the primary objective of cancer 
therapy.39 Some proteins have been studied to exert pro- 
and anti-apoptotic activity in the cell and the proportion 
of these proteins plays an essential part in the regulation 
of cell death.40 Similarly, the induction of cancer apoptosis 
is among the main approaches in cancer gene therapy 
or immunotherapy. The apoptotic inducer, mediator or 
executioner gene is routinely incorporated in cancer cells 
to reverse the deficiency of its endogenous counterpart.41,42 
Understanding the cascade of events that trigger apoptosis 
in response to chemotherapy, and dysfunction of the 
apoptosis process give insight toward the novel effective 
therapeutic approach to the development of molecular-
targeted specific therapies against cancer.

The mechanism of apoptosis mainly consist of two 
core pathways involved in inducing apoptosis; extrinsic 
pathway and intrinsic pathway. Extrinsic pathway refers 
to DR-mediated pathway, and the intrinsic pathway 
is a mitochondrial-mediated pathway.15 Both of these 
apoptotic pathways, extrinsic and intrinsic pathways 
might be lead to same terminal (execution pathway).15,40 

Extrinsic pathway 
Apoptotic signaling through the extrinsic pathway 
engaged when extracellular ligands such as TNF (tumor 
necrosis factor), Fas-L (Fas ligand), and TRAIL (TNF-
related apoptosis-inducing ligand) are attached to 
the extracellular domain of the DR (transmembrane 
receptors), i.e., the type 1 TNF receptor (TNFR1), Fas 
(also called CD95/Apo-1) and TRAIL receptors. The 
order of events involved in the extrinsic phase of apoptosis 
well characterized by the FasL/FasR and TNF-α/TNFR1 
models.15,43,44 This triggering of DRs by specific death 
ligands (DLs) results in the formation of a death-inducing 
signaling complex (DISC).12 This DISC consists of the 
DD-containing Fas-associated death domain (DD) as 
an adaptor molecule, procaspase-8, procaspase-10, and 
the cellular FLICE inhibitory proteins (c-FLIPs). The 
caspase 8 activate in such a manner that prodomain of 
caspase 8 remains at the DISC, while active caspase 8 
dissociates from the DISC to start the cascade of caspase 
activation which constitutes the execution phase of 
apoptosis.45 Experimental evidence shows the excessive 
role of caspases in apoptosis.46,47 Caspases are essential 
initiators and executioners of the apoptosis, and their 
function is very closely related to its structure having 
different substrate preferences. Some caspases have long 
pro-domains which involve particular motif like the death 
effector domain (DED), and caspase recruitment domains 
(CARD), which allow interacting with other proteins, 
and connect with signaling pathways. DED includes 
caspase-8 and caspase-10 while CARD involves caspase-1, 
caspase-2, caspase-4, caspase-5, caspase-9, caspase-11 and 
caspase-12.48 Caspases traditionally classified as initiator 
and effector or executioner caspases by their position in 

Figure 3. Pathways of Apoptosis. Apoptosis mainly consist of two main 
pathways and third is executioner pathway of apoptosis. Extrinsic pathway 
triggered by external stimuli or ligand molecule and particularly involve 
death receptors (DRs). The intrinsic pathway is mediated by Bax/Bak insertion 
into mitochondrial membrane, and subsequently, cytochrome c released 
which combines with Apaf–1 and procaspase-9 to produce apoptosome 
followed by the activation of caspase 3 cascade of apoptosis. TNF related 
apoptosis inducing ligand (TRAIL), cellular FLICE inhibitory proteins (cFLIP), 
Truncated bid (tBid), B-cell lymphoma protein 2 (Bcl-2), Bcl-2 homologue 
splice variants (Bcl-xL), Cytochrome (Cyt C), Second mitochondrial activator 
of caspases (SMAC), Inhibitor of apoptosis proteins (IAPs).

apoptotic signaling cascades.

Intrinsic pathway 
The intrinsic pathway refers to mainly mitochondrial-
mediated apoptotic pathway. The intrinsic pathway triggered 
by various extra and intra-cellular stresses, which include 
oxidative stress, irradiation, and treatment with cytotoxic 
drugs.49,50 Figure 3 shows the pathways of apoptosis, the 
intrinsic pathway is mediated by Bax/Bak insertion into 
mitochondrial membrane, and subsequently, cytochrome 
c released from the mitochondrial intermembrane space 
into the cytosol.51 Bcl-2 and Bcl-xL (Bcl-2 family member) 
are anti-apoptotic proteins which prevent the release of 
cytochrome c.52 The cytochrome c combines with Apaf–1 
and procaspase-9 to produce apoptosome. Apoptosome 
is a multi-protein complex which comprised of a seven-
spoke ring-shaped complex, which triggers caspase 9 
followed by the activation of caspase-3 signaling caspase 
cascade which leads to the demolition of cells and ends 
up to apoptosis.43,46,53 Proteins that are generally involved 
in intrinsic pathway include SMAC/DIABLO (Second 
mitochondrial activator of caspases/direct IAP binding 
protein with low PI), Caspase-9 (Cysteinyl aspartic acid-
protease-9), Bcl-2 (B-cell lymphoma protein 2), Bcl-w (Bcl-
2 like protein), Nox (Phorbol-12-myristate-13-acetate-
induced protein 1), Aven (Cell death regulator Aven) and 
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Myc (Oncogene Myc).15 The dysfunctional mitochondrial 
results in loss of inner mitochondrial membrane potential, 
hyperproduction of superoxide ions, disturbance in 
mitochondrial biogenesis, the outflow of matrix calcium 
glutathione and release of membrane proteins,14,15 hold 
promising potential for cancer therapeutic strategies via 
induction of apoptosis in cancer cells which are discussed 
later in this review. 

Execution pathway 
Both extrinsic and intrinsic pathways converge at the same 
point (execution phase). Execution phase refers to the 
final pathway of apoptosis.54 Caspase-8, and 9 are initiator 
caspases while caspase-3, caspase-6 and caspase-7, 
Caspase-10, CAD (Caspase-activated DNAse) and PARP 
(Poly (ADP-ribose) polymerase) are classified as effector 
or executioner caspases.55,56 Initiator caspases activated as a 
result of autocleavage, which further activates executioner 
caspases which later proteolyze some substrates leading to 
apoptosis. They possess long pro-domains that connect 
large adapter molecules promoting multimerization and 
result in other caspases activation. However, effector 
caspases possess short pro-domains which execute 
apoptosis when activated by initiator caspases. Executioner 
caspases activate cytoplasmic endonuclease which causes 
chromatin condensation, the formation of cytoplasmic 
blebs and apoptotic bodies. Caspases regulate apoptotic 
cell death via cleavage of numerous target proteins.57,58 The 
pathway begins with the activation of execution caspases 
which further activates cytoplasmic endonuclease. 
Cytoplasmic endonuclease degrades nuclear material, 
and proteases followed by the degradation of nuclear and 
cytoskeletal proteins. Among all executioner caspases, 
caspase-3 is the most important, and any of the initiator 
caspases can activate it. Endonuclease CAD is activated 
explicitly by caspase-3, which causes degradation of 
chromosomal DNA within nuclei and condensation of 
chromatin. Execution caspases play an essential role in the 
cytoskeletal reorganization and formation of cytoplasmic 
blebs and apoptotic bodies.15,46 

Therapeutic targets for targeting death receptors: 
extrinsic pathway 
DRs are associates of TNF superfamily and initiate 
apoptotic signals when similar death ligands bind to the 
particular cell surface of DRs.59 Death ligands and their 
respective receptors comprise of TNF-TNFR1, FasL/
CD95L-Fas, TWEAK(Apo3L)-TRAMP, TRIAL(Apo2L)-
TRAIL-R1 and TRADD-DR6 as shown in Figure 4. The 
DRs well characterized by cysteine-rich extracellular 
domains and intracellular cytoplasmic sequence called as 
DD. This ligand-receptor binding leads to the activation 
in the cytoplasmic domain, accumulation of receptor and 
employment of adaptor proteins through the interaction 
between the adoptors and DD of receptors. Which 
consequently recruit and activates extrinsic pathway 
initiator caspases such as caspase -8 and caspase 10.60,61 

DRs play a significant role in the extrinsic apoptotic 
pathway and therefore emerged as a potential cancer 
therapeutic target. A variety of agents proposed in 
order to stimulate the apoptotic function of DRs and 
ligands in the extrinsic pathway, such as DNA damaging 
chemotherapeutic agents, histone deacetylase (HDAC) 
inhibitors, proteasome inhibitors, cyclooxygenase-2 
inhibitors and a number of antibodies which target 
the DR. Similarly, DNA damaging chemotherapeutic 
agents targeting Fas (DR2) expression include cisplatin, 
mitomycin, methotrexate, mitoxantrone, doxorubicin, and 
bleomycin. Moreover, etoposide, Ara-C, and camptosar 
(CPT-11) are used to target TRIAL-R1 (DR4) and 
TRIAL-R2 (DR5), thereby stimulating their expression.62 
A number of HDAC inhibitors like suberoylanilide 
hydroxamic acid (SAHA), trichostatin A (TSA), LAQ824 
(a cinnamic acid hydroxamate), m-carboxycinnamic acid 
bishydroxamide (CBHA) and MS-275 used in order to 
stimulate the expression of TRIAL-R1 and TRIAL-R2.63,64 
MG132 is an example of proteasome inhibitors which 
effectively enhance the expression of TRIAL-R2 (DR5) 
while PS-341 is another proteasome inhibitor which 
promotes the expression of TRIAL-R1/2 without affecting 
the expression of pro-apoptotic Bcl-2 family proteins, 

Figure 4. Death ligands and their receptors Death ligands and their receptors comprise of Tumor necrosis factor (TNF)- Tumor necrosis factor 
receptor (TNFR1), Fas ligand (FasL)/CD95L-Fas, TNF-related weak inducer of apoptosis (TWEAK/Apo3L)- TNF receptor–related apoptosis-
mediating protein (TRAMP), TNF related apoptosis inducing 13 ligand (TRIAL/Apo2L)- TNF related apoptosis inducing ligand receptor 
(TRAIL-R1) and Tumor necrosis factor receptor type 1-associated death domain (TRADD)- Death receptor (DR6). TNF-related apoptosis-
inducing ligand (TRAIL). This ligand-receptor binding interaction activate the cytoplasmic domain, consequently recruit and activates extrinsic 
pathway initiator caspases such as caspase -8 and caspase 10.
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cFLIP and caspases.65,66 A variety of antibodies have been 
utilized to target DRs (TRIAL), Apo2L/TRAIL showed 
as a potential cancer therapeutic agent, induce apoptosis 
in cancer cells via its two major cell DRs TRAIL-R1 and 
TRAIL-R2.67,68 They have specifically shown to expressed 
at higher levels in solid tumors.69 Owing to the ability of 
TRAIL receptors of inducing cell death specifically in 
cancer cells, agonistic antibodies against TRAIL receptors 
have been developed and demonstrated to trigger 
apoptosis in a number of cancer cells.70 various agonists 
targeting DRs in clinical trials. Dulanermin targets both 
TRIAL-R1/2 for colorectal cancer CRC and non-small 
cell lung cancer NSCLC, Mapatumumab target TRIAL-R1 
for advanced solid tumors and NSCLC, PR095780 for 
Advanced solid tumors, NHL in I and II phase.71-76 
Lexatumumab (HGS-ETR2) and Conatumumab (AMG-
655) target TRIAL-R2 for Advanced solid tumors in 
I phase.77-80 Despite all the success of TRAIL targeted 
cancer therapy, TRAIL resistance is a common hindrance 
in TRAIL-based therapy that restricts the efficacy of these 
drugs.81 

cFLIP (cellular FLICE-like) inhibitory protein is a 
crucial anti-apoptotic regulator that suppresses cell death 
induced by the DRs such as Fas-L, TNF-α and TRAIL.80 
cFLIP (27 kDa protein) comprises two DEDs which can 
inhibit FADD and recruited procaspase-8 interaction 
by binding to DED of FADD and consequently results 
in the inactivation of caspase-8. A variety of drugs have 
been developed to trigger the activation of caspases. 
Such as apoptin (caspase inducing agent) have been 
utilized for the activation of caspases-3 and caspase-7. 
Apoptosis facilitates the execution of apoptosis by causing 
DNA damage and also aid in the release of cytochrome 
c from mitochondria.83,84 Moreover, targeting caspase-8 
can result in therapeutic effect by utilizing decitabine 
(5-aza-2´deoxycytidine) which is a cytosine nucleoside 
analog and endorse demethylation by constraining DNA 
methyltransferase covalent binding especially in tumors 
suffering from hypermethylation of caspase-8 promotors, 
thus restoring the expression of caspase-8.85 Also, gene 
therapy to induce caspase based apoptosis has adopted by 
utilizing the genes that encode for inducer, mediator or 
executioner of apoptosis and also through suppressing the 
anti-apoptotic gene expression. Selective gene delivery, 
particular gene expression, and genetic modification by 
secreting target proteins are some of the strategies adopted 
to date in apoptosis-based cancer gene therapy.86 The three 
isoforms of cFLIP in humans include c-FLIPL (long), 
c-FLIPS (short), and c-FLIPR (splice).60 Generally, higher 
concentration or enhanced expression of c-FLIPS and 
c-FLIPL results in the anti-apoptotic function of cFLIP.87 
Increased expression of cFLIP observed in different types 
of cancer leading to enhanced cancer progression.88 
Similarly, the reduced expression or down-regulation of 
cFLIP can inhibit the proliferation of cancer cells and aid 
in the induction of apoptosis mediated by the DRs and 

the intrinsic mitochondrial pathway.89 Thus, cFLIP can 
play an essential role in cancer therapy, specifically if used 
with TRAIL or conventional chemotherapy.63 Moreover, 
even though c-FLIPL can perform a dual role in apoptosis 
(pro- and anti-apoptotic), typically the primary function 
of cFLIPL have been recognized as an anti-apoptotic 
regulator of apoptosis in cancer.90 

Various approaches that have taken to reduce or 
suppress the anti-apoptotic function of cFLIP involve 
the use of siRNA (small interfering RNA), use of many 
small molecules and agents that down-regulate cFLIP.91 
Specifically, siRNA inhibits the expression of c-FLIP 
and prepare cancer cells to be receptive or sensitize for 
TRAIL, FASL, and chemotherapeutic agents that induce 
apoptosis. However, the use of siRNA in vivo involves 
some restrictions. Besides, the employment of siRNA to 
inhibit cFLIP depends on the safe delivery of siRNA.92 
Many small molecules have been utilized to reduce 
mRNA and protein intensities of c-FLIPL, however, due 
to the significantly ordinary homology of cFLIP and 
caspase-8, use of small molecules for the inhibition of its 
activity is very challenging.88 Other than utilizing small 
molecules, different classes of agents have recognized 
that down-regulate c-FLIP expression by affecting 
cFLIP transcription, translation and degrading cFLIP.91,93 
These agents include conventional chemotherapeutic 
drugs, DNA damaging agents and HDAC inhibitors. 
The conventional chemotherapeutic drugs and DNA 
damaging agents are cisplatin, doxorubicin, camptothecin, 
9-nitrocamptothecin, and oxaliplatin. HDAC inhibitors 
include SAHA and the inhibitors of MEK1/2, PKC, and 
PI3K.31,86 DR agonists represent an effective therapeutics 
that mainly target apoptosis. Further, clinical trials of 
these agents showed the safety of the approach and 
apoptotic cell death. Forthcoming data from recent trials 
will also help to demonstrate their clinical activity in 
different tumor types alone and combinations. Although 
understanding the mechanism of the TRAIL pathway, 
studying various factors that might halt response, win 
over the mechanisms of tumor-cell resistance, and get 
benefit from these therapies.

Therapeutic targets for targeting anti-apoptotic protein 
of Bcl-2 family: intrinsic pathway 
Bcl-2 family proteins that comprise of pro- and anti-
apoptotic proteins are known to play an essential role in 
the regulation of intrinsic pathway of apoptosis.94 The 
categorization of Bcl-2 family proteins based on the 
existence of shared blocks of sequence homology, named as 
Bcl-2 homology (BH). The equilibrium between pro- and 
anti-apoptotic Bcl-2 family proteins is an essential element 
for the initiation of mitochondrial outer membrane 
permeabilization (MOMP).95 Bcl-2, Bcl-XL, and Mcl-
1 are anti-apoptotic proteins and their role is to prevent 
the release of cytochrome c and maintain mitochondrial 
integrity while Bax, Bak, Bad, and Bok are pro-apoptotic 
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proteins of Bcl-2 family which allow the release of 
cytochrome c from the mitochondrial intermembrane 
space into the cytosol to promote the induction of 
apoptosis eventually aid in cancer therapeutics.51,52 Up-
regulation of pro-apoptotic Bcl-2 proteins and down-
regulation of anti-apoptotic Bcl-2 effectively linked to the 
mechanism of cell death. For example, the ratio between 
pr-apoptotic (Bax) and anti-apoptotic (Bcl-2) proteins 
is generally used to determine the fate of the cell.96 
Inactivation of pro-apoptotic proteins with multidomain 
(Bax and Bak) is a crucial feature of carcinogenesis.97 
Similarly, elevated levels of anti-apoptotic proteins 
multidomain (BCL-2, BCL-xL, BCL-w, Bfl-1, and Mcl-1) 
encourage the deregulation of apoptosis in cancer cells 
and also aid cancer cells to become resistant to immune-
surveillance.98 However, single proapoptotic domain BH3, 
i.e., BID, BIM, BAD, PUMA (p53 upregulated controller 
of apoptosis) and NOXA play a primary role in regulating 
and triggering apoptosis act as sensitizer and serve as an 
excellent therapeutic target. The overexpression of anti-
apoptotic Bcl-2 family members or underexpression of 
pro-apoptotic Bcl-2 family members usually associated 
with chemoresistance. Further, BCL-2 over-expression 
has found in acute myeloid leukemia, chronic lymphocytic 
leukemia (CLL), non-Hodgkin’s lymphoma (NHL), 
myeloma, melanoma and hepatocellular, lung, breast, 
prostate carcinomas.99-101 

Potential therapeutic agents with improved efficacy 
have been developed to target the down-regulation of 
anti-apoptotic and up-regulating pro-apoptotic Bcl-2 
protein.102 Effective strategies have been adopted to inhibit 
the anti-apoptotic effects of Bcl-2 family, which include: 
using antisense oligonucleotides, development of small 
drug molecules and inhibit the gene transcription.96 An 
example of novel Bcl-2 antisense is Oblimersen Sodium 
(G3139, Genasense), 18-base antisense phosphorothioate 
oligonucleotide used in I and II phase of clinical trials in 
advance solid cancer lymphoma.103,104 It has also tested 
in combination with other anticancer agents, such as 
Oblimersen with rituximab used for NHL in II phase, 
Oblimersen with dacarbazine for myeloma in III phase, 
Oblimersen with docetaxel for castration-resistant 
prostate cancer (CRPC) and breast cancer in II and I 
phase, non-small-cell lung carcinoma (NSCLC) or small-
cell lung carcinoma (SCLC) in III phase and HRPCa 
(EORTC) in II phase.105-109

 HDACs are attractive therapeutic targets in cancer and 
inflammatory diseases.110 A significant controllers of gene 
expression work enzymatically in removing the acetyl 
group from histones proteins.111-113 Genetic knock-down 
has been shown the role of HDACs induce apoptosis and 
cell cycle arrest in different tumor types, such as colon, 
lung, breast carcinomas and acute promyelocytic leukemia, 
highlighting its activity as a critical indicator of survival 
in cancer cells.114 Further, over-expression of HDACs has 
been linked to various critical events of tumorigenesis, 

includes epigenetic repression of CDKN1A (encoding 
the cyclin-dependent kinase inhibitor p21) tumor 
suppressor gene and essential genes, like breast cancer 1, 
early onset BRCA1 and ataxia telangiectasia and Rad 3 
related (ATR).94,95 The Sodium butyrate is small molecule 
Inhibitors (HDAC inhibitor) involved in gene expression 
alteration in regulation of proapoptotic proteins. 
Another molecule Flavopiridol (cyclin-dependent kinase 
inhibitor) and are used to down-regulate the Bcl-2 and 
Bcl-xl, Mcl-1 expression respectively. Also, Fenretinide, 
which is a synthetic cytotoxic retinoid, acts by down-
regulating the activity of Bcl-2 and Mcl-1 without altering 
the expression of pro-apoptotic protein Bax.40 Many 
HDACi have entered phase I to III clinical trials such as, 
CHR-3996 used for a Refractory solid tumor in phase 
I.115 Another inhibitory agent Panobinostat (LBH589) 
used for Relapsed or refractory NHL and advanced solid 
tumors and Panobinostat (LBH589) along with melphalan 
for Relapsed or multiple refractory myelomas in I and II 
phase.116-118 

Natural and synthetic small-molecules BH3-mimicking 
agents have successfully antagonized antiapoptotic Bcl-2 
protein family members, such as Obatoclax, Gossypol, 
ATB-263 and ATB-199.119-122 All BH3 proteins composed 
of the single domain called α-helical BH3 domain has been 
demonstrated to play a crucial role in cancer therapy.123-125 

The BH-3 mimetics have developed which precisely bind 
to the hydrophobic groove (which facilitate the binding 
between pro- and anti-apoptotic proteins), and by this 
means they oppose the function of anti-apoptotic Bcl-
2 family proteins.95 Bcl-2 antisense causes the down-
regulation of Bcl-2 proteins by affecting the corresponding 
mRNA. Potential BH-3 mimetic drugs such as, Obatoclax 
Mesylate (GX15- 070MS) for SCLC and myelofibrosis and 
Gossypol/ AT-101 for Metastatic breast cancer and CRPC 
in I & II phase which inhibits Bcl-2, Bcl-xL, and Mcl- 1 
expression. ATB-263 and ATB-199 inhibit/block Bcl-2 
for Advanced hematological cancers and CLL 73,74 and 
MIM1 which inhibits Mcl-1 in clinical trials.126 

Therapeutic agents for targeting the Tumor suppressor 
protein: p53 
Tumor suppressor gene p53 is the primary entities 
involved in carcinogenesis plays an essential part in cancer 
concerning both cell cycle arrest, and apoptosis.127 Tumor 
suppressor genes are responsible for controlling DNA 
repair and cell division. dysfunctional tumor suppressor 
genes could result in uncontrolled multiplication of 
cells leading to cancer. Many aspects like chemicals, 
ionizing radiation, and viruses can cause alterations in 
proto-oncogenes and tumor suppressor genes.127-129 The 
expression of p53 is deficient in normal cells under non-
stressed conditions. However, p53 can be activated by 
any stress stimuli; DNA damage or in the response of 
oncogene activation. Extra and intracellular stress signals 
change latent p53 to an active form and encourage p53 
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to accumulate in a cell nucleus. The stability of activated 
p53 regulated through various post-translational chemical 
modifications like phosphorylation, acetylation, and 
methylation.130,131 The fundamental role of p53 is its 
capability to induce apoptosis by transcription-dependent 
and transcription-independent manner. p53 performs its 
function by transcription activation of pro-apoptotic Bcl-
2 family proteins and transcription suppression of anti-
apoptotic Bcl-2 family proteins. Moreover, it can directly 
interact with Bax that successively stimulates the release of 
cyt C via MOMP and aid in the induction of apoptosis.132

Different small molecules MDM2 inhibitors that have 
been developed to trigger wild-type p53 activity, such 
as Nultlin-3, MI-219, and RITA. The role of Nultlin-3 
and MI-219 is to prevent the interaction of MDM2 and 
p53, activating p53 signaling and suppressing the tumor 
growth.133-135 However, the pharmacological action of 
Nutlin-3 is via both the transcription-dependent and - 
independent p53 apoptotic pathways.32,136,137 Nutlin-3 has 
been shown to induce mitotic arrest rather than apoptosis 
mainly.138 MDM2 can also trigger, in response to low 
genotoxic damage, the downregulation of p53 apoptotic 
activator HIPK2.139 Interestingly, Nutlin-3 along with zinc 
ion inhibit the MDM2 ligase activity favoring HIPK2 
stabilization results in an induction of p53 apoptotic 
activity.140 Similarly, co-treatment of Nutlin-3 and (ABT-
737) Bcl-2 inhibitor has been shown to enhance the 
sensitivity to apoptosis of cancer cells greatly.141 Further, 
multi-target anticancer approach, inhibition of both 
MDM2 and Bcl-2 could be a positive tool in cancer 
treatment.142 Another reported small molecule MDM2 
inhibitor is CP-31398, which increases the transcriptional 
activity of p53 in cells.143 Furthermore, three different types 
of p53 vaccines such as peptide-based vaccines, dendritic-
cell based vaccines, and recombinant virus-based vaccines 
are undergoing clinical trials to assist in the induction of 
antitumor immune responses.144-146 Another research 
reveals a class of small molecules that reactivates the 
wild-type function of mutant p53 in so doing permit p53 
to induce apoptotic cell death. PRIMA-1 and its analog 
APR-246 are examples of this class of small molecules and 
are undergoing preclinical and clinical trials (phase I) to 
functions as reactivating mutant p53.147 

Therapeutic agents for targeting Inhibitory apoptosis 
Proteins: IAPs
The IAPs is family of protein which functions as 
endogenous inhibitors of apoptosis. Elevated expression 
levels of IAPs were significantly resulting in improved 
cell survival, increased tumor growth and consequent 
metastasis. IAPs targeting strategy has become 
increasingly attractive to sensitize cancer cells towards 
various therapeutics such as chemotherapies, antibody 
based-therapies. Besides apoptosis, IAPs observed to play 
a part in necroptosis, immune regulation, chromosomal 
and cytoplasmic division.148 IAPs can inhibit both intrinsic 

and extrinsic pathway of apoptosis. The execution of DR-
mediated extrinsic pathway and mitochondrial triggered 
a family of structurally diverse IAPs modulates intrinsic 
pathway; X-linked (XIAP), cellular (cIAP1, cIAP2), 
neuronal (NIAP), testis-specific (Ts-IAP), Bir-ubiquitin 
conjugating enzyme (BRUCE), Survivin and Livin. 
Structurally, IAPs are approximately 70 amino acids long 
and contain zinc finger BIR (Baculovirus IAP Repeat) 
domains that are responsible for deregulation properties 
of IAPs where they prevent the conversion of zymogenic 
(inactive) pro-caspases to active caspases.149,150 Over-
expression of IAPs linked to increased chemo-resistance 
in several types of cancer.151,152 As a controlled expression 
of IAPs could encourage apoptotic cell death, different 
strategies have been adopted to inhibit IAPs, and these 
include: anti-sense facilitated interference of XIAP and 
survivin oligonucleotides and siRNA expression and 
inhibition of IAPs by SMAC mimetic compounds.153-155 

XIAP inhibits both the extrinsic and intrinsic apoptotic 
pathways via direct inhibition of enzymes caspases and 
may be limited by its initiation of cell protective effects 
via NF-kB signaling and cIAP1/2 through proteasomal 
degradation or ubiquitination.156 Knockout strategies 
in cancer cells were highlighting their role in resistance 
to various anti-cancer therapies. For example, increased 
apoptosis suppressed tumorigenicity and re-sensitized 
was reported ovarian cancer cells to cisplatin therapy 
and in nude mice through shRNA mediated knockdown 
of XIAP.157 The successful results in acute myeloid 
leukemia patients undergoing therapy using antisense 
oligonucleotide AEG35156 that target XIAP in phase 
II trials.158,159 However, despite this initial success and 
confirmed on-target knockdown,157 a later trial failed 
to report a similarly improved outcome in patients with 
advanced pancreatic cancer.160 while gene silencing is 
an attractive prospect, its potential clinical relevance is 
limited by lower knockdown efficiency in patient samples, 
compared to those demonstrated in cell culture.158 and by 
the transient nature of XIAP repression.160 Still, strategies 
for RNAi remain important tools to dissect the mechanistic 
and functional role of IAPs in cancer. 

SMAC mimetics release into the cytosol as a result of 
MOMP binds to the BIR domain cellular IAPs (cIAP1 
and cIAP2) and XIAP, restoring the function of effector 
caspases by blocking inhibitory role of IAPs.161 To date, 
some inhibitors of IAP proteins have been developed 
these include: SH122, SH130, SM164, AZD5582, JP1201, 
AEG35156, LY2181308 and YM155.151 SMAC mimetic 
SH130 and SH122 target human prostate cancer cell line 
by inhibiting IAPs.162,163 AZD5582 and JP1201 are SMAC 
mimetics which target CLL and pancreatic cancer cell line 
respectively to enhance apoptosis by TRAIL.164,165 YM155 
suppresses survivin expression and induce apoptosis in 
human cancer cell lines.166,167 AEG35156 and LY2181308 
are antisense oligonucleotides and small siRNA molecules 
which targets survivin expression and also down-regulate 
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XIAP.168,169 Various past researches demonstrated that 
SMAC mimetics, along with anticancer drugs and TRAIL 
remarkably enhance apoptotic cell death in several cancer 
cell types in vitro, such as T98G glioblastoma cells, 
HeLa cells, and lung adenocarcinomas.170-172 Further, the 
SMAC mimetics role as sensitizer enhance the sensitivity 
of various agents, such as paclitaxel, etoposide, and 
doxorubicin in MCF-7 breast cancer cells.173 Various 
apoptotic pathways targeted strategies as shown in 
Figure 5, such as DRs, antiapoptotic Bcl-2 family, IAPs, 
caspases and p53 need intense focus in development 
of effective drug therapy. Studies suggested that IAPs 
may be useful as single agents in cancer also usefulness 
antagonists in combination with alternative cancer drugs. 
As further research progress, the better improvements in 
understanding of therapeutic design which may enhance 
DR, Bcl-2, IAP and p53 mediated cell death in single as 
well as combined treatment. 

Conclusion
Targeting apoptosis is a new standard in cancer drug 
development: a significant regulatory mechanism 
inside cells, a cellular process that is tightly regulated 
by various membrane-bound and freely available 
cytoskeleton molecules. Apoptosis is a fundamental 
regulatory mechanism of normal cells, any dysregulation 
in apoptosis could trigger the uncontrol multiplication 
of cells. This regulatory process characterized by a 
series of specific morphological changes along with 
biochemical features which involve extrinsic and intrinsic 
pathways via a different protein that plays a crucial role 
overall. Therefore, a detailed mechanistic understanding 
of the apoptotic signaling pathways required for the 
development of effective cancer therapeutics. The 
up-regulation of apoptotic pathways via activation of 
pro-apoptotic pathway proteins (initiator and effector 

Figure 5. Apoptotic pathway targeted drug therapy Apoptotic 
pathways targeted strategies such as death receptors, antiapoptotic 
Bcl-2 family, IAPs, caspases and p53 showed positive results 
in previous studies need to be investigate more to get effective 
therapeutics.

caspases, box, bak, bad and bok along with inhibition of 
cFLIP and sensitize DRs to trigger apoptotic pathway). 
The understanding of apoptotic pathways needs intense 
effort for the development of new approaches to drug 
discovery and therapy. However, some apoptotic pathways 
proteins which induce apoptosis selected as a target for 
drugs are in clinical trials. Positive results of antibodies 
along with recombinant TRAIL specifically target the DRs 
in clinical trials against a range of solid tumors. However, 
much understanding of evading apoptosis in cancer cells 
is needed to get the positive results in maturing clinical 
data. The novel agents along with combined apoptotic 
inhibitors strategy show significant synergistic effects and 
being in the current study.
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