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Introduction
Rheumatoid arthritis (RA) is a chronic inflammatory 
disease associated with swelling of synovial joints, systemic 
pain and progressive disability in movement.1 Although 
RA has relatively low prevalence in all over the world (eg., 
0.37% in Iran),2 it is considered as a major global health 
concern that needs attention.3 The main aim of the current 
therapeutic protocols in RA is based on the use of anti-
inflammatory drugs in order to prevent the progression 
of disease in the patients. However, these treatments are 
often associated with different efficacies and side effects, 
highlighting the need for new effective diagnostic and 
therapeutic strategies to control the disease.1,4 

The endoplasmic reticulum (ER) is responsible for 
many essential functions in the eukaryotic cells, including 
Ca2+ homeostasis and post-translational modification of 
lipids and secreted proteins.5,6 It has been evidenced that 
some stressful insults, such as inflammation, hypoxia, 

and amino acid deficiency, may induce the accumulation 
of unfolded/misfolded proteins in the ER, leading to 
the activation of an adaptive response, called unfolded 
protein response (UPR).5,6 The primary goal of the UPR 
is to maintain the homeostasis and survival of cells. 
However, if the cells cannot cope with the stress, the UPR 
may switch into the programmed cell death.7 The UPR 
signaling is emanated from three ER transmembrane 
protein sensor(s), including PKR-like ER kinase (PERK), 
activated transcription factor 6 alpha (ATF6α) and 
inositol-requiring enzyme 1 alpha (IRE1α).6,8,9 In resting 
cells, the PERK, ATF6, and IRE1α (hereafter called IRE1) 
are associated with GRP78/Bip protein, while under the 
ER stress condition, GRP78 is dissociated from these UPR 
arms, resulting in the activation of UPR signaling.7-9 IRE1 
is a unique enzyme with both kinase and RNase activities, 
which controls survival or cell death during ER stress.10 
Under the ER stress condition, IRE1 is oligomerized and 
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Abstract

Purpose: Despite recent advances in the diagnosis and treatment of rheumatoid arthritis (RA), this 
inflammatory disease remains a challenge to patients and physicians. Recent evidence highlights 
the contribution of endoplasmic reticulum (ER) stress in the pathogenesis and treatment of RA. 
Herein, we study the expression of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), 
as well as XBP1 splicing and the regulated IRE1-dependent decay (RIDD), in peripheral blood 
mononuclear cells (PBMCs) from patients with RA compared with healthy controls.
Methods: The PBMCs from blood samples of RA patients and healthy volunteers were isolated 
by a density gradient centrifugation method using Ficoll. The gene expression levels of GRP78/
Bip, IRE1, XBP1s, micro-RNAs (miRNAs) were evaluated by real-time PCR. 
Results: The expression of GRP78, IRE1, and XBP1s were increased in PBMCs of RA patients 
compared with healthy controls. We further show that the RIDD targets (miRNA-17, -34a, -96, 
and -125b) were downregulated in RA samples. 
Conclusion: This study can expand our knowledge on the importance of RNase activity of 
IRE1α in RA and may offer new potentials for developing novel diagnostic and/or therapeutic 
biomarkers.
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then its kinase domain is activated, leading to the activation 
of its RNase domain. The ribonuclease activity of IRE1 is 
responsible for the specific splicing of X-binding protein 
1 (XBP1) mRNA and the regulated IRE1-dependent 
decay (RIDD).11 The spliced XBP1 (XBP1s) acts as a 
transcription factor and upregulates the genes related to 
ER folding capacity, membrane biogenesis, and ER quality 
control. In parallel, the RIDD targets a subset of mRNAs/
miRNAs to decrease protein-folding demand or to induce 
cell death, depending on the tissue and stress types.12 

It has been evidenced that dysregulation of the UPR 
pathways is associated with the pathogenesis and 
progression of RA.13,14 Most pathological hallmarks of RA, 
including hypoxia, low glucose, and excessive activation 
of immune responses,15 can exert a burden on the ER 
that may induce ER stress.13,14 This chronic ER stress 
can increase the rate of proliferation of synoviocytes, 
and the production of pro-inflammatory cytokines 
and autoantibodies in RA.13-16 The up-regulation of ER 
stress markers, including GRP78, IRE1, XBP1s, ATF6, 
and eIF2a-P, have been reported in macrophages and 
fibroblast-like synoviocytes (FLS) of RA patients.16,17 
However, the functional importance of ER stress in RA 
needs more investigations. 
 Here, we report the increased RNase activity of the IRE1 
in PBMCs from RA patients compared with healthy 
individuals. We further show that transcriptional changes 
at the downstream targets of IRE1 (especially miR-96 
and XBP1s) may offer a new opportunity to improve the 
current diagnostic markers and therapeutic options in RA. 

Material and Methods
Study design and patient’s selection
The case-control study involved 52 Iranian subjects, who 
were divided into two groups including patients and 
healthy controls (n=26). Patients with RA, defined by 
ACR/EULAR criteria,  were selected during five months 
from March to July 2017 who referred to Imam Hossein 
hospital (Tehran, Iran) and diagnosed with active RA. A 
questionnaire was filled out by the volunteers to gather the 
demographic and other information related to this study. 
Healthy volunteers whose age and sex were matched with 
the patients group and had no previous report on cancer 
or any other chronic inflammatory disease were included. 
The clinical data of RA patients and healthy controls were 
summarized in Table 1. 

Table 1. Clinical characteristics of rheumatoid arthritis patients (RA) and 
healthy controls

RA patients Healthy controls 

Gender % (female/male) 89.28/10.72 81.25/18.75

Age mean (range) in years 52.6 (36-75) 50.6 (35-74)

Mean disease duration (years), range 6.2, 1-20 -

Smoking (%) 7.6 -

Active / sedentary work (%) 26.9/73.1 3.84/96.15

Vitamin D consumption (%) 42.30 12.5

PBMC isolation and real-time PCR 
A volume of 5 ml blood from all patients and controls 
was collected into EDTA tubes under aseptic condition. 
Blood samples were immediately transferred to the 
laboratory and PBMCs were isolated by a density 
gradient centrifugation method using Ficoll-Hypaque 
(Inno-train, Germany) according to the manufacturer’s 
protocol. Total RNA was extracted by RNA X plus (Sina 
Clone Co., Tehran, Iran) and the poly (A)-based mRNA/
miRNA cDNA synthesis kit (Bon Yakhteh, Tehran, 
Iran) was used for cDNA synthesis. The expression of 
mRNA/miRNAs was measured by real-time PCR system 
(Illumina) using SYBR Premix, BON qPCR master mix 
and individual-specific primers that obtained from Bon 
Yakhteh Company (Tehran, Iran). Real-time PCR was 
performed according to the following thermal conditions: 
95°C for 2 minutes, 40 cycles of 95°C for 5 seconds and 
60°C for 30 seconds. The relative expression of transcript 
levels of each individual was calculated according to 2-∆∆Ct 
and analyzed by Rest 2009 software. The expression levels 
of mRNAs and miRNAs were normalized to β-actin and 
snord, respectively.

Reverse transcriptase (RT)-PCR 
The specific primers to amplify the spliced and 
unspliced form of XBP1 mRNA were: forward 
5’-AGCAAGGGGAATGAAGTGAG-3’ and reverse 
5’-TGGGGAAGGGCATTTGAAGA-3’. The PCR 
condition was one cycle of denaturation (95°C for 5 
minutes), 38 cycles of amplification (95°C for 25 seconds, 
65 °C for 30 seconds, and 72°C for 30 seconds) and a final 
cycle of extension (72°C for 5 minutes). PCR products 
were electrophoresed on 2.5% agarose gel. 

Assessment of diagnostic value of ER stress
Receiver-operating characteristic (ROC) curve analysis 
was performed to evaluate the diagnostic value for IRE1 
and miR-17, -34a, -96 and -125b. The 95% confidence 
interval (95% IC) of the area under the curve (AUC) were 
analyzed by ΔCt of each reaction using GenEx software 
version 6.

Statistical analysis
All results were represented as mean ± SD from three 
independent experiments that performed in duplicates or 
triplicates. Normal distribution of data was determined 
by the Kolmogorov-Smirnov test using SPSS (Statistical 
Program for Social Science) software version 19. The 
Student’s t test was used to compare gene expressions 
between RA patients and healthy controls. The correlation 
coefficient was determined by the Spearman’s/Pearson’s 
correlation statics using GenEx software. 

Results and Discussion
To investigate the involvement of ER stress in RA, we 
initially evaluated the transcriptional activation of two 
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key UPR markers ERN1 (IRE1α) and HSP5A (GRP78/
BiP) in PBMC from RA patients (Figure 1). We focused 
on PBMCs because these samples are considered as a 
low-cost and non-invasive method for finding the new 
prognostic/therapeutic biomarkers.18-20 A significant 
increase in the expression levels of both GRP78 (2.78-fold, 
P < 0.05) and IRE1 (17.26-fold, P < 0.001) were observed 
in PBMCs from RA patients compared with healthy 
controls (Figure 1A and 1B). To determine the functional 
activation of IRE1/XBP1 axis of the UPR, we evaluated 
the splicing of XBP1 in RA samples (Figure 1C). The 
real-time PCR results showed that XBP1s levels raised 
up to 3-fold in PBMCs from RA patients compared with 
healthy controls (Figure 1C). The semi-quantitative RT-
PCR results also confirmed that the spliced form of XBP1 
is observed in RA patients, while unspliced XBP1 is the 
dominant form of mRNA in healthy controls (Figure 1D). 
These results are in agreement with the previous reports, 
suggesting the upregulation of XBP1s in PBMC and FLS 
of RA patients.16,17,21 Recently, Kabala et al showed that 
the elevated level of XBP1s in RA was contributed to 
the apoptotic-resistant phenotype of FLS.22 It has been 
also reported that the IRE1/XBP1s axis of the UPR can 
contribute in the pathogenesis of RA by an increase at 
the level of autoantibodies produced against secreted 
GRP78.23 In this condition, the ER chaperone GRP78 acts 
as an autoantigen24 and contributes in the synoviocyte 
proliferation and angiogenesis, two hallmarks of RA 
pathogenesis.16 In addition, the upregulation of the GRP78 
can selectively trigger the activation of T- and B-cells in 
RA.13,25 However, Savic et al demonstrated that the IRE1-
mediated XBP1 splicing was unconventionally activated 
by toll-like receptor 2/4 (TLR 2/4) signaling without 
inducing the classic ER stress pathways.21 The authors 

Figure 1. The expression of ER stress genes in RA patients in comparison to 
healthy ones. The gene expression levels GRP78 (A), IRE1 (B) and XBP1s (C) 
were evaluated by real-time PCR. The results are presented as mean ± SD.* 
P < 0.05, ** P < 0.01 and *** P < 0.001. D) The RT-PCR results of unspliced and 
spliced XBP1 (XBP1s) in PBMCs from two RA patients and healthy controls 
(HC). The gel electrophoresis image represents RT-PCR results obtained from 
isolated RNAs of each sample.

also reported that the expression of other ER stress genes, 
including SYNV1, GRP78 and IRE1, were downregulated 
in PBMCs of active RA patients compared with healthy 
groups.21 Yoo et al showed the high expression levels of 
the UPR mediators CHOP, GRP78, IRE1, and ATF6 in the 
lining layer and/or sublining leukocytes of RA synovium.16 
The cause of these discrepancies may be explained by 
difference in the types of samples and treatment protocols, 
as well as the context-dependency nature of this disease. 
 To further investigate the role of IRE1 in RA, we also 
studied the IRE1/RIDD pathway. The role of RIDD 
activity of the UPR is mostly unknown in RA.14,26 It has 
been reported that the RNase activity of IRE1 (both 
the XBP1 slicing and RIDD) may cause the release of 
pro-inflammatory cytokines, thereby exacerbate the 
pathogenesis of RA.23 Recent findings suggest that miRNAs 
are tightly regulated at multiple levels, ranging from their 
transcription to their decay by RNase enzymes.23,27,28 
In this line, Upton et al reported that miR-17, miR-34a, 
miR-96 and miR-125b are degraded by RIDD activity of 
IRE1, leading to apoptosis induction via the upregulation 
of caspase-2 mRNA levels.28 Therefore, we studied the 
expression patterns of above-mentioned RIDD targets 
in RA patients. Our results showed that in contrast with 
IRE1 overexpression, the levels of miR-17, miR-34a, 
miR-96 and miR-125b were significantly decreased in 
PBMCs of RA patients compared with healthy controls 
(Figure 2A). The expression level of let-7 miRNA was 
not significantly changed in this condition (Figure 2A). 
Quantitatively speaking, the average relative expression 
levels of miR-17, -34a, -96 and -125b decreased up to 0.34-
, 0.07-, 0.11-, and 0.15-fold, respectively (Figure 2A). The 
Pearson/Spearman correlation test revealed a negative 
correlation between IRE1 and its target miRNAs (Figure 
2B-E), confirming the upstream activation of RIDD as 
an ER stress hallmark in PBMCs of RA patients. Very 
recently, Kabala et al showed that RIDD activity of IRE1 
may modulate inflammatory responses via degrading 
anti-cytokine miRNAs in RA.22 Our results uncover that a 
wider range of miRNAs, such as anti-caspase-2 miRNAs, 
can be also regulated by IRE1/RIDD pathway in RA. The 
possible role of these miRNAs in the pathogenesis of RA 
needs more investigations. Regardless of the mechanism 
of action, the RNase activity of IRE1 may be a therapeutic 
target in RA.4

Recent findings highlight the potential of miRNAs as a 
diagnostic biomarker in RA.18-20 Thus, we performed a 
ROC curve analysis to find if IRE1 and its downstream 
miRNAs have biomarker values in RA (Figure 3). The 
results (Figure 3) demonstrated that IRE1 and miR-96 
may have moderate diagnostic values for the diagnosis of 
RA. However, larger sample sizes and more experiments 
are required to support these findings. In conclusion, 
the RNase activity of IRE1 may offer a new opportunity 
to improve the current therapeutic and/or diagnostic 
markers in RA patients. 
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