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Introduction
Cancer is one of the severe life-threatening human health 
problems worldwide.1,2 Despite significant development in 
cancer chemotherapy in the past 50 years, cancer continues 
to be the second most frequent cause of death after 
cardiovascular diseases.2,3 There are numerous reports 
in the literature on the discovery of novel anticancer 
agents, but there is no single drug with 100% efficacy for 
the cancer treatment.4 Most of the clinically used drugs 
have limited effectiveness and selectivity, accompanied 
with serous toxicity, and unacceptable side effects.5,6 
Moreover, the most common tumors show resistance 
against the significant number of commercially available 
anticancer drugs.6 Therefore, considerable demand for the 
discovery of efficient new anticancer drugs continues to 
exist in order to overcome the current chemotherapeutic 
problems in cancer treatment.5 

Coumarin and its derivatives are important oxygen 
containing heterocycles which are found in natural 
products. Over the past decades, coumarins have attracted 
great attention because of their interesting biological and 

pharmacological activities such as anticoagulant,7 anti-
inflammatory,8,9 antioxidant,10 antiviral,11 antimicrobial,12,13 
antidepressants,14 and anti-HIV effects.15-17 Also, they are 
promising compounds due to their low toxicity, little 
drug resistance, less side effects, high bioavailability, and 
ease of chemical synthesis.18 Several studies have shown 
that coumarins are potential anticancer agents having 
growth suppressive effects on many types of cancers such 
as ovarian,19 breast,20,21 skin,22 prostate,23 liver,24,25 and 
pancreatic.26,27

Computer assisted drug design (CADD) has attracted 
considerable attention in modern drug discovery and 
development by reducing the time-consuming and 
expensive synthetic and biological experiments needed 
to achieve the required results.28 Quantitative structure-
activity relationship (QSAR) studies as part of CADD 
techniques play a critical role in medicinal chemistry for 
the design of new therapeutically active compounds.29-31 
QSAR studies are used for the prediction of the biological 
activity and may also be used for the interpretation of the 
mode of ligand-receptor interaction. The required time and 
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Abstract

Purpose: Despite the discovery and synthesis of several anticancer drugs, cancer is still a major 
life threatening incident for human beings after cardiovascular diseases. Toxicity, severe side 
effects, and drug resistance are serious problems of available commercial anticancer drugs. 
Coumarins are synthetic and natural heterocycles that show promising antiproliferative activities 
against various tumors. The aim of this research is to computationally study the coumarin 
derivatives in order to develop reliable quantitative structure-activity relationship (QSAR) 
models for predicting their anticancer activities. 
Methods: A data set of thirty one coumarin analogs with significant antiproliferative activities 
toward HepG2 cells were selected from the literature. The molecular descriptors for these 
compounds were calculated using Dragon, HyperChem, and ACD/Labs programs. Genetic 
algorithm (GA) accompanied by multiple linear regression (MLR) for simultaneous feature 
selection and model development was employed for generating the QSAR models. 
Results: Based on the obtained results, the developed linear QSAR models with three and 
four descriptors showed good predictive power with r2 values of 0.670 and 0.692, respectively. 
Moreover, the calculated validation parameters for the models confirmed the reliability of the 
QSAR models. 
Conclusion: The findings of the current study could be useful for the design and synthesis of 
novel anticancer drugs based on coumarin structure. 
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cost spent for drug design and discovery are significantly 
decreased by using various QSAR techniques.32

In the current work, a QSAR analysis was conducted on 
a set of coumarin analogs for which biological activities 
have been reported in the literature.33 Using GA-MLR-
based two-dimensional QSAR analysis, the cell toxicity of 
the studied coumarins was correlated to their structural 
features. Based on the obtained results, the developed 
linear models showed good predictive power, and can be 
used in designing new anticancer agents.

Materials and Methods
Methodology
Data set
The experimental IC50 (nM) values obtained for 
antiproliferative activities of coumarin derivatives (31 
compounds) against HepG2 cell line, reported by Cao et 
al,33 were used in the present study. For QSAR analysis, 
all the biological data were converted into pIC50 (i.e., -log 
IC50). 

Molecular descriptors 
The 3D structures of the ligands were built by GuassView 
5.0 software.34 The energy minimization of the structures 
were conducted initially using the empirical method 
(i.e., MM+)35 followed by semi-empirical technique 
AM136 using the Polak-Ribiere algorithm included in 
HyperChem 7.5 software.37 The molecular descriptors for 
the fully optimized molecular structures were calculated 
using Dragon (version 3.0) program.38 Log P and log D 
were calculated by ACD/Labs 6.0 program39 while the 
molar refractivity, surface area, density, and polarizability 
were calculated using HyperChem 7.5 software. From 
the total different molecular descriptors calculated by 
Dragon software, descriptors with 50% constant values 
were omitted. Moreover, descriptors were pretreated to 
remove those with more than 0.95 correlations.40 These 
pretreatments on the descriptors were performed using R 
3.2.3 software.41

Methods
Three algorithms were used for dividing the data set into 
train and test sets. These include Kenard-Stone, Euclidian 
Distance, and Activity/Property methodologies which are 
available in a java-based tool.42,43 For reducing the number 
of molecular descriptors, as well as selecting the appropriate 
features, multi linear regression (MLR) method optimized 
by incorporating the GA algorithm known as GA-MLR 
was used. This tool is a java-based graphical user interface 
and proposes an MLR model based on five validation 
parameters i.e. r2 , r2

Adjusted, q2, 2rm , and 2rm∆ with their 
default values set to > 0.6, > 0.6, > 0.6, > 0.5, and < 0.2, 
respectively.44 The GA-MLR approach was carried out 
with its default settings for finding the linear equations 
with three and four parameters. Although, GA-MLR was 
only applied on the train set, however for validating the 

generated models on the test set compounds, four criteria, 
i.e., Q2

(test), absolute percentage error (APE), mean absolute 
percentage error (MAPE), and standard deviation of error 
of prediction (SDEP) calculated according to equations 1, 
2, 3, and 4, were used:
 

𝑄𝑄(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
2 = 1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

∑ (𝑦𝑦𝑜𝑜𝑜𝑜𝑡𝑡,𝑖𝑖 −  𝑦𝑦𝑚𝑚)2𝑁𝑁
𝑖𝑖=1
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Where, yobs,I, pIC50(obs), ypred,i and pIC50(pred) are the 
experimental and predicted activities of an individual 
compound in the test set, respectively. N is the number of 
molecules and ym is the mean of experimental biological 
activities of the compounds. PRESS is the predictive 
residual sum of the squares. 
The applied fitness function (i.e., F) in this approach is 
as follow (for more details readers may be referred to the 
manual of the GA-MLR):

𝐹𝐹 =  ∑ 𝑃𝑃𝑖𝑖−�̂�𝑃𝑖𝑖
𝑃𝑃𝑖𝑖,𝑀𝑀𝑀𝑀𝑀𝑀−�̂�𝑃𝑖𝑖,𝑀𝑀𝑖𝑖𝑀𝑀

𝑖𝑖=𝑘𝑘
𝑖𝑖=0                                                         (5)

Results and Discussion
The structures of coumarin analogs used in the current 
study are shown in Table 1. The size, lipophilicity, and 
electronic features of the substituents are different. 
For extracting chemical information from the data 
set compounds, computing a wide range of structural 
descriptors is essential for any successful QSAR analysis. In 
the various fields of chemometrics, it is clear that utilizing 
an effective variable selection method which results in 
reducing the complexity of the model, can improve the 
interpretability and the predictive ability of the developed 
model.45-47 For developing a QSAR model that explains 
the antiproliferative activities of the compounds shown 
in Table 1 on HepG2 cells, large number of structural 
parameters belonging to different classes of descriptors 
such as those listed in Table 2, are used. 

The total set of compounds was randomly divided into 
train (21 compounds, 70% of the whole data set) and test sets 
(10 compounds, 30% of whole data set) for the generation 
of QSAR models and validating the developed models, 
respectively. For this purpose, the hybrid methodology 
developed in Roy’s Lab known as GA-MLR was used on 
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Compound R1 R2 pIC50(Exp.) pIC50 (Pred.) APE (Eq. 6) APE (Eq. 7)

1 OCH3 OH 6.406 6.340 1.021 0.431

2* H O-C(O)CH3 7.833 8.054 4.818 2.529

3 H O-C(O)CHCH2 7.504 7.866 1.657 0.724

4 H O-C(O)C(CH3)3 8.167 8.032 3.726 4.489

5 H O-C(O)CH2Cl 8.119 7.817 3.254 3.073

6 H O-C(O)CH2Br 7.963 7.703 0.051 0.556

7* H O-C(O)CH2CH3 7.889 7.615 9.305 9.618

8 H O-C(O)(CH2)3 CH3 7.456 7.452 0.056 0.875

9 H O-C(O)C(CH2)CH3 7.221 7.893 0.057 0.344

10 H O-C(O)CHC(CH3)2 7.676 7.680 3.746 5.386

11 H O-C(O)CHCHCH3 7.845 7.849 3.092 0.027

12 H O-C(O)CCH2CH2C 7.407 7.684 0.775 1.126

13* H O-C(O)CH2CH2C(O)(O)CH2CH3 7.168 7.690 0.114 2.433

14 H O-C(O)(CH2)4CH3 7.087 7.306 0.198 2.809

15 H O-C(O)(CH2)8CH3 6.612 6.560 5.313 4.060

16 H O-C(O)(CH2)3C(O)(O)CH3 7.565 7.557 5.367 3.592

17 H O-C(O)(CH2)3 CH2Cl 7.442 7.428 0.113 2.529

18* H O-C(O)CH2C(CH3)3 7.140 7.209 1.088 1.399

19* H O-C(O)(CH2)2 CHCH2 7.629 7.509 9.202 7.212

20 H O-C(O)C(CH3)CHCH2CH3 8.056 7.628 0.486 5.691

21 H O-C(O)CHCH(CH2)3 7.991 7.562 12.410 8.225

22 H NH2 8.481 8.491 2.825 2.086

23 H HN-C(O)CH2CH2C(O)(O)CH2CH3 7.529 7.611 3.482 6.674

24 H HN-C(O)(CH2)3C(O)(O)CH3 8.018 7.280 7.279 2.640

25* H HN-C(O)(CH2)4CH3 7.318 7.196 0.958 0.004

26 H HN-C(O)(CH2)8CH3 6.543 6.574 1.569 5.705

27* H HN-C(O)(CH2)3 CH2Cl 7.564 7.303 1.659 1.358

28* H HN-C(O)CHCHCH3 7.676 7.596 3.452 0.591

29* H HN-C(O)(CH2)2 CHCH2 7.582 7.541 1.033 3.408

30 H HN-C(O)C(CH3)CHCH2CH3 6.233 7.006 0.543 3.393

31* H OH 8.523 8.443 0.940 3.897

* Test set.

Table 2. Details of four most important descriptors were used in model construction

Symbol Descriptor Block Description

RDF030u Radial Distribution Function descriptors Radial Distribution Function - 030 / unweighted

LP1 Topological (2D matrix-based descriptors) Lovasz-Pelikan index (leading eigenvalue)

EEig02x Topological (Edge adjacency indices) Eigenvalue 02 from edge adj. matrix weighted by edge degrees

Mor04p 3D-MoRSE Signal 04 / weighted by polarizability

Table 1. Chemical structures, experimental and predicted pIC50 values of coumarin analogs used in this study which data collected from Cao et al for model 
construction and absolute percentage errors for the developed models
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three train sets differently selected based on the three data 
division algorithms mentioned in Methods section. The 
model building processes for each set were run for thirty 
times for generating three-parameter models. This was 
led to total of 90 different models with three parameters. 
For all of these models the r2 values were compared and 
the best data division method was identified as being 
Euclidean Distance method. Then, for achieving better 
results on this set, twenty further runs using the same 
settings were performed. Moreover, for generating four-
parameter equations, the best three-parameter equation 
was used such that the forth parameter was added one at 
a time from the whole pool of descriptors (i.e., in an all-
walk manner) to identify the best four-parameter model. 
Equations 6 and 7 are the best three- and four-parameter 
models, respectively.
 
pIC50 = 425.48937 - 0.08785 (RDF030u) -181.78082 (LP1) 
+ 6.80549 (EEig02x)                                                           (6)
pIC50 = 511.93488 - 0.12088 (RDF030u) - 218.19055 (LP1) 
+ 7.61787 (EEig02x) + 0.49323 (Mor04p)                         (7)

Where N, r2, Q2
(test), and MAPE are the number of 

compounds, the squared correlation coefficient of train set, 
the squared correlation coefficient of test set, and the mean 
absolute percentage error, respectively. Table 2 shows the 
statistical parameters of two developed models with more 
details. The numerical values and detailed information 
about the selected descriptors are listed in Tables 2 and 3. 
Correlation matrix of selected descriptors is represented 
in Table 4. The three-parameter model (Eq. 6) predicts 
the antiproliferative activities of the studied coumarins 
using RDF030u, LP1, and EEig02x descriptors. RDF030u 
(radial distribution function 3.0/unweighted) belongs to 
the group of Radial Distribution Function descriptors 
that are obtained by radial basis functions centered on 
different interatomic distances ranging from 0.5 to 15.5 
Å.48 The Radial Distribution Function in a system of 
particles (atoms, molecules, colloids, etc), describes how 
density varies as a function of distance from a reference 

Table 3. The statistical parameters of developed models

Models N r2 r2
Adjusted q2

(LOO) r2-q2
(LOO) Q2

(test) SEE SDEP 2rm 2rm∆ P value
MAPE

(Train set)
MAPE

(Test set)

Eq. 6 31 0.689 0.634 0.483 0.206 0.670 0.376 0.437 0.378 0.094 8.08×10-9 0.149 0.237

Eq. 7 31 0.749 0.686 0.530 0.210 0.692 0.349 0.416 0.417 0.138 1.89×10-9 0.152 0.298

Table 4. Correlation matrix of selected descriptors

EEig02x LP1 RDF030u Mor04p

EEig02x 1

LP1 0.24176 1

RDF030u 0.164324 -0.06386 1

Mor04p 0.001153 0.122393 0.571913 1

particle. When studying the chemical properties of a 
compound, the probability distribution of atoms scattered 
in a spherical volume with radius of 3.0 Å is regarded as 
an important factor.49,50 The LP1 feature, which belongs to 
the topological descriptors, is one of the 2D matrix-based 
descriptors, and is calculated by eigenvalues of a square 
(usually symmetric) matrix representing a molecular 
graph.51 Du and colleagues have reported that small and 
large values of LP1 are indicative of compounds with less 
and more branches, respectively.52 On the other hand, LP1 
is a molecular branching index. The negative coefficient of 
LP1 in both of the developed equations indicates that the 
pIC50 is inversely related to this descriptor, which suggests 
that 4-substituted coumarins with lesser branches in the 
overall structure may be show the higher antiproliferative 
activity. The next feature (i.e, EEig02x), also belonging 
to the topological descriptors has been derived from the 
edge adjacency matrix weighted by edge degrees.53 This 
descriptor is associated with molecular polarity and 
describes the electronic effects as well as the hydrophobic 
properties of molecule.54

The second QSAR model (Eq. 7) describes the activities 
of coumarin analogs using one extra parameter added 
to the three previously explained features. The new 
parameter, i.e., Mor04p belongs to 3D-MoRSE group 
of descriptors, and is calculated by incorporating the 
polarizability-based weighting of the scattering features 
of the molecules.55 The presence of Mor04p descriptor in 
the developed model can be regarded as an evidence for 
the importance of the 3D arrangement influence of the 
molecules extracted from electron diffraction studies56 on 
the antiproliferative activities of the studied compounds. 
The increase of pIC50 directly correlates to the shape and 
size of the studied 4-substituted coumarin derivatives.

The predictive power of the developed models 
was evaluated using internal and external validation 
measurements. For this purpose, the squared correlation 
coefficient (r2), leave one out cross-validated correlation 
coefficient (q2

(LOO)), the squared adjusted correlation 
coefficient (r2

Adjusted), the standard error of estimate 
(SEE), the SDEP, 2rm , and 2rm∆ were calculated for the 
train set and Q2

(test) was computed for the test set (Table 
3). The squared correlation coefficient is the parameter 
fitted on the whole train set and the QSAR models with 
r2 > 0.6 are considered reliable.57 As seen in Table 3, r2 
values of 0.689 and 0.749 were obtained for equations 6 
and 7, respectively. The q2

(LOO) and r2 – q2
(LOO) are other 

measurement criteria for evaluating the performance of 
QSAR models, which should be higher than 0.5 and 0.3, 
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respectively.58-60 The calculated values of these parameters 
for equations 6 and 7 are 0.483, 0.206 and 0.530, 0.210, 
respectively. The generated QSAR models are the result 
of the GA-MLR methodology based on a uni-objective 
(i.e., F) optimization function. The other two metrics 

2rm  and 2rm∆  were determined to further assess the 
predictive ability of the QSAR models. 2rm  metric which 
was introduced by Roy and Roy determines the proximity 
between the observed and predicted activities for the data 
set.32 It has been suggested that for the models with reliable 
predictive power, the values of 2rm and 2rm∆  should be 
more than 0.5 and lower than 0.2, respectively.61,62 The 
obtained 2rm and 2rm∆ values for equations 6 and 7 are 
0.378, 0.417 and 0.094, 0.138, respectively. 2rm∆  for both 
of models are in the acceptable range but 2rm  values are 
lower than 0.5. As previously noted, the obtaining of not 
satisfying values is possible because in the applied GA-MLR 
tool was optimized based on only F function. The relatively 
small values of SDEPs (0.437 and 0.416) show the narrow 
distribution of error and indicate good performances of 
the proposed models for all the compounds in the train 
set. An important criterion for the external validation is 
Q2

(test) calculated for the test (unseen) set. Its value, greater 
than 0.5 indicates the validity of the model. In this study, 
Q2

(test) for the two developed models with three- and four-
parameters are 0.670 and 0.691, respectively. These results 
demonstrate that both models have good predictive power 
and are reliable for the prediction of the antiproliferative 
activities of coumarin analogs. Furthermore, Eq. 7 has 
significantly higher prediction ability in comparison to 
Eq. 6 with P-value of close to zero. Figure 1 represents 
the correlation between the experimental and predicted 
pIC50 values according to the equations 6 and 7 for the 
studied coumarin compounds (total data). The resulted 
correlation coefficients of 0.688 and 0.717 between 
observed and calculated activities using Eq. 6 and Eq. 7, 
respectively, demonstrate the reliability of the proposed 
models for predictive purposes.

Figure 1. The correlation between the experimental and predicted pIC50 values for coumarin compounds (total data) according to Eq. 6 (A) and Eq. 7 (B).

Conclusion
In the present study, QSAR analysis was performed using 
GA-MLR method to construct models for predicting 
the antiproliferative activities of coumarin derivatives as 
potential anticancer compounds. The internal and external 
validation methods were used to investigate the predictive 
performance of the two developed MLR models. The 
calculated validation parameters showed that both of the 
models could predict biological activities of coumarins 
well. Based on the obtained results, the predictive power 
and the performance of the model with four descriptors 
(Eq. 7) is higher than the model with three descriptors 
(Eq. 6) owing to the inclusion of one more significant 
variable (Mor04p) in the model. Our findings could be 
helpful in estimating the activity as well as in designing, 
synthesizing, and developing the novel anticancer drugs 
based on coumarin scaffold.
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