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Introduction
Cancer is a multi-stage process in a cell for some 
causes, that begins with DNA damage, unregulated cell 
proliferation, and apoptosis. Statistics have shown that 
cancer is the second most severe and deadly disease.1 In 
addition, cancers have the potential to develop resistance 
to traditional therapies.2,3 Therefore It is essential to 
develop treatment alternatives. However, gene therapy, 
radiotherapy, chemotherapy, etc. are used to treat cancer. 
Immunotherapy has recently become the priority of 
researchers. Strategies that stimulate the immune system 
to kill tumor cells. Zelig Eshharand and colleagues have 
developed a hetero-dimer monoclonal antibody for the 
first time. If these antibodies are transferred to T cells, 
tumor cells can be detected and killed. In 2008, Malcolm 
Brenner and Houston made the first successful phase in 
the therapeutic application of CAR-T cells.4 CAR-T cells 
consist of the target receptor segment (ScFv single-stranded 
variable fragment attached to the hinge), the membrane-
permeable region, and the intracellular region.5 The ScFv 
extracellular antigen recognition fragment was formed 
of a monoclonal antibody (mAb). That targets specific 
antigens but can contain ligands that bind to tumor cell 
surface antigens.6,7 Various hinges have been found. 
These hinges can be short or long. Studies have shown 
that the hinge is a crucial structure for engineered cells 
and can significantly boost the efficiency of these cells.8 
There are structural variations in the intracellular region. 
Based on differences in intracellular messenger regions, 

CAR-T cells are categorized into the first, second, third, 
and fourth generations (Figure 1). The first generation 
includes the cytoplasmic domain of CD3 ζ, which can 
initiate T-cell activation. Since the proliferation of T cells 
is low, they are less effective. Defects of the first generation 
have been overcome in the second and third generations 
due to the diversity of co-stimulatory molecules (CMs). 
This generation is called TRUCK (T cells redirected 
to universal cytokine killing).9 TRUCK is a method of 
generating a particular CAR-T cell that stimulates an 
innate immune response to the destruction of tumor cells. 
These CAR-T cells have an engineered product, including 
IL-12.10

The construction of CAR-T cells for therapeutic 
purposes includes five steps: T cell isolation, T cell 
activation, T cell engineering, CAR-T cell expansion, 
cell formulation, and cell storage (Figure 2). Patients 
have prescribed cells developed for treatment.11 The time 
needed for T cells’ genetic engineering is approximately 
two weeks.12,13 The fourth generation of CAR-T cells 
performs better in TME than other generations due to 
their high ability to destroy cancer cells. TME decreases 
the potency of the immune system. These agents are 
secreted by tumor cells and are used to defend these cells 
against immune cells. The TRUCK cells are engineered to 
act better in TME by secreting inflammatory cytokines.10

Functional mechanism of CAR-T
Cells are designed with specific antigenic receptors that 
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Abstract
Immunotherapy has become a prominent strategy for the treatment of cancer. A method that 
improves the immune system’s ability to attack a tumor (Enhances antigen binding). Targeted 
killing of malignant cells by adoptive transfer of chimeric antigen receptor (CAR) T cells is a 
promising immunotherapy technique in the treatment of cancers. For this purpose, the patient’s 
immune cells, with genetic engineering aid, are loaded with chimeric receptors that have 
particular antigen binding and activate cytotoxic T lymphocytes. That increases the effectiveness 
of immune cells and destroying cancer cells. This review discusses the basic structure and 
function of CAR-T cells and how antigenic targets are identified to treat different cancers and 
address the disadvantages of this treatment for cancer.
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enable modified T cells to acquire more advanced and 
directed anti-tumor properties. Auxiliary molecules can 
help T cells better fight cancer cells. Studies have shown 
that when a signaling molecule called “STAT5” is kept 
in CAR-T cells, CAR-T cells can stay active longer and 
help kill the tumor more effectively.14 But, there is no 
requirement for auxiliary molecules to recognize cancer 
cells.15 CAR-T cells can identify antigens of different 
structures, including proteins, carbohydrates, and 
glycolipids.16 While designed, the genes encoding the CAR 

structure are transferred to the leukocytes through viral 
vectors. This intervention should be taken on autologous 
leukocytes due to the presence of self-identified molecules 
in T cells. This concern is overcome in patients such as 
lymphopenia that may not have sufficient lymphocytes 
to produce genetically engineered donor cells without 
autoimmune molecules such as class 1 HLA.17,18 As 
CAR-T cells bind explicitly to tumor-associated antigens, 
T cells are triggered by phosphorylation that leads to the 
release of cytokines and cancer cells’ death.19 Engineered T 

Figure 1. The CAR-T cells are made up of three generations. The first generation of CAR-T cells is composed of scFv and CD3 immunoglobulin. Stimulating 
molecules such as CD28, CD134, and CD137 (4-1BB) have been attached to CAR-T cells, producing second and third generations.
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cells promote cell death through two main pathways: first, 
the release of perforin and granules, and second, through 
the triggering of the Fas or TNF signals. Cytotoxic T cells 
destroy tumor cells in two ways, so while T Helper cells 
kill cells by perforin/granzyme.20,21

Tumor microenvironment
In solid tumors, the TME consists of various cellular and 
molecular components that reduce the immune response’s 
strength against the tumor.22 TME prevents the proper 
function of CAR-T cells by decreasing penetration of 

CAR-T cells and compromising anti-tumor activity.23,24 
Cytokines such as TGF-β and IL-10 are developed by 
TME tumor cells. These agents can suppress a more 
robust immune response to the tumor and protect cancer 
cells. T lymphocytes such as TRUCKs are also used in 
these circumstances. Expressly, CAR-T cells release IL-
12 and CAR-T cells, which induce tumor treatment due 
to micro-environmental tumor disruption.11 Cancer cells 
evade the immune system with the aid of TME so that 
additional auxiliary agents would be required for long-
term responses. Decreased immunosuppressive agents 

Figure 2. Engineering CAR-T cells for therapeutic purposes. 1) this section begins by obtaining blood from a cancer patient at the hospital. 2) T cells are separated 
from the blood during this process, and the remaining blood is returned to the body. 3) Following these steps, the T cells are appropriate for genetic modification 
in the laboratory. Relevant genetic modifications are made in the laboratory on cells isolated from cancer patients. 4) CAR-T cells are culture in the laboratory 
to produce more cells. 5) The cells produced are eventually transferred to the cancer patient by intravenous injection. 6) Modified T cells now have unique 
receptors on their surface that are considered chimeric antigen receptors (CAR). These receptors help T cells accurately detect and destroy cancer cells.



CAR T cells in cancer therapy

Advanced Pharmaceutical Bulletin, 2022, Volume 12, Issue 3 479

such as Tregs and TAM, enhance treatment efficacy with 
engineered cells.25 Immunosuppressive factors abound 
in cancer, leading to over-proliferation of tumor cells 
and ineffective cancer therapy.26,27 Drugs including anti-
CCL2 (C-C motif chemokine ligand 2), CSF1R (colony 
stimulating factor 1 receptor) antibodies suppress the 
TAM microenvironment’s potency surrounding the 
tumor are under investigation.28 Another way to improve 
the strength of CAR-T cells in solid tumors is to inhibit 
T-cell-mediated immune suppressor signals.29 Checkpoint 
inhibitors are therapeutic antibodies that bind to T-cell 
receptors. These antibodies can be useful as therapeutic 
strategies by hindering checkpoint molecules (such as 
CTLA4, PD-1) that cause T cell apoptosis. Results of clinical 
studies have shown that the expression of checkpoint 
inhibitors in CAR-T cells can be beneficial.30,31 A team of 
researchers fused MSLN-CAR-T cells with adenovirus 
expressing TNF-α (tumor necrosis factor-alpha) and IL-2 
for the treatment of human and animal models that have 
improved the antitumor effects of engineered cells.32 Due 
to the limitations of therapeutic alternatives to cancer 
therapy and the effectiveness of CAR-T cells in various 
cancers, the removal of TME components that suppress 

the immune system’s role in treating different cancers may 
be a good option.

Surface antigens
Several properties have been introduced to target suitable 
antigens for therapy, particularly its unique expression 
in tumor cells and the lack of antigens in normal cells. 
Abnormal expression of specific antigens in multiple 
cancers suggests these antigens’ role in the survival, 
invasion, and metastases of these cells (Figure 3). Several 
CAR-T cell experiments targeting cancer cell antigen 
receptors, as shown in Table 1. Focusing on the high 
expression of these antigens in tumor cells over normal 
cells helps develop appropriate T cells with high affinity 
for cancer cells’ treatment. Several therapeutic target 
antigens have been studied for this purpose.

Mesothelin (MSLN)
A receptor is mainly present in mesothelial cells but 
increases in some human cancers such as ovarian, lung, 
and pancreas. Mesothelin (MSLN) can play a significant 
function in cell adhesion such that it can be studied in cell 
invasion.41 The expression of MSLN can be membrane or 

Figure 3. Targeting the right antigens to treat cancer. The expression of unique antigens in tumor cells and the lack of this antigen in normal cells reduces the 
extra-target toxicity and kills cancer cells.
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cytoplasmic in cancer cells. However, in mesothelial cancer 
cells, MSLN is also present in the cell membrane.42 In lung 
adenocarcinoma, the expression pattern of the MSLN is 
cytoplasmic and heterogeneous.43,44 Whereas cytoplasmic 
expression is more than membrane expression in gastric 
cancer.45 Due to high expression in certain cancers and 
low expression in normal cells, mesothelin may be the 
right candidate for immune cell engineering therapies.46 
The concern about the MSLN CAR is the soluble MSLN, 
which could occupy the scFv segment. It should be noticed, 
however, that the activation of MSLN CAR-T cells depends 
on the presence of MSLNs in the cells. As a result, the 
toxicity of this treatment may be determined for normal 
cells expressing this receptor.47,48 The presence of soluble 
mesothelin-related peptide in serum does not change 
the effectiveness of MSLN CAR-T cells.48,49 The antigen 
deficiency of CAR-T cells is the target of the membrane 
due to the blockage of CAR by other serum proteins. This 
vulnerability can increase CAR-T cells by interacting 
with adhesion molecules and other by-products on T 
cells and tumor cells.50 Diacylglycerol kinase (DGK) is 
one of the TME immune cell inhibitors. If this inhibitory 
factor is removed, it can increase T cells’ proliferation 
and improve T cells’ effectiveness against cancer cells.51,52 
Koretzky and colleagues have also demonstrated that 
DGKs elimination increases the activity of CAR-T cells 
against the tumor and stabilizes engineered cells targeting 
mesothelin receptors.53 CAR-T cells against MSLN could 
be effective against adenocarcinoma of the pancreatic 
duct. Intravenous (IV) transfer of these cells to animal 
models. Promising results from tumor shrinkage and even 
tumor degradation indicate that this receptor is a possible 
target for therapeutic options.49 In research performed 
by Beatty et al, due to high toxicity beyond the tumor to 
the production of CAR-T cells, mRNA-based methods 

have been used to reduce toxicity duration. Several 
injections were required to compensate for the short-term 
expression of CAR T. Out-of-tumor toxicity can cause 
adverse side effects through the use of engineered cells, 
as these target antigens are found at low levels in normal 
cells.5 Around 90 % of the folate receptor (FRa) and more 
than 65 % of the mesothelin receptor are expressed in 
ovarian cancer.54,55 Their pattern of expression in natural 
tissues is essentially non-overlapping. Therefore, Lanitis  
et al produced CAR-T cells that express all receptors 
simultaneously and reduce engineered cells’ potential 
toxicity to normal cells.56 MSLN-CAR T structures 
developed for activation of DAP12 killer immunoglobulin 
show improved in vivo potency compared to second-
generation MSLN-CAR T with signaling domains.57 
Adusumilli et al have demonstrated that intracellular 
administration of engineered immune cells displayed 
higher antitumor potency than intravenous injection.48 
CAR-T cells are actively halted before the tumor enters 
the lungs. In summary, local infusion of MSLN-CAR-T 
cells enhances antigen exposure and boosts engineered 
cell activity.42

Epidermal growth factor receptor 
An intermembrane protein with tyrosine kinase activity 
can cause cell differentiation and proliferation. Increased 
expression of these receptors has been reported in many 
cancer types.58,59 Antibodies targeting EGFR include two 
groups: monoclonal antibodies targeting this receptor. 
These antibodies inhibit the action of the receptor by 
binding to the ligand-binding site. And the second category 
of inhibitors targeting tyrosine kinase activation in these 
receptors. These inhibitors prevent phosphorylation and 
prevent the transmission of the message to the cell. These 
antibodies were used to cure different forms of cancer, such 

Table 1. Several experiments have demonstrated that CAR-T cells are characteristic of solid tumors

Solid tumor Antigen Type of CAR-T cell Property
conditions of 
research

Reference

Pancreatic cancer Mesothelin meso-CAR-T cell
Improved performance; increasing the effect 
time of engineered cells

In vivo 32

Breast cancer HER2 HER2-CAR-T cell
Contains CD28 or 4-1BB signal range for 
functional activity

In vitro 33

Glioblastoma HER2
CAR-T Cell that target HER2 
and IL-13Rα2

Improving performance with sequential 
expression; Cytokine secretion

- 34

Non-Small Cell 
Lung Cancer

EGFR CAR-T Cell that target EGFR
Without severe toxicity, high tolerance for the 
patient

clinical study 35

Neuroblastoma
GD2
CD171

CAR-T Cell that target GD2
CE7-CAR T

Increase the anti-tumor effect; With central 
nervous system toxicity (CNS)
No out-of-target toxicity

In vivo
In vivo

36

37

Liver CEA CEA CAR-T No side effects of grade 3 or 4 clinical study 38

Head and neck 
cancer

ErbB
CAR-T Cell that target 
ErbB(T1E28z)

Ability to target multiple antigens clinical study 39

Prostate cancer PSMA
PSMA- CAR-T Cell :Negative 
TGF-β Receptor

Increased cytokine secretion, resistance to 
burnout, long shelf life

clinical study 40

HER2: human epidermal growth factor receptor 2; EGFR vIII: Epidermal growth factor receptor variant III; EGFR: Epidermal growth factor receptor; GD2: is a 
disialoganglioside expressed on tumors; CD171: neural cell adhesion molecule L1; CEA: Carcinoembryonic antigen; ErbB: family of receptor tyrosine kinases; 
PSMA: prostate-specific membrane antigen.
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as pancreatic cancer, kidney cancer, and colon cancer.60,61 
In some patients, antibody treatment is not successful due 
to the various mutations in this receptor. It also seems 
essential to find the right treatments for these defects.62 
One of the most common oncogenic mutations of EGFR 
is type VIII EGFR. This antigen tends to have all of the 
appropriate antigenic properties for CAR-T therapy since 
it is one of the most frequent EGFR mutations in cancers 
but has no expression in normal tissues.63 Glioblastoma 
(GBM) is the fatal component in adult brain tumors, and 
GBM treatment does not improve life span. EGFR VIII has 
a high degree of expression in the GBM cells. The targeting 
of this receptor by engineered cells to treat this cancer will 
also benefit.64 A team of researchers studied the ability of 
engineered cells to recognize EGFR VIII. With the help 
of CAR-T cells, they were able to target the EGFR VIII-
containing GBM stem cells and identify the stem cells 
with this mutation.65 Although they do not respond to 
cultured normal tissue cells.66 EGFR-engineered immune 
cells have a significant anti-inflammatory effect in vitro 
and in vivo, but controlled and regulated toxicity such as 
skin, gastrointestinal, respiratory, and hypertension has 
been documented.67

Human epidermal growth factor receptor 
Glycoprotein is a member of the EGFR family. 
Overexpression of human epidermal growth factor 2 
(HER2) has been shown in several cancers. This increased 
expression may mean that it is involved in the pathology 
of cancer. It is over-expressed in the breast and ovarian, 
and GBM cancers. However, this receptor is not present 
in normal brain cells and tissues.68 The elevated level of 
HER2 in different cancers has made it an appropriate target 
for CAR T therapy.69 Patients were treated with HER2 
trastuzumab (herceptin) monoclonal antibody targeting 
the HER2 receptor. Observed in breast cancer treatment, 

Herceptin, which is also associated with chemotherapy, 
improves the lifespan of different stages of breast cancer.70 
Haggett and colleagues have developed a CAR bispecific 
molecule targeting HER2 and IL-13Rα2 antigens in 
cancer cells. These antigens are found in cancer cells of the 
glioma. These engineered cells had successive expressions 
(TanCAR). This consecutive expression increases 
the function of the engineered cells and stimulates 
the secretion of cytokines. TanCAR-T cell agents can 
be used as an effective treatment strategy to regulate 
tumor development, but the detection of limitations for 
therapeutic use seems to be necessary.34 Clinical trials of 
tyrosine kinase HER2 inhibitors are progressing as low 
levels of HER2 are successfully identified in some cancers 
by Herceptin. This vulnerability has been used to treat 
some of these cancers.71 Results have indicated that 50% of 
patients have not undergone successful treatment and have 
developed resistance. This aversion leads to inefficiency in 
treatment.72

CAR-T cells in hematological malignancies
Cancer cells use a variety of strategies to overcome the 
immune response of the body’s antitumor system. Immune 
evasion mechanisms include changes in the expression 
levels of checkpoint proteins in the cell cycle, increased 
expression of inhibitory receptors in immune cells such 
as PD-L1 (programmed cell death receptor), and Treg cell 
development.73,74 One of the defining characteristics of 
Treg cells is the aging of the immune cells, which in turn 
decreases the immune system’s capacity to fight cancer 
cells.75 These findings are obtained in hematological 
malignancies such as leukemia, multiple myeloma 
(MM), and B-cell lymphoma.76,77 They also provided 
different strategies to lead the immune system against 
malignant cells to evade cancer cells from the cell immune 
system (Table 2). For instance, T-cell injections that are 

Table 2. A variety of studies have demonstrated that CAR-T cells are characteristic of leukemia

Disease Target antigen CAR features
Percentage of 

total rate
conditions of 

research
Reference

DLBCL, MCL CD19 CD8-alpha hinge and transmembrane domains 70% clinical study 83

MCL, CLL CD19 and CD20 Local is produced  < 60% clinical study 84

B-cell ALL CD19 and CD22
Bi-specific CAR; intracellular signaling domains 4-1BB and
CD3ζ

 < 80% In vivo 85

DLBCL, MCL CD19
Number of T cells enriched for central memory (A) and 
aimless memory (B)after CAR T injection on day 2

A =  100%
B < 80%

clinical study 86

DLBCL, CLL CD19 Express 4-1BBL  < 50% clinical study 87

DLBCL,PMBCL,
MCL, MALT

CD19alone(A) or
CD19 plus another 
target(B)

Tumor biopsies stained for CD19, CD20, CD22, CD30, 
CD38, CD70, and PMSA. Choice of CAR T target based
on staining results

Single A  =  50%
Double B >  90%

- 88

AML CD123 and CD33
The presence of CD28OX40z increases the killing of CIK 
cells significantly

N/A In vivo 89

AML FRβ
Contains CD8a hinge domains and transmembrane domain 
with intracellular CD3z, alone or with CD28 signal range

N/A
In vivo
In vitro

90

MM BCMA
t has a CD137 (4-1BB) excitation motif and a CD3-zeta 
signal range

 < 80% clinical study 91

DLBCL: Diffuse large B-cell lymphoma; MCL: Mantle cell lymphoma; CLL: Chronic lymphocytic leukemia; B-cell ALL: B-cell acute lymphoblastic leukemia; 
PMBCL: Primary mediastinal B-cell lymphoma; MALT: mucosa-associated lymphoid tissue; AML: Acute myeloid leukemia; MM: Multiple myeloma.
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genetically engineered and contain the expression of 
chimeric CD19-specific antigen receptors (CARs) could 
drive T-cells to CD19. Therapeutic experiments of CAR 
CD19 T cells were conducted with autologous patient cells 
involving substantial additional infrastructure.78-80 These 
results show appropriate protective strategies to fight 
hematological cancers.81 This treatment has undergone 
several trials and is considered an effective therapeutic 
regimen.82

Multiple myeloma 
MM is a type of blood cell cancer in which the plasma cells 
multiply and are highly abundant in the bone marrow. It 
accounts for around 10% of all malignancies in the blood. 
However, there are numerous treatments to cure this 
condition; it is intolerable.75 Engineered T-cell translocation 
is a therapeutic strategies approach to antigens. B-cell 
maturation antigen (BCMA) was a significant target for 
engineering cell studies.92-94 No expression of this target 
antigen has been identified in normal cells, although 
it is slightly expressed in normal and differentiated B 
cells. BCMA antigen is thought to boost the lifespan of 
MM cells and drug resistance in these cells.95,96 BCMA 
CAR-T cell therapy improves the intensity of response 
by more than 80%. However, the effect of treatment is 
temporary, and recovery has been documented after 
BCMA CAR-T cell therapy. The survival rate of BCMA 
CAR-T progression-free cells is approximately one year. 
Inhibition or suppression of BCMA expression may 
be an essential mechanism for disease progression that 
requires further investigation.97,98 Different approaches 
to BCMA in cell therapy, engineering cells for MM, are 
also being studied.94 Another target is CD138 (Syndecan 
1), which is highly expressed in MM cells and is 
associated  with  disease  pathogenesis. CD138 expression 
in MM cells in patients with progressive disease is higher 
than in MM cells in newly diagnosed patients. Implying 
the role of this antigen in the disease’s progression.98 
However, given the broad expression of CD138 in human 
tissues, including epithelial cells, the targeted CARS of this 
antigen can be used with caution. For instance, treatment 
with BT062 causes skin and mucosal toxicity99 that shows 
the importance of integrating CD138 antigens with other 
target antigens in immune cell engineering. If we increase 
knowledge in this area, we are likely to discover more and 
better alternative approaches.

Lymphoma
Lymphoma is present in the lymph nodes and leukemia 
in the bone marrow and blood. CAR) binds to CD19-
targeted T cells to efficiently cure leukemia/lymphoma, 
thus decreases normal B cells. As a result, immunoglobulin 
replacement was necessary for the patient is over a 
lifespan, so the determination of an appropriate target was 
necessary.100 The CD30 antigen may serve as a proper target 
for engineered cells expressed in malignant lymphoid cells. 

It should be mentioned that while healthy lymphocytes 
still appear at certain stages.101 Due to its high presence 
in malignant cells, this antigen is a significant target 
for immune cell engineering antitumor malignancies 
that appears to be safe. Engineered cells targeting CD30 
antigen show considerable anticancer activity in various 
models. However, targeting normal lymphocytes with 
CD30 antigen can cause severe complications for patients 
undergoing these therapies.102,103 During treatment with 
anti-CD30 CAR-T cells, the involuntary elimination of 
HSPCs resulted in unexpected outcomes. In addition 
to killing the lymphoma cells, the plasma of the blood 
cells has stabilized. This study observed that the best 
therapeutic index of anti-CD30 engineered T cells is 
appropriate for treating blood malignancies. They did not 
affect normal CD30 + HSPC.100 

Leukemia
More than 50 000 new leukemia patients and more 
than 20 000 leukemia-related deaths were documented 
in the United States in 2015.104 The patient’s life span is 
approximately five years, based on the type of leukemia, 
with the lowest survival associated with acute myeloid 
leukemia (AML) and the highest survival for acute 
lymphoblastic leukemia (ALL). Treatment of various 
chemotherapy methods due to drug resistance was 
not very satisfactory.105 Cancer immunotherapy has 
recently switched the therapeutic outlook as a useful 
clinical method for treating different types of cancer. 
Hematopoietic stem cell transplantation is among the 
immune-based treatments used for leukemia. Results in 
prolonged survival without disease symptoms in half of 
the patients with leukemia.106 However, this approach still 
has its limitations; for example, many patients relapse 
after treatment, which is not a reasonable option for many 
patients. The design of new, efficient, and safe treatment 
strategies for treating leukemia patients is also sensed. 
That new therapies are not appropriate for them.107,108 

B-cell leukemia 
Significant advances in the treatment of leukemia have 
been accomplished by engineered cells. These CAR-T cells 
do this by targeting the antigen CD19.107,108 Even when 
antigens are found in both normal and cancer cells, most 
patients can tolerate long-term toxicity and survival109 
and They demonstrate long-lasting longevity in the blood 
and bone marrow after injection.108,109 Injection of CD19-
directed CAR-T cells to ALL patients who are resistant to 
treatment or relapse has a response rate of over 70%.110,111 
Although CD 19 acts as an alternative to the treatment of all 
engineered cells, research has shown that toxicity is beyond 
the scope of a potential barrier to engineered immune 
cells for treatment. As a result, additional optimization 
is necessary for the identification of targets.112 The CD22 
antigen was evaluated as a therapeutic target for CAR-T 
cell immunity to destroy leukemia cells. Lymphoblasts 
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isolated from patients with precursor B cells all showed 
CD22 expression.113 Cells engineered with CD22 antigens, 
such as CAR-T anti-TSLPR cells, repeatedly lyse target 
B cells under different environmental conditions.114 
The 4-1BB domain involvement causes the toxicity of 
engineered immune cells, while previous studies have 
documented the beneficial function of 4-1BB domains 
in CAR-T cells. This inconsistency may be attributable to 
discrepancies between the structure’s configuration and 
the tumor model.115,116 Another research has shown that 
altering the position of immunoglobulins in engineered 
immune cells decreases the antitumor effect.114,117

Myeloid leukemia 
Lately, CAR-T therapeutic strategies have focused on AML 
leukemia, the most prevalent form of myeloid neoplasm in 
adults.118,119 Hematopoietic stem cells (HSPCs) are thought 
to be an effective treatment for this disease. However, the 
mortality and other implications of this treatment indicate 
the vulnerability of this treatment. Detailed research 
towards using engineered immune cells is appropriate to 
solve problems in CAR T and offer appropriate therapeutic 
strategies. CD123 myeloid antigen is one of the potentially 
promising targets that are undergoing study. While CD123 
antigen is present in HSPC cells to a limited extent, it has 
been well-tolerated when designed to target antigen for 
AML patients’ treatment. Treatment with engineered cells 
may decrease the burden of AML at the advanced stage of 
the disease and suggest that treatment may be effective at 
various stages of the disease.89 The comparison between 
CD123 CAR-T and CD33 revealed that CD123 CAR-T 
was less toxic to regular hematopoietic stem cell activity. 
However, an independent clinical trial in xenograft 
models showed CD123-targeted CAR-T cells’ effect on 
normal bleeding.120 The next target is the folate receptor 
(FR), a glycoprotein with a large cysteine amino acid. 
This receptor contains isoforms (FRa, FRb, and FRc) and 
facilitates folic acid absorption. The FRb isoform is often 
expressed in myeloid hematopoietic cells also expressed 
in different malignancies.121 It has recently been shown 
that engineered cells targeting human FRb receptors can 
detect and kill target cells.90 The combination of CARB-
FR and FRb with trans-retinoic acid increases FRb levels 
and antitumor activity. Notably, FR-targeted cells do not 
have a detrimental effect on hematopoietic stem cells in 
vitro. The same group has demonstrated that HA-FRb 
engineered cells destroy cancer cells more quickly than 
previously engineered cells.122

Chronic lymphocytic leukemia
CLL is a chronic malignancy of lymphocytes common 
in adults.123 Allogeneic stem cell transplantation is the 
only current CLL therapy approach.124 Patients with 
chronic and high-risk CLL are treated with CD19 CAR-T 
cells.111 Several studies have been reviewed to evaluate 
the effect of engineered cells on individuals with CLL. 

Even though CLL pathogens contribute to premature 
immunodeficiency, the impact of CAR-T cells in CLL 
patients would be restricted. Appropriate approaches to 
the above problem need to be identified.125

T-cell leukemia 
Application of immunotherapy for T-cell neoplasms has 
been investigated.126,127 Interestingly, the T lymphocytes’ 
cancer cells and regular lines have the same antigens, and 
no specific antigens have been identified to distinguish 
them. The use of CAR-T cells will also kill normal cells. 
Despite these issues, the evaluation of CAR-T cells 
designed to attack CD5 antigens was evaluated. This 
study’s findings revealed that engineered cells are attracted 
to cells that express CD5 and kill these cells. Normal T 
cells with unregulated expression of PI-9, cathepsin B, and 
BCL-2 have also been shown to prevent cell death against 
engineered immune cells.126 They are also designed to 
attack CD4 antigens; CAR-T cells strongly destroy CD4 
+ leukemia cell lines in vitro lymphoma models and in 
vivo T cells.127 These findings suggest that engineered cells 
can provide appropriate therapeutic approaches but need 
many experiments.

Limitations
Cancer treatment has achieved a new phase with the 
shift from chemotherapy to safety-based therapeutic 
approaches. In the meantime, CAR-T cells have 
demonstrated considerable therapeutic potential in 
cancer therapy. Although the treatment of CAR-T cells 
in cancer was very successful, it is still in its infancy, and 
the mechanisms of action of CAR-T cells are not fully 
understood. There are more limitations to CAR-T cell 
therapy that has not been removed. These limitations in 
the treatment of cancer CAR-T cells include (a) limitation 
of T cell function, proliferation, and persistence, (b) 
Restriction of CAR-T cell importation to the tumor site; 
(c) extra-target toxicity, and (4) loss of antigen to tumor 
cells, which causes the tumor to escape from CAR-T cells 
(Figure 4).29,128 ScFv-based CAR-T cells could be directed to 
cancer cell antigens if the antibody’s amino acid sequence 
with the target properties is identical. However, their use in 
CAR-T cells can be limited.19 For instance, by comparing 
two anti-CD19 (FMC63-scFv) or GD2 (14g2a-scFv) CAR, 
it was found that 14g2a-scFv structure domains establish 
clusters independent of the anti-GD2-CAR antigen on the 
T cell surface. As a result, it promotes severe anti-GD2-
CAR-T cells’ severe weakness and reduces their ability to 
act appropriately in vivo. Many CAR clinical trials have 
used scFv derived from mouse antibodies to increase the 
probability of anti-CAR-T cell response, which may cause 
toxicity or reduce T cells’ viability.129,130 This problem can 
be overcome by humanizing mouse scFvs or removing 
scFv from fully human antibodies.131,132 Human CAR-T 
cells can induce comparative recovery of ALL resistant to 
previous anti-CD19-CAR therapeutic cells based on scFv 
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mice.132 However, due to the receptors’ chemical existence, 
even human protein-derived structures can induce host 
immune response.18 It is doubtful that the current CAR 
design template would enable T cells to resolve the 
multiple obstacles presented by tumor cells and the tumor’s 
microenvironment. The intrinsic defects of CAR-T cells 
must therefore be compensated for and novel techniques 
developed. Targeting more than one antigen on tumor 
cells at the same time can prevent the loss of the antigen 
and the tumor from escaping.26 Due to tumorigenesis’s 
complex nature, even optimized cars cannot resolve all 
the various tumor entities’ obstacles. It is also essential to 

combine several modifications to compensate for some of 
the inherent defects of CAR-T cells and fulfill the specific 
needs of tumor cells and the microenvironment. To 
produce the best therapeutic outcomes, T cell trafficking, 
penetration, and persistence must be optimized.

Conclusion
TME significantly inhibits T-cells’ function and indicates 
that engineered cells may be less effective in targeting 
tumor cells. However, new therapeutic strategies for 
CAR-T cell repair and recovery and CAR-T cell activation 
also have promising approaches to modulate signaling 

Figure 4. Restrictions on the use of CAR-T. (A) (i) the cancer cells alter CD19 receptor expression so that other CAR-T cells are unable to identify and bind to 
the target, or (ii) they completely lose CD19 receptor expression. (B) Tumor cells can transform phenotypic deformation into a different breed that is inherently 
CD19 negative. (C) Cancer cells can cover the surface of the epitope and deprive them of access to CAR-T cell cells. (D) Cause off-target toxicity. (E) CAR-T cells 
have limited proliferation and persistence. And after a short time, they disappear.
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at the tumor cells, transforming the immunosuppressive 
microenvironment into an efficient microenvironment. 
CAR-T cells in solid tumors require further investigation. 
Further research is needed for CAR-T cells in solid 
tumors. The potential insights into immunotherapy 
can be provided by understanding the cancer outbreak. 
Therapies are also different because cancer mechanisms 
differ.
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