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Introduction
Cancer is the first cause of death globally followed by 
cardiovascular diseases, imposing high costs on the 
health system. Following recent medical breakthroughs, 
the researchers’ focus has shifted toward tumorigenic 
mechanisms, cancer management, effective treatments 
and reducing treatment side effects. Improvement 
of the current treatment strategies requires a deeper 
understanding of the tumor microenvironment and its 
effective elements, which will ultimately lead to the use 
of combination therapies. Platelets as a blood component, 
are capable of playing a key role in tumorigenesis. In 
order to grow, tumors require a network of blood supply 
and the platelets floating within this network attach to 
the tumor cells, get activated, accumulate and might 
become part of the tumor microenvironment, potentially 
affecting parenchyma and tumor-dependent stroma.1 
Increasing data are proving platelets as a key element 
bridging between thrombotic events and inflammatory 
pathways, leading to systemic inflammatory and 
immune processes.2 Not only platelets provide secreted, 
pleiotropic inflammatory mediators and factors 
orchestrating heterotypic interactions with endothelial 
cells, neutrophils, and monocytes, but they also produce 
microparticles.3 Microparticles (MPs) are a heterogeneous 
group of mainly spherical vesicles which contrary to 
exosomes, form through a process of membrane budding 

(exocytosis) and are basically present in all body fluids and 
maintained at a concentration of >106/mL in blood under 
normal conditions, and reportedly increase during tissue 
hypoxia, oxidative stress, cell activation and a variety of 
diseases such as heparin-induced thrombocytopenia, 
thrombosis, idiopathic thrombocytopenic purpura, sickle 
cell disease, uremia, cancer, multiple sclerosis, rheumatoid 
arthritis, antiphospholipid syndrome and systemic lupus 
erythematosus.4-6 The first clues of a potential involvement 
of platelet MPs (PMPs) in cancer were provided when their 
high plasma levels were found in a variety of malignancies 
such as gastric and lung cancers, decreasing following 
therapy. Such findings are suggestive of a possible 
indicator of clinical prognosis.7-9 Initially, Chargaff and 
West 10 identified PMPs as a precipitable factor in platelet-
free plasma potentially capable of promoting thrombin 
generation. PMPs are currently known to comprise 
the majority of MP population in peripheral blood and 
account for over 70% of all extracellular vesicles.11,12 

PMP characterization is generally based on electron and 
atomic microscopy, and analyzing protein markers, and 
single particle analyzers. Size distribution of PMPs varies 
in a wide range between 50 to 2000 nm, but is mainly 
within the 100-800 nm range.13–15

Means by which platelet microparticles get involved in 
tumorigenesis include shrouding tumor cells in circulation, 
allowing immune invasion, inducing a pro-coagulant state, 

Review Article

Article History:
Received: 3 Feb. 2020
Revised: 20 Apr. 2020
Accepted: 21 Apr. 2020
epublished: 7 Nov. 2020

Keywords:
• PMP 
• Platelet 
• Microparticle 
• Cancer

Abstract

Platelet-derived microparticles (PMPs) are a group of micrometer-scale extracellular vesicles 
released by platelets upon activation that are responsible for the majority of microvesicles 
found in plasma. PMPs’ physiological properties and functions have long been investigated 
by researchers. In this regard, a noticeable area of studies has been devoted to evaluating the 
potential roles and effects of PMPs on cancer progression. Clinical and experimental evidence 
conflictingly implicates supportive and suppressive functions for PMPs regarding cancer. Many 
of these functions could be deemed as a cornerstone for future considerations of PMPs usage 
in cancer targeted therapy. This review discusses what is currently known about PMPs and 
provides insights for new and possible research directions for further grasping the intricate 
interplay between PMPs and cancer.
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aiding metastatic dissemination through establishing 
niches for the anchorage of circulating tumor cells, as 
well as anti-inflammatory, anticoagulant, antiangiogenic 
and apoptosis-inducing mechanisms (Figure 1). However, 
PMPs’ mechanisms of action after contacting the tumor 
cells is still a matter of debate.16 The present review will 
discuss how the PMPs influence tumorigenesis and their 
potential supportive and suppressive function in cancer 
progression.

PMP
PMP formation, structure and components 
PMP formation through cell membrane budding is tightly 
linked to surface exposure of phosphatidylserine on 
platelets. Cell membrane phospholipids are asymmetrically 
arranged under physiological conditions; sphingomyelin 
(SM) and phosphatidylcholine (PC) are present in the 
outer layer while phosphatidylethanolamine (PE) and 
phosphatidylserine (PS) lie in the inner layer. Membrane 
asymmetry is controlled by the “flip-flop” mechanism 
which is regulated by phospholipid transporters including 
scramblase, flippase and floppase.17 flippase, directed 
toward the cytosol and ATP-dependent transporters; (ii) 
floppases, directed toward the extracellular environment 

and ATP-dependent transporters; and (iii) scramblases, 
bidirectional and ATP-independent transporters. 
Scramblases allow for a random distribution of lipids 
between the membrane bilayers. The flippases are 
very selective for PS, and their action is responsible for 
maintaining this phospholipid mainly sequestered at the 
inner leaflet of the cell membrane.18,19 Platelet activation 
by agonists such as collagen, ADP, thrombin, and Ca2+ 
ionophore, activates resting platelets and increases 
intracellular calcium, which in turn, inactivates flippase 
and induces floppase and scramblase activation, resulting 
in immediate exposure of negatively charged phospholipid 
PS.17,20 The energy required for this translocation is 
supplied from the ATP provided by Ca2+-dependent 
proteolysis degradation.21 As intracellular calcium flush 
occurs, cell blebbing can happen through cysteine protease 
and μ calpain, which in turn leads to disaggregation of 
cytoskeleton constituents, as well as α-actinin and talin. In 
platelets though, μ calpain inhibition is reported to prevent 
PMP shedding and its activation to be mediated by elevated 
cyclic AMP levels. As a result of activation of μ calpain and 
subsequently protein kinase A, cytoskeleton proteolytic 
degradation is triggered, which results in membrane 
blebbing and PMP release.19 Transmembrane protein 

Figure 1. PMPs in cancer progression. (A) Endothelial dysfunction and poor coverage by pericytes lead to tumor cell intravasation. (B) Cancer cells promptly 
bind to platelets and activate them in bloodstream through adhesion molecules expressed on both cells. These interactions protect tumor cells against immune 
surveillance (platelet binding to tumor cells prevents tumor MHC molecule presentation to T-cells) and lead to the release of PMPs and activation of biomolecules 
participating in thrombosis, angiogenesis and metastasis. Tumor cell-PMP interactions increase the procoagulant activity of PMPs, providing a procoagulant 
membrane surface for thrombin activation and forming a prothrombinase complex which travels in the circulation, causing distant clot formation. PMPs can 
externalize tissue factor pathway inhibitor (TFPI) on their surface. The TF: FVIIa complex is regulated by TFPI, thrombomodulin, protein S or endothelial protein 
C receptor, conveying their ultimate participation in anticoagulant pathways. (C) Tumor cell-PMP interactions stimulate tumor cell expression of proangiogenic 
factors. The TF expression on PMPs initiates thrombin generation, subsequently boosting angiogenesis. PMPs may promote a switch to antiangiogenic state in 
endothelial cells. PMPs secrete PF4, TSP-1 and TGFβ which prompt a switch to anti-angiogenic state in endothelial cells. (D) Tumor cell-PMP interactions lead to 
metastasis. GPIIb/IIIa and TF play critical roles in metastases formation. GPIIb/IIIa supports stable adhesion of PMPs to tumor cells through binding to fibrinogen or 
vWF. GPIIb/IIIa (αIIbβ3) activation also initiates signaling which is responsible for the secretion of VEGF, ATP, ADP, TXA2, TGFβ and MMPs from PMPs. Presence 
of TF on the surface of PMPs provides a procoagulant membrane surface for thrombin generation, subsequently activating PAR-1 and signaling pathways mediated 
by PI3K, Src, and ERK, resulting in VEGF and MMPs secretion. PMPs also induce tumor cells to secrete ADP, TXA2 and MMPs. These mediators trigger tumor 
cell-induced platelet (and PMP) aggregation (TCIPA) which facilitates the microvascular arrest of tumor cells at distal sites during the metastasis process, tumor 
cell invasion, EMT and angiogenesis, all of which subsequently aid anchoring of metastatic tumor cells to distant sites, thereof assisting the establishment of new 
nodes. Moreover, ATP released from PMPs promotes tumor metastasis through relaxing endothelial barrier function upon binding the endothelial P2Y2 receptor 
and permitting extravasation of tumor cells. This figure was obtained using Servier Medical Art. (http://smart.servier.com/).
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16F (TMEM16F) has been suggested to be necessary for 
phospholipid scrambling and PMP release.22 Some studies 
have been identified that there are some other specific 
molecular events to explain the connection between the 
increase of intracellular calcium after platelet activation 
and PS externalization. It has been suggested that PS 
externalization is another proposed cause of influx in the 
calcium channels, leading to calcium stores depletion, also 
known as store-operated calcium entry (SOCE), shown to 
be regulated by actin cytoskeleton. Through rearranging 
actin molecules of the cytoskeleton, GTPase Rho A acts 
in SOCE regulation and the subsequent PS exposure.19,23

While membrane scrambling and PS exposure are 
generally considered to be essential for PMP release, a 
considerable share of PMPs do not expose surface PS, 
However, we still cannot comprehend the intricacies of 
shedding of non-PS-exposing PMPs, implicating further 
research to grasp involved cellular mechanisms.12,19 
Other processes which have also been implicated in 
PMP formation are proteasome function, protein 
tyrosine dephosphorylation, and calmodulin activation, 
the influence of which is not completely distinct.12,24,25 
Detailed studies on PMPs have revealed noticeable 
complexity and heterogeneity of surface markers, content 
and size distribution.25,26 They are also different from 
megakaryocyte derived MPs based on surface markers. 
Table 1 presents the differences between platelet and 
megakaryocyte derived MPs. Platelet Microparticles 
are affected by the stimulus of their generation and 
their structural heterogeneity tightly depends on the 
mechanism resulting in their generation.15,27 Based on 
structural variations, PMPs can be categorized into 
three groups of single-layered PMPs, multi-vesicular 
PMPs, and organelle-containing PMPs. For instance, 
PMPs formed as a result of platelet stimulation by 
thrombin are comparatively smaller in size and contain 

Table 1. Diversity of MPs markers based on cell of origin

MP Source Specific Markers References

Megakaryocyte

GPVI 

23,25,34αIIbβ3 (CD41), CD42b

Filamin A

Activated 
platelet

P-selectin(CD62P) 

23,25,35
LAMP-1 

CD31, CD42b,CD36,CD61, αIIbβ3 (CD41) 

PS+/- 

Apoptotic 
platelet

CD31, CD42b
19,23,35

Histones

Fragmented DNA

High levels of phosphatidylserine 

Abbreviations: MP: Microparticle; GP: Glycoprotein; CD: Cluster of 
Differentiation; LAMP-1: Lysosomal-associated membrane protein 1; PS: 
Phosphatidylserine.

cytoplasm, cellular components and organelles such as a 
mitochondrion, alpha- and glycogen granules.15 

The density of PMPs largely depends on the quantity 
and quality of the glycoproteins, which mostly consist of 
membrane transporters and adhesion receptors. PMPs 
carry over forty different glycoproteins including IIb/
IIIa, Ib/IX, P-selectin and gp53, as well as receptors for a 
number of coagulation factors. A variety of molecules are 
found in PMPs including coagulation, transcription and 
growth factors, enzymes, adhesion molecules, cytokines, 
chemokines, complement proteins, bioactive lipids, lipid 
mediators factors, apoptosis regulators and miRNAs.28,29 
A comprehensive summary of PMP’s content and 
surface markers and their functions is outlined in Table 
2. Many bioactive substances are released during platelet 
activation, which are typically stored in their α and dense 
granules. The fact that PMPs have a higher content of PS 
and P-selectin compared to their cell of origin, suggests 
either the existence of a dynamic process for content 
selection or that the PMPs arise from particular regions of 
platelet membrane rich in such factors, while the findings 
regarding flow-induced protrusions also promote the 
hypothesis that the budding might occur in specific 
regions.30,31 A proportion of PMPs may also transfer their 
mitochondria, while there are studies speculating the 
role of PMPs as a source of circulating nucleic acids. Size 
seems to be another factor influencing PMPs constitution, 
as size distribution and content have been revealed to be 
correlated with one another.32,33

Platelet activation mechanisms
Factors triggering PMP formation in circulation include 
platelets apoptosis, platelets exposure to complement 
component C5b9, physiological or pathological elements 
resulting in cell activation (thrombin, collagen, ADP, 
Ca2+ ionophore) or infectious agents (e.g. bacterial 
lipopolysaccharide or influenza virus H1N1), shear stress, 
blood processing and storage (PMP counts double over 5 
days of storage in apheresis concentrates) and mediators 
released by tumor cells.25,72 Dual stimulation with thrombin 
and collagen or a single agonist mixed with shear stress 
has been reported to cause maximal PMP production. For 
instance, the requirement of von Willebrand factor (vWF) 
for shear-generated PMP is supported by the evidence that 
antibodies blocking the vWF receptor (CD42b) inhibit 
PMP production.73–76 

PMPs function
PMP and intercellular communication
Due to their potency as intercellular communication 
mediators, PMPs have recently been considered of 
particular interest by researchers. PMPs interact with 
many cells such as neutrophils, monocytes, endothelial 
and tumor cells to induce phenotypic changes or new 
functions in these cells by delivering a variety of factors 
including bioactive proteins, lipids, enzymes, surface 
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Table 2. PMP’s content and surface markers and their functions

PMP surface marker and content Function  References

CD42b (GPIb)
Adhesion to vWF

36-38

Neutrophil activation

CD62P (P-Selectin) Binding to PSGL-1 33,34,38-40

CD42a (GPIbIX) Adhesion 41,42

CD61 (GPIIIa)
Adhesion 43–45 

Aggregation

CD41/61 (GPIIb/IIIa, αIIbβ3)

Adhesion

46–48
Aggregation

Tumor cells metastasis

Binding to fibrinogen 

Lysosomal-associated membrane protein-3 (LAMP3, CD63, gp53)
Adhesion

49

Inflammation 

Receptors for coagulation factors Binding to FVa and FVIIIa 33

Anionic phospholipids Passive procoagulant activity 50

MMPs Degrading ECM 11

CXCR4 Inflammatory response 47,51

Cytokine receptors: TNFR-I, TNFR-II TNFα-induced CD40L expression 40,52

TF Activating coagulation 50

PAR-1 (protease-activated receptor) Procoagulant activity 47,53

MHC1 (probable) Presenting antigens to T cells 54,55

CD40L (CD154) Activating B Cells 33,56

C-type lectin-like receptor (CLEC-2) Probably binding to Podoplanin (PDPN) 
57

LPC (probable)
Platelet activation, spread, aggregation and migration

58

Vascular inflammation

Complement activator (gC1qR , IgG)
Complement activation

59

Inflammation

Complement regulators (C1-INH, CD55, CD59) Regulating complement system 59

Enzymes (cyclooxygenase-1,12-lipoxygenase, caspases 3 and 9, 
Heparanase, NO synthase)

Pro/anti-inflammatory response 
25,33,60,61Apoptosis

Tumorgenesis

Growth factors 
(VEGF, PDGF, TGFβ, bFGF, IGF1)

Angiogenesis
33,62

Metastasis

Cytokines 
(IL1b, IL-6, IL-8)

Inflammation
33,62–64Angiogenesis

Megakaryopoiesis 

Chemokines 
(CCL5, CCL23, CXCL7, CXCL4)

Monocytic arrest on ECs
33,49,62,65

Negative angiogenesis factor

Suppressing neutrophil apoptosis

S1P, AA, Thromboxane A2 AA delivery to cells 65,66

Transcription factors Regulating inflammation and immunity 33,67

MicroRNAs RNA transfer to target cells 30,68,69

Mitochondria 
Producing inflammatory mediators 

25

Inducing leukocyte activation 

Thrombospondin Antiangiogenesis factor 70

Platelet-activating factor Activating neutrophils and macrophages 71

Abbreviations: PMP, Platelet microparticle; vWF, von Willebrand factor; PSGL-1, P-selectin glycoprotein ligand-1; ECM, Extracellular matrix; CXCR4, C-X-C 
chemokine receptor type 4; TNFR, Tumor necrosis factor receptor; MHC, major histocompatibility complex; FasL, Fas ligand; VEGF, Vascular endothelial growth 
factor; PDGF, Platelet derived growth factor; TGFβ, Transforming growth factor beta; bFGF, basic fibroblast growth factor; IGF1, Insulin-like growth factor 1; IL, 
interleukin; EC, Endothelial cell; AA, Arachidonic acid; S1P, Sphingosine-1-phosphate; MMPs, Metalloproteinases; TF, Tissue factor; LPC, Lysophosphatidylcholine.

receptors, growth factors, transcription factors and 
miRNAs and are even capable of transferring infectious 
agents such as HIV and prion. PMPs transfer CXCR4 
receptor to cells lacking it and make them vulnerable 
to X4-HIV. Plasma and platelets account for the main 
source of cell-associated prion proteins in human blood. 
Studies alike also report this protein to be released by 
apheresis-obtained platelets.1,30,77 Although several poorly 

understood modes of interactions have been reported, 
three modes have been hypothesized through which the 
PMPs interact with the other cells. One is signaling proteins 
and bioactive lipids present on PMP surface stimulating 
the receptors on the target cells.78 Another hypothesis is 
the fusion of PMPs with the target cells to transfer the 
membrane integral proteins, while the third suggestion 
is PMP internalization and unpacking for the delivery 
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of miRNAs and cytosolic enzymes.16 Membrane fusion 
between PMPs and cells leads to PMP content deposition 
in the recipient cell’s cytosol. This fusion process seems to 
be dependent on PS. However, PMPs find another way to 
interact with the target cell.79 Gas6 is a secretory protein 
which binds to the membrane PS and then functions as 
a ligand for tyrosine receptor kinases Axl, Tyro3, and 
MERtk.80 A recent study demonstrated that extracellular 
vesicles (including platelet microvesicle or PMP) are sorted 
into the endosomal pathway, moving quickly through the 
cytoplasm and then stalling at the endoplasmic reticulum, 
before eventually fusing with lysosomes for degradation 
inside the target cell.81 However, further studies are still 
required to clearly perceive the regulation of PMPs uptake. 
Mechanisms concerned in PMP adhesion as well as its 
internalization within tumor cells are yet to be elucidated, 
though are hypothesized to involve interactions with 
various receptors like GP1b, p-selectin and PS receptors 
on the surface of tumor cell, alongside other interactions 
such as phagocytosis or fusion.82,83

PMP, inflammation and metastasis
Several mechanisms have been known for activated 
platelets to signal their target cells involved in 
inflammatory interactions, some of which occur through 
secreting mediators which might involve PMPs.84 PMPs 
are also reportedly increased in several other disease 
states with a recognized inflammatory component 
involved.85–87 Particular effects of PMP molecular transfer 
might be dependent on the type of target cells as well as 
the underlying inflammatory disease and certain patient 
factors.88 They might also exert anti-inflammatory 
effects, the mechanisms of which remain to be known. 
An overview of PMP involvement in inflammation is 
provided in Table 3.

Platelets assist cancer progression in a number of 
levels, especially at the late stages of primary tumors 
and metastasis.89,90 Formation of platelet–tumor-PMP 
aggregates, might facilitate tumor cells microvascular 
arrest at distal sites during the metastasis process.91 Distant 
metastasis needs tumor cells to undergo the following: 
crossing the vessel wall, remaining in circulation, 
angiogenesis, and ultimately proliferation at a new 
metastasis site.7,92 The interactions between tumor cells 
and platelets which lead to metastasis depend on platelet 
capacity to bind to the injured vascular endothelium, its 
capability of paracrine regulation of tumor cell growth 
and proliferation, and its ability to protect neoplastic cells 
in circulation against immune cells, and PMPs are likely 
to contribute to metastasis in a similar fashion.11 Bakewell 
et al. suggested that integrin β3 (heterodimer of αVβ3 and 
αIIbβ5) plays a critical role in metastasis, while platelet 
receptor (GP IIb/IIIa) antagonist serves as a protective 
factor against bone and other organs metastases.93 PMPs 
induced by certain breast cancer cell lines have been 
shown to strongly potentiate invasion and migration of 

these cells, though how PMPs bind to these cells remains 
a mystery and contrary to previous assumption that 
integrin αIIbβ3 and P selectin are involved in the process, 
it is now demonstrated that neither are. Such findings, 
suggest the existence of a positive feedback mechanism, by 
which cancer cells magnify their aggressiveness through 
PMP release induction.94 Tissue factor (TF) has been well 
proven to function in tumor growth, angiogenesis and 
metastasis. Thereby, it is not a surprising finding that its 
presence on the surface of PMPs facilitates metastasis.11,93 

The role of metalloproteinases has been proven in 
advancing tumor invasion and angiogenesis. PMPs not 
only secrete metalloproteinases but also induce prostate 
cancer cells to do so. Furthermore, the procoagulant 
PMP surface aids anchoring of metastatic tumor cells 
to distant sites, establishing new nodes.90,95 PMPs also 
increase proliferation of A549 human lung carcinoma 
cell line, leading to expression of abnormal cyclin D2 and 
formation of distal lung metastases in mice 7. The delivery 
of PMP-coated cells into mice increases distal metastasis to 
the bone marrow and lung, compared to the control group 
only treated with the murine lewis lung carcinoma cells.7,93 
Moreover, ATP generated by tumor-associated platelets in 
the process of PMP formation in blood promotes tumor 
metastasis through relaxing endothelial barrier function.91

PMP and thrombosis
Cancer-related venous thromboembolism (VTE) was 
firstly described in the mid-19th century. Since  then, 
the ever-growing risk of VTE has been the subject of 
intense research. VTE is described as the  formation 
of blood clots in deeper veins of arm, leg, or groin that 
travel in circulation or lodging in  the lungs (Pulmonary 
Embolism). This phenomenon occurs in 15 to 20% of 
cancerous patients.117,118  An increased level of platelet-, 
monocyte-, and endothelial-derived MPs are correlated 
with  thrombotic events occurred in arterial and venous 
vessels.42,119 In cancer patients suffering from  VTE, the 
increased procoagulant activity of MPs including PMP 
is already observed at baseline, implying that it might 
be considered as a prognostic marker for VTE.117,118 
Sinauridze et al applied two in vitro models (i.e., spatial 
clot formation and thrombin generation assays) to 
investigate PMP membranes enrichment with CD62, 
PS, and factor X binding sites. They reported that PMPs 
show a 100-fold greater specific procoagulant activity 
compared to activated platelets.31 In another study, Zhao 
et al. showed that PMP plasma levels correlate with 
procoagulant activity of colon cancer and increase along 
with the advancement of cancer stage.8 Furthermore, 
PMPs might prove a source of “blood-borne” TF 
inherited from platelets.119 As TF plays an important role 
in thrombosis and is promoted by tumor cells, the TF-
bearing PMPs are of significance in tumor cell-induced 
platelet aggregation (TCIPA).63 Campello et al showed that 
patients with unprovoked VTE and those with various 
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Table 3. PMP involvement in inflammation

PMP’s inflammatory mediator Target cell Outcome of interaction References 

RANTES (CCL5)
Monocytes 
Activated endothelial 
cells

Vascular wall infiltration
16,96Stimulating chemotactic motility

Inducing monocytic arrest on endothelial cells

AA
Monocyte – Endothelial 
cells

Activation of PKC 

97Increased adherence between monocytes and endothelial cells

Increased chemotaxis of U-937 promonocytic cell line

CD41 and CD62P Endothelial cells Endothelial cell activation 11

PS
Macrophages
Dendritic cells

Neutralizing dendritic cells and macrophages phagocytic activity 98 

Phosphatidylserine, GPIIb/IIIa, 
P-selectin

Monocytes 

Activating monocytes
99Protumorigenic effect 

Upregulating phagocyte markers expression

PPARγ/RXR complex
THP-1 monocytic cell 
line

Aggregation of THP-1 cells
100Producing TF+ monocytic MVs 

Modifying gene expression

miR 126-3p Macrophages 

Inducing phagocytic phenotype
101Downregulation of cytokine/chemokine secretion 

Induced monocyte differentiation to M2 macrophage

PS? Macrophages
Reduced release of TNF-ɑ and IL-10 

98

Immediately induced release of TGF-β from macrophage

AA
U-937 (promonocytic 
cell line)

Increased Mac-1 and ITGAL (integrin subunit alpha L) expression
66,102,103

Increased chemotaxis

AA
Endothelial cells
Monocytes

Expression of thromboxane A2 and COX-2 in endothelial cells 
66,102

Facilitating platelet aggregation

Facilitating monocyte-EC interaction

Mitochondria Leukocytes
Hydrolysis of mitochondrial membrane by sPLA2-IIA producing inflammatory 
mediators which promote leukocyte activation

32,84

CD154 (CD40 L) B cells Switch of antigen-specific IgG secretion 56

CD154 (CD40 L) Monocytes 
Increased inflammatory signals (IL1β, TNFα, MCP1)

49,104,105

Stimulating monocyte-derived dendritic cells maturation 

miR-183  NK cells
Knockdown of NK activation adapter DAP12

91,106,107

Suppressing NK cell inflammatory response to tumor

TGFβ1 CD4+ T Cells
Increased TGFβ1 production 

108

Increased differentiation of CD4+ naive Tcells to FOXP3+ regulatory Tcells

PF4(CXCL4) CD4+ T Cells Anti-inflammatory effect through reducing IFNγ, IL6, TNFα expression 109

PF4(CXCL4) Treg cells

Treg stability in an inflammatory environment
110CXCR3-mediated signaling in activated T cells

Negative regulator of TH17 differentiation

P-selectin Treg cells

Treg stability in an inflammatory environment

110
PMP adhesion to Tregs through PSGL-1

Prevention of peripheral blood–derived Tregs differentiation into IL-17– and IFN-γ 
producing cells

P-Selectin Neutrophils 
Triggering neutrophil activation, aggregation and phagocytosis 

111
Inducing adhesion to the endothelium

GPIbα
Neutrophils (β2 integrin 
Mac 1 (CD11b/CD18)

Neutrophil activation 49,111

GPIIb/IIIa receptors Neutrophils Transferring GPIIb/IIIA to neutrophils participating in NFkB activation of neutrophils 112

 sPLA2-IIA and 
12-lipoxygenase 

Neutrophils
Promoting PMP internalization 

113,114
Enhancing inflammation 

β defensin 1 Neutrophils 
NETosis (neutrophil extracellular traps)
Cancer associated thrombosis

49,115

PMP-miRNAs Neutrophils Not clear 16

PMPs miRNAs released from 
collagen-activated platelets 

Leukocytes
Stimulating cytokine responses

115,116
Regulating cytokines release 

12-lipoxygenase Mast cells Negative inflammatory regulator 60

Abbreviations: PMP, platelet microparticles;  N/A ,Not applicable; MVs, microvesicles; AA, Arachidonic acid; COX-2, cyclooxygenase-2; EC, Endothelial cell; 
sPLA2-IIA, secretory Phospholipase A2 group IIA; IgG, Immunoglobulin G; TNFα, tumor necrosis factor alpha; MCP1, monocyte chemoattractant protein-1; NK 
cells, Natural killer cells; IFNγ, Interferon gamma; Treg cells, T regulatory cells; TH, T helper cells.
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cancers with or without VTE have remarkably higher 
PMP and TF-MP levels compared to the controls.120 

Tesselar et al examined TF co-expression with CD61 
through confocal immunofluorescence microscopy. They 
reported that these TF positive-PMPs may be formed by 
the fusion of PMPs and malignant epithelial cell-derived 
MPs.121 In line with the above study, Hron et al. observed 
a significantly higher TF positive-PMP level in advanced 
colorectal cancer patients than that of healthy individuals. 
This result can be explained by the considerable increase 
in TF positive-PMPs. They also speculated that colorectal 
cancer cells might transfer the TFs onto PMPs.122 Another 
result of this study was the considerably higher PS content 
on PMPs compared with leukocyte-derived MPs, which 
justifies the direct relationship between D-dimer levels 
and TF positive-PMPs.122 A meta-analysis covering four 
cohorts and two case-control studies reports that TF-
bearing MPs (including PMPs) are associated with a higher 
risk of VTE in cancer patients, particularly in patients of 
pancreatic cancer.23,118 Toth et al observed that CD62-
positive PMP levels are highly associated with the level 
of prothrombin. Moreover, using electron microscopy, 
they found that the number of PMPs adherent to vWF 
is 3.5 times higher in breast cancer patients compared 
to controls. PMPs are the most copious source of MPs 
and demonstrate an increased number of vWF-binding 
receptors including integrin αIIbβ3 or GPIb, which may 
have a possible role in thrombosis.123 PMPs bear a wide 
range of surface receptors, including integrin GPIbα-IX-V 
receptor complex, GPIIb/IIIa, CXCR4, and P-selectin. As 
a result, they provide a procoagulant membrane surface 
for thrombin activation and forming a prothrombinase 
complex that travels in the circulation. Hence, distant 
clots are formed that often exhibits a procoagulant effect 
outlasting the activated platelets that generated them75. 
Morel et al124 showed that anionic phospholipids on PMPs 
surface induce accumulation of procoagulant and protein 
C anticoagulant enzyme complexes. Here, depending on 
the cell of origin, PMPs are able to expose tissue factor 
pathway inhibitor (TFPI), thrombomodulin, endothelial 
protein C receptor or protein S and lead to their ultimate 
participation in anticoagulant pathways. They are capable 
of facilitating FVa inhibition by activated protein C 
(APC) while APC, dependent on protein S, can inhibit 
coagulation on MPs.75,125

Under particular conditions, anticoagulant properties 
of PMPs have been proven as beneficial for their potential 
role in the progress of the anticoagulant process in cancer. 
For example, in early sepsis, they can retain APC as an 
inhibitor of VIIIa and Va factors.125,126 Several studies 
have revealed that CD41-positive PMPs can promote 
the generation of small amounts of thrombin. Thus, an 
anticoagulant process along with the protein C system 
may be activated by Va and VIIIa inactivation.5,21 Knowing 
CD41-positive PMPs can prompt the generation of 
minute amounts of thrombin. However, it is disputable 

whether PMPs are a cause or a result of thrombosis 30. In 
this regard, no data is available about the PMP-associated 
anticoagulant effect on cancer cells. Furthermore, it is 
not clear whether platelet activation and thrombocytosis 
are ultimately the causative agents or the result of tumor 
progression.127 Overall, PMPs which were once explained 
as inert “cellular dust” are thereby no less than “thrombotic 
dynamite”, specifically in the state of malignancy, while 
they show anticoagulant properties as well.91

PMP and angiogenesis
Growth, tumorigenesis and metastasis all depend on 
abnormal angiogenesis, which is characterized by the new 
blood vessels forming capillaries to sustain an adequate 
level of oxygen delivery.128 This procedure is dependent 
on extracellular matrix degradation, disruption of cell-cell 
contact and the proliferation, migration and capillary tube 
forming of endothelial cells. Imbalance between many 
proangiogenic (signaling pathways and growth factors) 
and antiangiogenic factors (endostatin, angiostatin, 
thrombospondin-1) regulates angiogenesis. Among 
notable proangiogenic factors are vascular endothelial 
growth factor (VEGF), platelet-derived growth factor 
(PDGF), basic fibroblast growth factor (bFGF), insulin-
like growth factor 1 (IGF-1), epidermal growth factor 
(EGF), transforming growth factor beta 1 (TGF-β-1), 
regulated on activation normal T-cell expressed and 
secreted (RANTES), matrix metalloproteinases (MMP1, 
MMP2 and MMP9), angiopoietins (1, 2 and 4) and 
cytokines such as interleukin 6 (IL-6) and interleukin8 
(IL-8).62,70 All these pro- and antiangiogenic factors are 
secreted by platelets, tumor cells and PMPs, and take part 
in various stages of angiogenesis, including migration, 
proliferation and adhesion of endothelial cells.129,130 
PMPs stimulate formation of network capillary tubes 
and stimulate tumor cell expression of proangiogenic 
factors.7,78,84,131 They are loaded with proangiogenic factors 
(PDGF, FGF, VEGF) released from α granules of the 
platelets of origin. Interaction of PMPs with endothelial 
cells may prompt a switch to a proangiogenic state, a 
phenomenon which could be extended by PMPs’ capacity 
to induce expression of kinase-dependent protein (MAPK 
p42/44 andAKT) and matrix metalloproteinase type 1 
(MT1-MMP), as well as MMP-9,2 mRNA, interleukin 
8 and VEGF in tumor cells.132 CXCR4 transfer to early 
outgrowth cells by PMPs amplifies the proangiogenic 
properties such as extracellular matrix adhesion or 
enhanced migration, proliferation and tube formation.133 
The TF on PMPs initiates thrombin generation, resulting 
in VEGF secretion and prompting angiogenesis.134 
Kim et al firstly demonstrated that PMPs raise in vitro 
proliferation, chemotactic migration and formation of 
capillary-like tubes of human umbilical vein endothelial 
cells (HUVECs). The fundamental mechanisms are 
depended on the protein growth factors such as FGF-2 and 
VEGF, and lipid growth factors such as S1P, all of which 
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were inhibited by PI3K and Gi protein inhibitors.78,128,134 
Prokopi et al demonstrated that PMPs can influence 
the angiogenic function of endothelial progenitor 
cells and endothelial tube formation is prompted by 
endothelial progenitor cell culture conditioned medium. 
Such outcome was reduced by PMPs removal from the 
conditioned medium by filtration, ultracentrifugation or 
prohibition of the platelet GPIIb-IIIa integrin complex 
formation.131 Studies show that ADP-mediated platelet 
activation induces VEGF release (not endostatin), while 
thromboxane A2 stimulates endostatin release but not 
VEGF. Platelets’ releasate generated by ADP-mediated 
activation, has been also shown to promote migration and 
formation of EC tubules in angiogenesis in vitro models.84 
The proangiogenic influence of platelets and PMPs 
raises the question of what their mechanism is in light of 
angiogenic inhibitors presence besides the activators in 
platelets α granules. A possible explanation was proposed 
by Italiano et al who revealed various localizations 
of angiogenic cytokines among different granules.135 
This hypothesis was further noted by another group 
who reported that the α granules are morphologically 
heterogeneous by 3D analysis and electron tomography.136 

PMP and apoptosis
Human platelets retain considerable quantities of FasL in 
their α-granules, which is either released into the medium 
or expressed on the surface once the platelet is activated.137 
CD95 (Fas) expression is increased in cancer cells treated 
with platelets or its derivatives. This phenomenon 
could induce apoptosis in cancer cells through platelets 
interaction, which is in line with Bykovskaya and Yaftian 
et al findings.138,139 Although the presence of FasL on PMP 
surface has not been evidenced, the transmission of this 
receptor from platelets to PMPs is not far-fetched.140,141 
sphingosine-1-phosphate which is a lipid component of 
PMP seems to mediate the anti-apoptotic effects of PMP 
on ECs.84 Human platelets also bear considerable amounts 
of CD40L in their alpha granules, which they either 
release to the medium or express on their surface once 
they are activated.142 CD40L expression on PMPs’ surface 
has been evidenced. The interaction between CD40L on 
platelets and PMPs’ surface with CD40 on pre-B ALL cells 
has also resulted in increased Fas expression in tumor cells 
which in turn induces apoptosis.143,144 Yet another study 
demonstrated that CD95L and CD95 possess several 
cancer related tumor-promoting and non-apoptotic 
functions, protecting and promoting cancer stem cells.145

PMP and miRNAs
miRNAs are 22-nucleotide-long regulatory RNAs 
expressed in multicellular organisms. MiRNAs control 
most (>60%) of mammalian protein-coding genes.146 
While some miRNAs are universally expressed, many 
are specific to tissue or developmental stage.147 The RNA-
induced silencing complex (RISC) directed by the miRNA 

sequence leads to translational inhibition and mRNA 
degradation by Argonaute nucleases. miRNA role in gene 
expression is mostly fine-tuning and lowering noise in 
protein expression.148 Platelets are rich in pre-miRNAs 
as well as mature miRNAs. Platelet-derived miRNAs 
are packed into PMPs and account for a major share of 
platelet content released in PMPs.16,28 miRNA content 
of PMPs seems to form a subgroup of platelet miRNAs, 
suggesting active selection and incorporation of miRNAs 
into PMPs rather than simply random integration 68. 
Purified PMPs can regulate gene expression and transfer 
some miRNA content to cells such as leukocytes and 
endothelium following co-culture in vitro.149–152 New 
potentials of PMPs have recently begun to emerge, mainly 
presenting their capability to transfer miRNA content 
and regulate gene expression in target cells, which allows 
them to impact cancer development at different stages.16 
Studies have proved that the content of circulating PMP 
miRNA is modified in different pathologies suggesting 
their potential as biomarkers for the disease along 
with platelet activation.68,153 Many miRNAs abundant 
in PMPs target both oncogenes and tumor suppressor 
genes in different cancers, and have been considered as 
prognostic markers for malignancies and implicated 
in therapy resistance. Similar to platelets, PMPs may 
be rich in variant isoforms of miRNA (isomiRs) with 
base-shifted seed sites.82 Next-generation sequencing 
of RNA expression as well as expanded mapping for 
miRNA targets are required to clarify the full extent of 
platelet miRNA impact.16 While PMPs have formerly 
been considered as cancer-promoting agents, their 
potential in transmission of miRNA and gene expression 
downregulation in different cell types implies the possible 
tumor-suppressive and apoptosis-inductive properties 
of PMPs.16,82 PMPs interaction with tumor cells in solid 
tumors via direct transfer of platelet-derived miRNAs also 
modulates tumor cell gene expression, resulting in tumor 
cell apoptosis, and inhibits growth of colon and lung 
carcinoma ectopic tumors, whereas miR-24 blockade in 
tumor cells accelerates tumor growth in vivo.82 In another 
study on the effect of PMPs on HUVECs, it was revealed 
that released PMPs after platelet thrombin-mediated 
activation are rich in miR-223. PMPs internalization by 
HUVECs and subsequent transmission of Argonaute 
2-miR-223 complexes lead to downregulation of miR-
223 targets inside the recipient endothelial cells, which 
might occasionally cause endothelial apoptosis.82,83,150,154 
In presence of PMPs, anti-angiogenic modulators 
such as thrombospondin-1 (THBS-1) are substantially 
downregulated in HUVECs. Transfer of miRNA let-
7a which targets THBS-1 in HUVECs, explains the 
neovascularization effect of PMP.155,156 Results of several 
studies emphasize the potential of PMP-mediated miRNA 
delivery to affect gene expression in target cells. Such 
findings provide unprecedented insight into mechanisms 
underlying horizontal RNA transfer and unveil several 
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regulatory roles for PMP miRNAs in cancer progression. 
Platelet miRNAs transfer might also alter other sides of 
tumor biology including multi-drug resistance, known 
to be controlled by MPs.157–160 Thereby, platelets both 
positively and negatively affect cancer progression using 
different fashions and at several stages.16,82,161

Table 4 summarizes some studies on PMP miRNAs and 
their possible involvement in cancer fate. 

PMP, tumorigenesis and clinical evidence 
Human cancer cells are able to promptly bind to platelets 
and activate them through α3-integrins on the cells or 
surface molecules such as glycoprotein IIb/IIIa on platelets, 
or via releasing mediators such as thromboxaneA2, ADP 
or tumor-associated proteinases.121 Such interactions 
result in increased expression of adhesion molecules, 
induced cytokine secretion, facilitated metastasis and 
angiogenesis, protection of tumor cells against immune 
surveillance, increased proliferation, migration and 
invasiveness of tumor cells, and activation of intracellular 
signaling pathways, wherein downstream signaling 
ultimately alters tumor cells reactivity with the endothelial 
cells.129 PMPs possess cytoplasmic proteins and 
chemokine receptors that strengthen tumor cell adhesion 
to endothelial cells, induce chemotaxis, upregulate matrix 
metalloproteinase production, and hence facilitate tumor 
cell invasiveness, which can also be prompted by the PS 
on the outer membrane of PMPs that coat tumor cells.1,129 
Permeability of tumor neo-vasculature allows circulating 
PMPs immediate access to tumor cells, PMP infiltration, 
delivery of platelet-derived miRNAs to the tumor cells, 
growth suppression and gene regulatory effects, together 
expanding the reach and abilities of platelets and their 

microparticles to impact cancer progression beyond the 
intravascular area.165 Goldfinger et al noticed infiltration 
of PMPs in numerous solid tumor types and various 
tumor grades, though not in unaffected tissues. PMP 
exposure caused by vascular leak is hence likely limited 
to solid tumors distinguished from normal tissues.82 

PMPs and platelets relationship with vascular leakage 
has recently been defined in ischemia and post-ischemic 
tissue repair, cardiovascular diseases, sepsis, diabetes and 
wound healing, indicating the impact of PMPs and miRNA 
transfer beyond the extent of solid tumor progression 
as a potential mediator of physiological responses to 
vascular leakage.166-172 Considering the critical role of 
platelets in cancer progression, PMPs could be involved 
in cancer cells proliferation, metastatic progression, 
inflammation, angiogenesis, apoptosis, immune evasion, 
extracellular matrix degradation, tumor growth and 
chemo-resistance.173 While an increased level of total 
PMPs in circulation has been observed in various types 
of malignancies such as gastric, ovarian, breast and lung 
cancer, high levels of PMPs have been correlated with tumor 
aggressiveness and poor clinical outcome.172,173 PMPs have 
been demonstrated to be capable of transferring CD41 to 
lung cancer cells, therefore triggering signaling molecules 
phosphorylation and promoting expression of MMPs and 
chemoinvasion. Moreover, PMPs which contain a certain 
epidermal growth factor receptor (EGFRvlll) typically 
expressed by gliomas cells, can transfer this oncogenic 
receptor to cancer cells lacking it, promoting their 
oncogenic activity.174 Nevertheless, Mege et al reported 
a decrease in PMP concentration in colorectal cancer 
patients compared to healthy individuals, which does not 
agree with Hron et al study122 showing higher TF positive-

Table 4. PMP’s miRNAs and their functions

PMP miRNA(s) Target cell Physiological outcome References

miR-223 A549 human lung 
carcinoma cell line

Downregulation of EPB41L3
152

Improvement of cell invasion

miR-223 HUVEC Downregulation of  EFNA1 and FBXW7 RNA 162

miR-223 HUVEC 
Downregulation of IGF-1R

154

Apoptosis

miRNA let-7a HUVEC Downregulation of thrombospondin-1 (THBS-1) 155

miR-22 
miR-185 
miR-320b 
miR-423-5p

HMEC-1 human 
microvascular 
endothelial cell line

Downregulation of ICAM-1 151

miR-126-3p Macrophage

Downregulation of ATF3, ATP1B1, ATP9A and RAI14
163Downregulation of CCL4, CSF1, TNFα

Enhanced phagocytic capacity

miR-24 Colon and lung carcinoma cells

Mitochondrial depolarization

82
Increased caspase 3 activity

Induced apoptosis

Inhibited tumor growth

miR-183 Natural killer cell Suppressed cytolytic function of tumor-associated  NK cell 16

miR-939 Epithelial ovarian cancer cell Inducing epithelial to mesenchymal transition 164

Abbreviation: HUVEC, Human umbilical vein endothelial cell.
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PMP levels in advanced colorectal cancer patients in 
comparison with healthy subjects.174

Independent of the tumor stage and under high shear 
stress conditions, platelet activation and aggregation as 
well as PMP formation are observed to increase. Although 
these increases vary by tumor type, they mostly appear to 
occur concurrently with cancer stage advancing and the 
highest levels are associated with advanced stages and 
distal metastasis of cancers.175–179

Table 5 outlines studies providing data on PMPs 
involvement in cancer. 

Conclusion and Perspectives 
In this review, we explain the activation, formation, 
component and structure of PMPs. Next, we describe 
their participation in cancer development. Despite the 
limited number of works on the role of PMPs in cancer, 
it is very important to characterize PMPs as a potential 
biomarker in cancer. The fluctuations of MPs during a 
cancer may suggest the significant role of microparticles 
as a cellular transporter, which plays a key role in cancer 
physiopathology. While PMPs involvement in metastasis 
and immune evasion of tumor cells are not fully 
understood, they have been demonstrated to mediate 
horizontal transfer of RNAs, leading to further ambiguities. 
Considering their ability to inhibit tumor growth, PMPs 

might counteract the platelets immediate impact on 
promoting cancer progression. However, findings are 
also suggestive of their indirect role in cancer promotion 
through certain platelet miRNAs’ transfer.161 Such 
contrasting data propose a possible dual-phase impact, 
whereby PMPs play anticancer roles in primary stages of 
tumor growth to encourage cancer progression mainly 
through miRNA-independent mechanisms.16 Further 
studies are required to comprehensively understand the 
interactions between PMPs and tumor cells influencing 
cancer progression. What appears to be undisputed thus 
far is that PMPs can serve as signaling molecules, passing 
on regulatory miRNAs to a variety of cells, yet tumor-
specific miRNAs, as well as their target mRNAs, need to 
be determined alongside different phenotypic outcomes of 
mRNA silencing by tumor types. Inasmuch as circulating 
PMPs and their platelet-derived regulatory miRNAs are 
unequivocally involved throughout cancer progression, 
explicating concerned mechanisms will not only be of keen 
interest to researchers but will also represent a potential 
major breakthrough in cancer therapeutic targeting.
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Table 5. Clinical evidences of PMP involvement in tumorigenesis

Cancer type PMP level increase PMP influence References 

Myeloproliferative 
neoplasm

2 fold Thromboinflammation 180,181

Colorectal cancer Up to 4 fold Lymph node metastasis 122,176

Breast cancer 3.5 fold  

Improved cancer invasiveness

7,11,123,182,183

Induction of angiogenesis and metastasis

Raised number of vWF-binding receptors

P-glycoprotein transfer to tumor cells

Induction of HER2

Gastric cancer
Up to 35 fold 
in stage IV compared to 
stage I, II, III

Prediction of metastasis with sensitivity and specificity rates over 90%
129,174,179

Plasma levels of PMPs higher in patients than healthy control

Non-small cell Lung 
cancer

N/A

Induced expression of MMP9, MMP2 and angiogenic factors (VEGF, HGF, IL8)

7,11,173Activation of signaling molecules phosphorylation (MAPK p42/44 and AKY)

Induced chemoinvasion, adhesion to endothelium and fibrinogen, tumor progression, 
metastasis and angiogenesis

Prostate cancer and 
HRPC

N/A

Increased adhesion of cancer cells to endothelium and ECM

84,184,185
Assisted tumor invasion by increased metalloproteinases production and secretion

Increased cancer cells accumulation

Increased IL-8 secretion

Neurogenerative 
disease

N/A

Tumor development and metastasis

186Increased survival and proliferation of embryonic neural stem cells 

Improved potential to differentiate to glia and neurons 

Abbreviations: PMP, Platelet microparticles; N/A, Not applicable; vWF, von Willebrand factor; HER2, Human epidermal growth factor receptor 2; MMP, Matrix 
metalloproteinase; VEGF, Vascular endothelial growth factor; HGF, hepatocyte growth factor; ECM, Extracellular matrix; HPRC, hormone-refractory prostate 
cancer
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