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Introduction
Triple-negative breast cancer (TNBC) is characterized 
by the lack of estrogen receptor (ER), progesterone 
receptor (PR), and human epidermal growth factor 
receptor (HER2).1 TNBC grows spread, and recur after 
treatment because of its aggressive pathological features.2,3 

TNBC accounts for approximately 10–15% of all invasive 
breast cancer with a short overall survival.4 Prevalence 
of TNBC in India (27% to 35%) is significantly higher 
compared to western population (12% to 17%).5 Existing 
chemotherapies for TNBC treatment can eradicate the 
rapidly dividing bulk tumor breast cancer cells (non-
BCSCs), and they do not affect small subpopulation of 
breast cancer stem cells (BCSCs).6 Available evidence 
suggests that the leftover BCSCs are the leading cause of 
metastasis through epithelial to mesenchymal transition 
(EMT) process. In the EMT process, the epithelial BCSCs 
cells lose their inter-cellular adherence by gaining invasion 
and migration capabilities.7,8 There is a need, therefore, to 
eliminate BCSCs in addition to non-BCSCs.

The Notch signaling pathway is a fundamental 
regulator of angiogenesis in non-BCSCS and self-renewal 

& maintenance in BCSCs.9-11 The above findings has 
prompted scientists to evaluate possible benefits of 
gamma-secretase inhibitors (GSIs) in TNBC to control 
growth, prevent self-renewal, and suppress drug resistance 
of TNBCs.12-16 Some studies suggest that, although 
GSIs, like DAPT, LY-411575, RO4929097, MK0752 are 
not significantly cytotoxic, several studies indicate that 
they will be useful in potentiating the cytotoxic effects 
of other anticancer agents and helpful in eliminating 
BCSCs. However, the GSIs are associated with severe 
off-target side effects such as diarrhea, suppression of 
lymphopoiesis, headache, hypertension, fatigue and 
ventricular dysfunctions, which limit their clinical use.17-19 
Targeted delivery of GSIs to TNBCs could be one of the 
strategies to overcome this problem.15,20

Activation of Notch1 and 4 receptors by delta-like 
ligand 4 (DLL4) endogenous ligand in TNBC results in 
aberrant activation of Notch signaling.21 DLL4 binding 
to Notch1/Notch4 receptors ensures the cleavage of 
the Notch intracellular domain (NICD) by the enzyme 
gamma-secretase. The NICD translocates to the nucleus 
and activates the expression of notch target genes 
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Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and heterogeneous cancer subtypes. 
High rates of metastasis, poor prognosis, and drug resistance are the major problems associated 
with TNBC. The current chemotherapeutics eliminate only the bulk tumor cells (non-BCSCs) 
and do not affect breast cancer stem cells (BCSCs). The BCSCs which are left behind after 
chemotherapy is reported to promote recurrence and metastasis of TNBC. Death receptor-5 
(DR-5) is exclusively expressed in TNBCs and mediates the extrinsic pathway of apoptosis. 
DR-5, therefore, can be exploited for targeted drug delivery and to induce apoptosis. Gamma-
secretase mediated Notch signaling in BCSCs regulates its proliferation, differentiation, and 
metastasis. The endogenous ligand, delta-like ligand 4 (DLL4), is reported to activate this Notch 
signaling in TNBC. Blocking this signaling pathway using both gamma-secretase inhibitors 
(GSIs) and DLL4 monoclonal antibody (mAb) may produce synergistic benefits. Further, the GSIs 
(DAPT, LY-411575, RO4929097, MK0752, etc.) suffer from poor bioavailability and off-target 
side effects such as diarrhea, suppression of lymphopoiesis, headache, hypertension, fatigue, and 
ventricular dysfunctions. In this hypothesis, we discuss solid lipid nanoparticles (SLNs) based 
drug delivery systems containing GSIs and surface modified with DR-5 and DLL4 monoclonal 
antibodies (mAb) to effectivity target and treat TNBC. The delivery system is designed to deliver 
the drug cargo precisely to TNBCs through its DR-5 receptors and hence expected to reduce the 
off-target side effects of GSIs. Further, DLL4 mAb and GSIs are expected to act synergistically to 
block the Notch signal mediated BCSCs proliferation, differentiation, and metastasis.
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involved in angiogenesis, apoptosis, metastasis, and 
chemoresistance.22,23 DLL4 and gamma-secretase enzyme 
are highly expressed in TNBC cells and are, therefore, 
considered as unique targets of TNBC.24,25 

Recent studies have reported that GSIs are useful in the 
eradication of BCSCs, inhibition of EMT, angiogenesis, 
and tumor growth.19,26,27 Besides, GSIs also potentiate 
the effect of chemotherapeutic agents by inhibiting the 
genes involved in chemoresistance (Hes and Hey).28,29 
Existing evidence also suggests that the inhibition of 
DLL4 mediated activation of Notch receptors by anti-
DLL4 mAb also produce anti-angiogenic, proapoptotic 
and chemo-sensitizing effects on TNBC cells.30-32 It was 
recently reported that a combination of DLL4 mAb with 
GSIs has synergetic proapoptotic effects.33

Death receptor 5 (DR-5) is a member of tumor necrosis 
factor receptor superfamily, overexpressed explicitly on 
the surface of TNBC cells. Therefore, it can be used as a 
target for effective drug delivery in TNBCs.34,35 Besides, 
activation of DR-5 leads to activation of extrinsic apoptotic 
signaling and hence proapoptotic effects.36

Solid liquid nanoparticles (SLNs) are widely used for 
targeted drug delivery to minimize off-target effects and 
improve the bioavailability of drugs.37 Also, SLNs offer 
several advantages such as improved stability of the 
drug, higher entrapment efficacy, and biocompatibility 
over other nanoparticle-based delivery systems. SLNs 
with appropriate stealth properties will have reduced 
clearance and improved drug cargo delivery to the tumor 
site through enhanced permeation and retention (EPR) 
effect.38,39 However, accumulating evidence suggest that the 
EPR effect alone` is not sufficient to achieve site-specific 
delivery of drug cargo to the tumor site. Alternatively, 

unique cancer surface proteins have been targeted using 
monoclonal antibodies (mAbs) to improve target-specific 
delivery of drug cargo.40

Hypothesis
TNBC targeted GSI-SLNs surface modified with DR-
5, and DLL4 mAbs can be an effective strategy to treat 
TNBC. 

The SLN delivery system will deliver the GSIs drug cargo 
precisely to TNBCs through membrane DR-5 receptors 
and hence reduce the off-target side effects of GSIs. 
DLL4 mAb and GSIs are expected to act synergistically 
to block the Notch signal mediated BCSCs proliferation, 
differentiation, and metastasis. Further, when combined 
conventional chemotherapy, the formulation will 
effectively eliminate both BCSCs and non-BCSCs and, 
thus, help in achieving the complete cure of TNBC. 

Explanation of the hypothesis
Notch signaling is one of the critical pathological 
pathways implicated in TNBCs. This pathway regulates 
the expression of target genes such as HES1, HEY2, MYC, 
CCND1, HES4, NRAR, etc., and involved in BCSCs 
proliferation, differentiation, and apoptosis.41,42 Notch 
signaling is activated by the binding of transmembrane 
ligands [Delta-like (DLL) 1, 4, and Jagged (JAG) 1, 2] to the 
Notch receptors present on the cell surface. This binding 
results in the proteolytic invasion of Notch by a presenilin-
dependent gamma-secretase complex to release of NICD, 
which later translocates to the nucleus and heterodimerizes 
with a transcription factor, CSL (suppressor of hairless), 
and activates various target genes (Figure 1).43-45 Several 
studies conclude that Notch signaling pathway activation 

Figure 1. SLNs of Gamma-secretase inhibitor (GSI) surface modified with dual mAbs for the site specific delivery of GSI to breast cancer 
cells and breast Cancer Stem Cells (BCSCs). Silencing of Notch signaling by this apporach inhibits cell proliferation, angiogenesis, apoptotic 

resistance and self-renewal of BCSCs.
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in BCSCs predominantly activates the expression of HES1 
and HEY2 genes, which participates in the perpetuation of 
self-renewal of BCSCs.46-48 Notch signaling also reported 
to regulate cyclinD1, c-Myc, p21, Survivin, Slug, CCNA, 
CCNB, CCNDI, HER2 expression, and stimulate the 
nuclear factor-kappa B (NF-κB) pathway.49,50 The Notch-
mediated activation of all these factors promotes cell 
proliferation, angiogenesis, resistance to apoptosis, and 
self-renewal of BCSCs.

Surface modified SLNs with DR-5 mAb expected to 
bind selectively to DR-5 receptors present on TNBC 
and therefore help in active targeting through receptor-
mediated endocytosis, further binding with DR-5 may 
also initiate the extrinsic pathway of apoptosis and 
hence proapoptotic effects.51 Ding et al demonstrated 
that anti-DR-5 mAb-mediated delivery of dacarbazine 
(DTIC) nanoparticles show an improved antitumor 
and proapoptotic activity when compared to the bulk 
drug.52 Tummala et al, report that, gold nanoparticles 
of oxaliplatin conjugating with anti-DR-5 mAb show 
enhanced anticancer activity and site-specific delivery 
of drug cargo.53 Zhang et al reported that anti-DR-5 
(Zaptuzumab) antibody-drug conjugate show increased 
therapeutic efficacy and safety when compared to naked 
antibody Zaptuzumab treatment.54

The expression of Notch ligand (DLL4) in tumor 
vasculature is high as compared to healthy tissues.55 In 
TNBC, DLL4 binding to the Notch receptors promotes 
the transcription activation of genes regulating tumor 
angiogenesis and growth.55,56 DLL4 mediated activation 
of Notch signaling, therefore, improves vascular function 
and promotes tumor growth.57 Jia et al demonstrated 
that a humanized anti-DLL4 mAb inhibits breast tumor 
growth in an MDA-MB-231 xenograft model in mice. 
The results indicate that anti-DLL4 mAb prevents tumor 
growth by blocking the DLL4-Notch signaling pathway.58 
Hoey et al report that anti-DLL4 treatment blocks the 
Notch pathway mediated expression of anti-apoptotic 
genes (HSPA6 and BIRC3) and hence sensitize the tumor 
cells towards chemotherapy.59

Yen et al establish that the combination of anti-DLL4 
antibody and paclitaxel decrease BCSCs frequency and 
retard the tumor relapse in paclitaxel-resistant TNBCs.60 
Wang et al successfully developed antibody-drug 
conjugates of Monomethyl auristatin E and anti-DLL4 
antibody to promote tumor cell death and to achieve site-
specific delivery.61 

Gamma-secretase enzyme regulates tumor-promoting 
Notch signaling in TNBC by controlling NICD levels. 
Inhibition of this enzyme through GSIs, therefore, a 
promising strategy.62,63 Accumulating pieces of evidence 
suggest that, the GSIs are associated with clinical 
limitations such as poor bioavailability and off-target side 
effects include diarrhea, suppression of lymphopoiesis, 
headache, hypertension, fatigue, and ventricular 
dysfunctions.17,19,63 To overcome these limitations, 

researchers focused on nanocarriers based drug delivery 
which improves bioavailability and delivers the drug cargo 
specifically to tumor sites.15,64 

Mamaeva et al developed a glucose functionalized 
Mesoporous silica nanoparticles of GSI (DAPT). They 
report that the developed nanoformulation efficiently 
delivered the drug to TNBC and reduced the BCSCs 
population by inhibiting the Notch signaling pathway.15 
Kang et al establish that the concurrent treatment of GSIs 
with anti-DLL4 increases the anticancer and proapoptotic 
efficiency of GSIs in gastrointestinal cancer. The 
combined therapy of GSIs with anti-DLL4 boosted the 
expression of BAX and P53 and reduced the expression 
of Bcl-2. On the other hand, naïve GSI only enhanced the 
expression of BAX and P53, suggesting that the reduced 
Bcl-2 expression had a significant function in synergistic 
antitumor and proapoptotic effects.33

Drug delivery using SLNs is an accepted approach for 
targeted drug delivery to improve efficacy and reduce 
off-target side effects. SLNs as a nanocarrier, enhance 
the bioavailability, and provide control release. Besides, 
SLNs also modulate the release kinetics, minimize 
systemic toxicity and increase the therapeutic efficacy of 
chemotherapeutic agents.65,66 Pindiprolu et al reported that, 
SLNs of niclosamide improve the anticancer efficiency 
by increasing the site-specific delivery of niclosamide 
to the TNBC.67 Wang et al successfully demonstrate the 
improved anticancer efficacy of Curcumin SLNs in SKBR3 
cells as compared to naïve curcumin.68

Dominguez et al successfully conjugated anti-RNEU 
and anti-CD40 antibodies on the surface of PLA-(poly dl-
lactic acid)-biodegradable nanoparticles. They establish 
that dual antibody conjugated nanoformulation boosts 
the antitumor response and also results in complete tumor 
eradication.69 Kosmides et al developed nanoparticles 
surface modified with two different mAbs (anti-PD-1 
and anti-CTLA-4 mAb), which concurrently impede the 
inhibitory PD-L1 signal and activate T cells through the 
4-1BB co-stimulatory pathway.70 The combination of 
mAbs on the surface of nanoparticles has significantly 
increased their efficacy when compared to individual 
mAbs.70 Chen et al developed dual antibodies (anti-CD44 
and anti-CD133) conjugated transretinoic acid-loaded 
poly(lactide-co-glycolide)-lecithin-PEG nanoparticles to 
target cancer stem cells (CSCs). They report that dual-
targeted nanoparticles effectively inhibit the tumor growth 
and eradicate the CSC population.71 

Conclusion
In this article, we propose to prepare DR-5, and DLL-4 mAbs 
functionalized SLNs of GSIs to enhance their bioavailability, 
provide TNBC specific delivery, and to reduce off-target 
side effects. Further, anti-DLL-4 mAb and GSIs may 
synergistically act to eliminate the resistant BCSCs of TNBC. 
Besides, when combined with anticancer chemotherapeutics, 
the formulation may enhance their overall anticancer efficacy.
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