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Introduction
Microparticles (MPs) are small spherical entities with a 
diameter ranging from 10 μm to 1000 μm, in the form of 
free-flowing powders.1 They are developed from different 
components as inorganic, polymeric, and minerals. In 
addition, MPs can exist in various structural designs, for 
example, microgranules, micropellets, microcapsules, 
microsponges, microemulsions, magnetic MPs and lipid 
vesicles as liposomes and niosomes.2 The most common 
type of MPs are the polymeric MPs, which are made from 
natural biodegradable or synthetic polymers and designed 
into two main structures MPs and microspheres. The 
matrix of the MPs consists of a homogeneous mixture 
of polymers, copolymer, and active pharmaceutical 
ingredient (API). Meanwhile, microspheres refer to a core 
comprised of either solid or liquid surrounded by a coat 
of distinctly different materials from the core (Figure 1).

Polymeric MPs mainly comprise polymers which 
determine their structure and significantly affect their 
properties. Ideally, polymers should be inert, stable, safe, 
biodegradable, biocompatible, and low cost.3 A wide 
range of polymers is used to prepare MPs derived from 
numerous natural and synthetic sources. Table 1 shows 
examples of different types of polymers.4-6

The drug released from the MPs can be modulated 
depending on the nature of the polymer. Loading drugs at 
higher concentrations into the MPs, i.e., high entrapment 
efficiency, can be optimized based on the polymer type.7 

In addition, studies proved that particle size directly 
affects the drug loading capacity, where reduction in 
particle size leads to a reduction in drug loading capacity 
and vice versa.8

Commonly, the surface morphology of the MPs 
originates from the chemical nature of the particle and 
the method of MP fabrication. It can be detected by 
different means, such as scanning electron microscopy. 
The surface morphology influences the properties of MP, 
such as wettability and adhesiveness.9 It was reported that 
the wettability of MPs is improved upon a higher number 
of surface asperities and roughness. On the other hand, 
the surface roughness was found to have an inverse effect 
on the adhesion of particle.10 As the surface roughness 
increases, the pull-off force is significantly reduced, 
thereby decreasing the adherence properties of the MPs.11

Another crucial aspect that should be considered during 
MPs preparation and characterization is electric charge of 
particles. Zeta potential is the standard analytical method 
of surface charge determination in a colloidal system. It 
can be used to determine the long- and short-term stability 
of the microparticulate colloidal dispersion. The colloidal 
system with high zeta potential (negative or positive) 
is regarded as an electrically stable system owing to the 
repulsive forces between particles. Low zeta potentials 
systems are at risk of coagulation or flocculation, possibly 
leading to poor physical stability.12

Microparticulate drug delivery system (MDDS) attracts 
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Abstract
Microparticulate drug delivery system (MDDS) has attained much consideration in the modern 
era due to its effectiveness in overcoming traditional treatment problems. Microparticles (MPs) 
are spherical particles of a diameter ranging from 10 μm to 1000 μm. MPs can encapsulate 
both water-soluble and insoluble compounds. MDDS proved their efficacy in improving 
drugs bioavailability, stability, targeting, and controlling their release patterns. MPs also offer 
comfort, easy administration, and improvement in patient compliance by reducing drugs 
toxicity and dosage frequency. This review elucidates the fabrication techniques, drug release, 
and therapeutic application of MDDS. Further details concerning the therapeutic applications 
of antidiabetic drugs-loaded MPs were also reviewed, including controlling drugs release by 
gastroretention, improving drugs dissolution, reducing side effects, localizing drugs to the site of 
disease, improving insulin stability, natural products loaded with MPs, sustained drug release, 
mucosal delivery, and administration routes. Additionally, the current situation and future 
prospects in developing MPs loaded with antidiabetic drugs were discussed.
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attention due to its wide range of beneficial technological 
characteristics. Compared with the conventional 
dosage forms, MDDS offers numerous advantages, 
such as ensuring controlled and prolonged drug release 
pattern,7 reducing drugs dose and toxicity, improving 
drugs bioavailability, and enhancing the solubility of 

poorly soluble drugs due to their very wide surface area. 
Furthermore, they protect the drug from the in vitro/
in vivo surrounding environment, target the drug to a 
specific biological site of action, mask the unsuitable taste 
and odour, and reduce dosing frequency, thus improving 
patient compliance.13-19 However, MDDS must be safe 
for successful clinical applications, perform therapeutic 
functions, provide comfortable administration routes, 
and be easily manufactured. The production of the MDDS 
showed some limitations due to its low reproducibility, 
costly materials, and manufacturing procedure, as well 
as some of their components and excipients that degrade 
into hazardous materials, which could be harmful to the 
environment.2 However, many novel microparticulate 
products are currently in clinical trials; however, 
some have been made available on the market. Table 
2 demonstrates examples of commercially marketed 
products containing MPs.20-30

Figure 1. Structure of microparticles: a) matrix microparticle; and b) 
microcapsule

Table 1. Types of polymers used in microparticle formulations4-6

Natural Polymers Synthetic Polymers

Proteins Polysaccharides Waxes Biodegradable Non-biodegradable

Albumin Starch Beeswax Carboxymethyl cellulose sodium Fumaryl diketopiperazine

Gelatine Chitosan

Carnauba wax Paraffin

Methylcellulose Polyethene glycols

Casein Sodium alginate Hydroxypropyl cellulose Poly-(N-isopropyl acrylamide)

Whey protein Poly dextran Hydroxypropyl methylcellulose Acrolein

Soy protein Pectin Ethylcellulose

Epoxy polymers

Gluten Sodium hyaluronate Cellulose acetate butyrate

Zein

Guar gum Poly (lactic acid)

Konjac gum Polylactic acid-glycolic acid copolymer

Carrageenans Polyacrylic acid (Carbopol)

Agarose

Polymethacrylates

Tragacanth

Gum Arabic

Gellan gum

Xanthan gum

Table 2. Commercially marketed products formulated using microparticles

Trade name Generic name Pharmaceutical company Indication Particle type Reference

Micro-K® Extencaps®
Potassium chloride 
extended-release

Ther- R.X. corporation Hypokalemia Microcapsules 20

Cotazym® Pancrelipase Organon Pancreatic insufficiency Microcapsules 21

Lupron Depot® leuprolide acetate Abbott Laboratories Management of endometriosis Microspheres 22

Nutropin Depot®
Somatropin
(rDNA origin)

Genentech, Inc Hormone deficiency Microparticles 23

Sandostatin® LAR Octreotide acetate Novartis
Severe diarrhoea and flushing 
episodes associated with metastatic 
carcinoid tumors

Microparticles 24

Trelstar® Triptorelin pamoate
Actavis Specialty Pharmaceuticals 
Co.

Palliative treatment of advanced 
prostate cancer

Microgranules 25

Vivitrol® Naltrexone Alkermes, Inc.
Prevention of relapse to opioid 
dependence

Microspheres 26

Decapeptyl® Triptorelin pamoate Ferring Pharmaceuticals Metastatic prostate cancer Microparticles 27

Risperdal
Consta®

Risperidone
Vetter Pharma Fertigung GmbH 
& Co. KG.

Antipsychotic Microspheres 28

Bydureon® Exenatide AstraZeneca Pharmaceuticals L.P. Type 2 diabetes mellitus Microspheres 29

Signifor® LAR Pasireotide Recordati Rare Diseases, Inc. Acromegaly Microspheres 30
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Diabetes mellitus (DM) has emerged as a global health 
problem in the past few decades and has been declared the 
fifth leading reason for mortality in most countries,31 as 
DM is deemed a fundamental risk factor for cardiovascular 
diseases and renal problems.32 Basically, DM is a chronic 
hyperglycemic metabolic disorder that occurs due to 
multiple causes and is characterized by the improper 
metabolism of fats, carbohydrates, and protein.33 There 
are two main types of DM: type 1 and type 2. Absolute 
deficiency of insulin is the primary cause of type 1 DM. 
In contrast, impaired insulin secretion, insulin resistance, 
and increased glucose production are the causes of type 
2 DM. Therefore, both DM types can be treated with 
insulin. However, hypoglycemic drugs can be used to 
manage type 2 DM.34

Despite the numerous antidiabetic medications that 
are flooding into the pharmaceutical market, a complete 
cure of DM remains unattained mainly due to the serious 
adverse effects of these drugs, such as hypoglycemia, 
gastric irritation, nausea, diarrhoea, and injection phobia, 
among others.35 Eventually, these drugs will result in 
poor patient compliance and low adherence to treatment. 
Therefore, designing a stable and non-invasive drug 
delivery along with controlled-release could be more 
therapeutically effective.36

Most significantly, the literature reported that 
microparticulate formulations could be promising 
to maintain a controlled blood concentration of the 
antidiabetic medications,37 improve the dissolution 
and release of drug,38 and ultimately, enhance their 
pharmacokinetics and bioavailability.39 Furthermore, 
surface modified and mucoadhesive MPs showed 
advantages in a protective effect against enzymatic 
degradation and enhancing peptide stability40 in addition 
to site-specific drug delivery36 and gastric retaining.41

The literature revealed that the field of drug delivery 
has moved at an unprecedented pace, and a variety of 
drug delivery systems have taken centre stage over the 
past decade. Therefore, this review includes an inclusive 
outline of MDDS and focuses on their therapeutic 
applications as efficacious carriers for antidiabetic drugs 
and illustrates the global trend of research conducted in 
this area.

Fabrication techniques of MDDS
Single emulsion technique
This method is used to prepare natural polymers-
based MPs as proteins and carbohydrates. First, the 
polymer is dissolved in the aqueous medium, followed 
by its dispersion in a non-aqueous solvent as oil. Then, 
crosslinking of the dispersion is performed either by 
heating or using chemical crosslinkers as glutaraldehyde 
(Figure 2). The type of surfactant favorably influences the 
particle size, particle charge, surface morphology, drug 
loading, drug release, and bio-performance of the MPs.42

Double emulsion technique
Double emulsion technique comprises the formulation 
of double emulsions water-in-oil-in-water (w/o/w) or 
oil-in-water-in-oil (o/w/o). Both natural and synthetic 
polymers can be incorporated to prepare MPs. The 
double emulsion w/o/w (Figure 3) is more suitable for 
water-soluble drugs, peptides, proteins, and vaccines. For 
example, a luteinizing hormone-releasing hormone (LH-
RH) agonist was successfully encapsulated into the MPs 
using the double emulsion method.43

Spray drying technique
Both the polymer and the drug are dissolved in a volatile 
organic solvent and homogenized in a high-speed 
homogenizer (Figure 4). Subsequently, the resulting 

Figure 2. Single emulsion technique for the preparation of microparticles.

Figure 3. Double emulsion technique for the preparation of microparticles

Figure 4. Spray drying technique for the preparation of microparticles
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dispersion is sprayed in a hot air stream, where the solvent 
evaporates instantaneously and the MPs are formed.44

Solvent extraction
The solvent extraction or evaporation method is 
performed by dissolving the drug and the polymer in a 
suitable organic solvent. The mixture is then dispersed 
in an aqueous surfactant solution with stirring to form 
an emulsion.45 Finally, the MPs are collected after 
solvent evaporation (Figure 5). The main advantages 
of this method is the shorter hardening time and direct 
incorporation of the drug into the MPs.

Phase separation coacervation technique
This technique principally prepares the reservoir systems 
to encapsulate hydrophilic drugs, such as peptides and 
proteins. Its principle relies on the reduced polymer 
solubility in the organic phase to form a polymer-rich 
phase called a coacervate. Then, a third component is 
added to the system to separate the coacervate, forming 
two phases: supernatant and polymer-rich phases 
(Figure 6). In addition, phase separation can be achieved 
by different techniques such as salt, non-solvent, or 
incompatible polymer addition.46

Factors affecting drug release from MDDS
Drug release from MPs is affected by several factors, 
including: 

Drug content
The drug release rate is affected by the amount of drug 
present in the MP, where the release increases with 
increasing drug concentration in the MP.47

Drug physical state
The physical state, molecular dispersion/crystalline 
structures of a drug affect the drug release kinetics from 
the MPs.48

Molecular weight of polymer
The molecular weight of polymer affects its erosion, where 
the molecular weight is inversely proportional to the 
release rate. Therefore, as the molecular weight increases, 
the diffusivity decreases, thus resulting in a lower drug 
release rate. In addition, many drugs are released by 
diffusion through water-filled pores, where the polymer 
degrades to form soluble monomers and oligomers. 
Hence, there is faster development of these tiny products, 
with the polymers having a lower molecular weight.49

Copolymer concentration
The co-monomer ratio in copolymers affects the drug 
release rate; when a more rapidly degrading monomer is 
used in the polymer, the release rate increases. Likewise, 
the release rate depends on the polymer erosion, in 
which the use of smaller and more soluble monomers 
will result in increased release rate.50 Nevertheless, the 
copolymer composition may be influenced by difference 
in the phase behavior of polymer or the thermodynamics 
of encapsulated active ingredient. For example, Zhang 
et al prepared poly(lactide-co-glycolide) (PLGA)-based 
MPs for the oral delivery of a poorly water-soluble drug, 
progesterone, to improve its physiological dissolution and 
bioavailability. It was found that the in vitro drug release 
was directly influenced by the copolymer composition; 
hence, the reduction of lactide content of PLGA was able 
to achieve further drug release.51

Types of excipients
Excipients have various crucial functions in the 
formulation; for example, they may influence the release of 
a drug through various mechanisms and its encapsulation 
effectiveness. Yang et al improved the encapsulation and 
uniformity of size distribution of bovine serum albumin 
(BSA) in MPs by including polyvinyl alcohol (PVA) in the 
formula. The increased PVA concentration increased the 
porosity of the MPs and controlled the release of BSA.52 
Jain et al prepared myoglobin MPs-containing mannitol 
as a stabilizer. Their results showed that the addition of 
mannitol had improved the release rate of myoglobin by 
increasing the initial porosity of the MP’s matrix, leading 
to faster formation of the pore network within the sphere.53

Nature of the polymer 
The type of polymer used in MPs formulation and 

Figure 5. Solvent extraction technique for the preparation of microparticles

Figure 6. Phase-separation coacervation technique for the preparation of 
microparticles
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the functional groups that affect polymer degradation 
significantly affect its release rate. Polymers are 
categorized into two types: surface eroding and bulk-
eroding. For bulk-eroding polymers, such as PLGA, 
this type of polymer allows rapid water permeation into 
the MP matrix, thus causing polymer degradation and 
a drug burst, where 50% of the drug is released during 
the first hour of the run, followed by a controlled 
release.54 Meanwhile, the surface-eroding polymers as 
polyanhydrides are made of hydrophobic monomers 
linked by labile bonds. It resists water penetration and 
degrades into oligomers and monomers at the polymer/
water interface via hydrolysis. The drug release occurs at 
the surface as the polymer degrades.55

MPs size
Generally, the size of MPs impacts the loading capacity 
of the drug into the MPs and the drug release profile.4 As 
the particle size decreases, the ratio of their surface area to 
volume increases, and thus, the diffusion of drug particles 
and the release rate increases. On the other hand, the 
small-sized of the MPs results in a higher penetration of 
water into the particles and their decomposition, causing 
an immediate burst release of their content rather than the 
continuous release of the drug from the particle surface.56

Environmental pH
Some pilot studies have shown that the pH of the medium 
significantly affects the degree of hydration and swelling 
of crosslinked hydrophilic polymers.57 The swelling of the 
polymer having acidic or basic functional groups depends 
upon the pH of the surrounding medium relative to 
the corresponding pKa and pKb values of the functional 
groups. For instance, in the anionic polymer (e.g. having 
carboxylic, –COOH functional groups), the ionization 
of the acidic functional groups results in the production 
of negative charges on the surface of the polymer that 
can interact with the opposite positive charges in the 
medium. In addition, polymer erosion is also affected 
by the environmental pH. Hence, the swelling and or 
degradation of the pH-sensitive polymer that controls the 
drug-release profile from the MPs are affected.58

Moreover, the degree of ionization of the functional 
groups on the surface of the polymer and the surface of 
the mucous membrane, is also influenced by the hydrogen 
ion concentration in the surrounding medium. Therefore, 
the time and degree of contact between MPs-including 
mucoadhesive polymers and the absorption site are 
influenced.59 Researchers proved that positively charged 
polymers, such as chitosan,60 showed better mucosal 
adhesive properties than anionic polymers, providing 
favorable drug release and absorption conditions.

Route of administration 
Several formulation concepts are used to manufacture 
MDDS through different routes of administration, such as 

the transdermal, oral, ophthalmic, vaginal, and pulmonary 
for drug inhalation. Each of these routes of administration 
is characterized by certain physiological factors, such as 
tissue structure, pH of the medium, permeability barriers, 
and metabolic enzymes, all of which ultimately govern 
the release pattern and mechanism of the drug from the 
microparticulate carriers.61

Therapeutic applications of antidiabetic loaded 
microparticles
Since its discovery, MDDS has been extensively investigated 
and successfully used to encapsulate water-insoluble and 
water-soluble drugs. In addition, antidiabetic drugs, 
including insulin, were incorporated into MDDS due to 
their beneficial properties such as improving therapeutic 
efficacy, gastroretentive drug release, targeting medicinal 
compounds, improving insulin stability, reducing side 
effects, enhancing drugs dissolution, and attaining patient 
compliance.

Controlled gastroretentive drug release
One of the main methods of improving drug bioavailability 
is to retain the formulation in the stomach for a long 
duration.62 Various antidiabetics-loaded gastroretentive 
drug delivery systems had been proposed and evaluated 
(Table 3), including the floating and mucoadhesive MPs. 
The buoyancy of the MPs can be achieved when their bulk 
density is less than that of the gastric fluid. 

Another approach is preparing hollow MPs, so the 
formula stays buoyant in the stomach without affecting 
gastric emptying time and rate. MPs release the drug 

Table 3. Various gastroretentive delivery systems for antidiabetic medications

Type of System Antidiabetic API References

Floating microspheres/
microparticles

Repaglinide 41

Rosiglitazone maleate 63

Gliclazide 64

Sitagliptin 65

Metformin HCl 66,67

Effervescent floating tablets

Pioglitazone HCl 68,69

Metformin HCl 70,71

Rosiglitazone HCl 72

Non-effervescent floating tablets Linagliptin 73

Microsponges/microballons

Mitiglinide calcium 74

Metformin HCl 75,76

Rosiglitazone maleate 77

Mucoadhesive matrix tablets

Metformin HCl 78

Rosiglitazone maleate 79

Repaglinide 80

Mucoadhesive microspheres
Linagliptin 81

Glipizide 82

In situ hydrogel/superporous 
hydrogel

Mitiglinide calcium 83

Rosiglitazone maleate 84
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faster by floating on the gastric content resulting in an 
increased gastric residence time and controlled plasma 
concentration.85 In addition, the distinctive advantages of 
floating MPs reduce dosage frequencies, and possibility of 
mucosal adhesion and dose dumping.86

Dubey et al prepared the floating microspheres to retain 
metformin in the stomach and continuously release the 
drug in a controlled manner up to a predetermined time.87 
Other studies followed the same technique to improve 
repaglinide’s bioavailability and efficacy.88 Furthermore, 
Shams et al loaded repaglinide successfully into floating 
microspheres prepared from different viscosity grades of 
hydroxypropyl methylcellulose (HPMC) polymer. It was 
predicted that the prepared repaglinide-loaded floating 
microscopic globules can provide a novel choice for a 
safe, economic, and increasingly bioavailable formulation 
to treat diabetes effectively.89

On the other hand, metformin hydrochloride was 
loaded to gastric-mucoadhesive MPs for sustained 
gastric residence time. Carbopol-934P/ethyl cellulose 
polymers as mucoadhesive MPs were prepared via the 
emulsification solvent evaporation technique. Results 
proved that incorporating metformin into the MPs would 
increase the drug bioavailability and improve glucose 
control in diabetic patients.71

Improving drug dissolution
Oral bioavailability depends on several factors, including 
aqueous solubility and dissolution rate. Further studies 
suggested MPs to enhance the solubility and dissolution 
rate of the lipophilic hypoglycemic drugs. For example, 
conventional glibenclamide tablets’ low oral bioavailability 
necessitated a novel formulation, MPs, to improve 
its low water solubility.90 Siafaka et al also developed 
polymeric MPs for oral delivery of glibenclamide using 
two biocompatible polymers, poly(e-caprolactone) 
and poly(butylene adipate). The in vitro drug release 
from the MPs was higher than that of the pure drug 
and in a sustained pattern ideal for reducing the daily 
dose of glibenclamide.14 Tzankov et al investigated the 
mesoporous silica MPs to improve glimepiride solubility 
and dissolution rate. The newly developed MPs were 
investigated in vitro and in vivo and found to possess high 
loading capacity and safe promising carriers to enhance 
the solubility of poorly soluble hypoglycemic drugs.91

Moreover, pioglitazone solubility and dissolution 
were improved by its incorporation into hydrophilic 
MPs. The MPs were prepared by spray-drying technique 
from two water-soluble components, poloxamer 407 and 
β-cyclodextrin. The spray-dried particles significantly 
increased the percentage of drug release rate compared to 
the control, pure pioglitazone.92

Reducing side effects
Generally, drug side effects are a fundamental obstacle in 
the development of therapeutic agents. Among various 

modified drug delivery systems, polymeric MPs are 
employed to enhance drugs safety and therapeutic activity. 
For the past few decades, MDDS had been extensively 
studied on its ability to deliver drug molecules to the target 
site of action to minimize undesired harmful effects and 
improve patients’ safety and compliance.93 For example, 
Volpatti et al were able to produce glucose-responsive 
insulin delivery systems in an injectable formulation for 
blood glucose control and hypoglycemic avoidance. The 
glucose-responsive delivery system was developed by 
encapsulating glucose-responsive, acetylated-dextran 
MPs in porous alginate microgels to improve glycemic 
control by releasing insulin into the blood, thereby 
detecting an elevation in the blood glucose levels.94

Moreover, catechin is a natural molecule that possesses 
antidiabetic activity, but a significant disadvantage of 
it is that it causes obesity. To overcome this problem, 
scientists have encapsulated catechin into Eudragit RS100 
MPs. Results showed no signs of obesity in rat models 
even after 60 days of oral administration.95 Repaglinide 
requires frequent administration due to its short half-life, 
which may cause many adverse effects, as skeletal muscles 
pain, headache, and gastrointestinal (GI).96 Sharma et al 
encapsulated the drug into microspheres to modify the 
drug release, thereby controlling its concentration for a 
prolonged duration and reducing its side effects.41 Ethyl 
cellulose MPs containing metformin HCl were developed 
by emulsification solvent evaporation technique. The 
sustained release of the drug from these MPs was more 
prominent at a phosphate buffer of pH 6.8 than in the 
simulated gastric medium. Thus, the authors proposed 
ethyl cellulose MPs as a convenient carrier for water-
soluble hypoglycemic drugs as metformin HCl in 
managing type 2 DM.97

Targeting drugs to the site of disease
Magnetic microparticles
The magnetic MPs were employed to localize the drug 
to the site of the disease. The freely circulating drug 
was targeted to the receptor site and maintained at 
the therapeutic concentration for a specific period. 
This mechanism was achieved by incorporating nano/
micromagnets into the polymeric MPs, e.g., chitosan 
and dextran, and exposing them to an external magnetic 
field for their immobilization.98 There are two types of 
magnetic MPs: therapeutic magnetic MPs and diagnostic 
magnetic MPs, where the former one was used to 
deliver proteins, peptides, and chemotherapeutic agents 
to tumors as liver tumors99; and the latter was used for 
imaging liver metastases, distinguishing bowel loops 
from other abdominal structures by forming nano-sized 
particles super-magnetic iron oxides.100 The literature is 
full of studies that report magnetic particulate carriers 
for delivering antidiabetic medications to a localized 
disease site. In a previous study, the influence of polymer 
composition on insulin release was investigated by 
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exposing ethynyl vinyl acetate MPs to the oscillating 
magnetic field.101 Insulin-magnetite- PLGA MPs were 
orally administered to mice in the presence of an external 
magnetic field. A significantly improved hypoglycemic 
effect (blood glucose levels reduced to 43.8%) was 
observed, indicating the efficacy of the magnetic 
microspheres in oral insulin therapeutics.102

Moreover, Teply et al prepared the negatively charged 
insulin-loaded PLGA MPs-complexed with positively 
charged micromagnets. The complexes were effectively 
localized in a mouse small intestine in vitro model by an 
external magnetic field application, indicating that the 
complexes encapsulating insulin (120 units/kg) were stable. 
They exhibited long-term blood glucose reduction in the 
mice groups fitted with magnetic belts and significantly 
improved insulin bioavailability compared to the 
control.103 Alginate-chitosan beads containing magnetite 
nanoparticles were placed as a system to control insulin 
release in the presence of an oscillating magnetic field. 
Beads entrapment efficiency was 35%, and the magnetic 
field increased three times in the insulin release.104

pH-Sensitive microparticles
Situ et al prepared insulin-loaded oral bioadhesive 
MPs coated with a resistant starch-based film to deliver 
antidiabetic bioactive drugs to the colon. The starch 
was chemically modified to enhance its stability and 
resistibility to GI enzymatic degradation. Results proved 
the MPs’ effectiveness to control the average plasma 
glucose levels up to 22 hours in diabetic rats. Then further 
development for the resistant starch-based coat was 
conducted through its conjugation with concanavalin 
A glycoprotein. The modified coat showed better colon 
targeting and maintained the hypoglycemic effect of 
insulin for 44–52 hours in diabetic rats.105

Another approach for colon targeting was attempted by 
preparing sodium alginate MPs containing the bile salts as 
permeation enhancers. Gliclazide was loaded into sodium 
alginate MPs containing chenodeoxycholic acid106 and 
deoxycholic acid107 bile salts. The formulations showed 
extended gliclazide in vitro release profiles and successful 
colon targeting properties. Leong et al developed pH-
responsive carboxymethylated kappa-carrageenan MPs 
to protect insulin from GI degradation. The prepared 
formula was further surface-lectin-functionalized to 
enhance the intestinal mucoadhesion. The surface-
modified formulation demonstrated accurate colon 
targeting and could maintain the hypoglycemic effect for 
up to 24 hours in diabetic rats.108 Chitosan-snail mucin 
MPs were prepared for pH-sensitive oral delivery of 
insulin. In vitro release profile of insulin was evaluated 
in two pH environments (pH 1.2 and pH 7.4) in animal 
models. Results showed retarded release in the acidic 
medium; however, the continuous release of the alkaline 
medium was prolonged for up to 12 hours. Animal models 
controlled the normal average blood glucose levels for up 

to 8 hours.40

Improving insulin stability
Insulin instability in the gut limits its administration to 
the parenteral route only. Several approaches had been 
proposed to overcome this problem to improve oral 
insulin stability and bioavailability. For instance, Sajeesh 
et al complexed methyl-β-cyclodextrin to polymethacrylic 
acid hydrogel MPs to be tested for oral insulin delivery in 
diabetic animal models. Cyclodextrin was responsible for 
stabilizing insulin by reducing its self-aggregation. Results 
also showed enhancement in insulin’s oral absorption.109 
Carboxymethyl β-cyclodextrin grafted carboxymethyl 
chitosan hydrogel MPs were found promising for oral 
insulin administration.110 Another study was performed 
by encapsulating insulin into mucinated sodium 
alginate MPs. The MPs effectively lowered blood 
glucose levels in rabbit diabetic models after 5 hours of 
their oral administration. MPs surface modification 
is another technique that was tried for oral insulin 
delivery. Chitosan-snail mucin based microspheres were 
fabricated and loaded with insulin. The loading capacity 
was high, and the in vitro release was above 80% over 
12 hours. The insulin-loaded MPs significantly reduced 
blood glucose levels in mice compared to the positive 
control, and the effect continued for 8 hours.111 Acryl-
EZE enteric polymer-coated MPs containing surfactin 
and iturin lipopeptides could achieve only 7.67% of oral 
relative bioavailability of insulin. Nevertheless, these 
MPs maintained the postprandial blood glucose level of 
about 50% of the initial dose, similar to the subcutaneous 
injection.112 In addition, glucan MPs thickened with 
thermosensitive poloxamer 407 gels were suggested to be 
potential insulin oral carriers.113

The multilayer-coated MPs using a layer-by-layer 
polymers installation was another assessed approach. 
Balabushevich et al generated the layer-by-layer MPs from 
dextran sulfate and chitosan polymers.114 Meanwhile, 
in another study, the MPs were coated with alternating 
layers of poly(vinyl alcohol) and poly(acrylamide phenyl 
boronic acid-co-N–vinyl caprolactam) on the surface 
of PLGA MPs.115 Shrestha et al prepared the annealed 
thermally hydrocarbonized porous silicon (AnnTHCPSi) 
and undecylenic acid-modified AnnTHCPSi 
(AnnUnTHCPSi) MPs for oral insulin delivery. The 
surface of MPs was modified using chitosan to enhance 
insulin’s intestinal permeation. Insulin intestinal 
permeation was evaluated in Caco-2/HT-29 cell co-
culture monolayers. The chitosan-coated MPs showed a 
significant improvement in insulin penetration through 
the cells.116

Natural products-loaded MPs
Gongronema latifolium is a conventional herbal 
medicine plant used to treat various diseases, including 
diabetes. The plant extract was loaded into the solid-
lipid MPs with a retention efficiency of 68%. In addition, 
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the mean percentage reduction in blood glucose after 
oral administration of the extract loaded MPs was 76% 
and 24.4% compared to the reference glibenclamide, 
which resulted in 82.6% and 46.7% at 2 and 12 hours, 
respectively.117

Catechin a natural molecule that possesses antidiabetic 
activity. Its low oral bioavailability limits its uses. 
However, catechin encapsulation into Eudragit RS100 
MPs significantly improved its absorption and reduced 
blood glucose levels in diabetic rats. The blood glucose 
level of the catechin MP treated group was found to 
be (119.37 ± 12.46 mg/dL) after 60 days of treatment 
compared to (206.54 ± 9.54 mg/dL) of the hyperglycemic 
rats.95

Berberine active constituent is found in several plants 
as European barberry, goldenseal, Oregon grape, and 
tree turmeric. It has attracted much interest in recent 
years due to its potential as a natural alternative to 
other synthetic antidiabetic drugs. Unfortunately, the 
low oral bioavailability is limiting its development for 
further clinical treatments. Recently, researchers have 
attempted to improve its oral hypoglycemic effect by 
incorporating the berberine-phospholipid complex into 
the phytosomes delivery system.118 Some bioflavonoids, 
such as rosmarinic acid from the plant Lamiaceae, 
had been used as antidiabetic drugs and antioxidants. 
Rosmarinic acid crosslinked MPs contributed a more 
substantial inhibitory effect on α-glycosidase along with 
reduced cytotoxicity and antioxidant activity than the free 
compound. 119

Sustained drug release
Various strategies were investigated for the extended-
release formulations of antidiabetic drugs such as matrix 
sustained-release tablets, orodispersable tablets, and 
depots.120-122 Nevertheless, MDDS had granted great 
attention to this application. Biodegradable polymeric 
MPs were used extensively to retard drug release, reduce 
dosing frequency, and enhance bioavailability and 
safety.123 The biodegradable MPs are made from either 
natural polymers as starch or synthetic polymers, such as 
PLGA.124 Biodegradable polymeric MPs swell and form 
a gel-like structure when in contact with an aqueous 
medium at the mucous membrane. The rate and extent of 
the drug release are dependent on the polymer itself and its 
concentration. The main challenges in the formulation of 
biodegradable polymeric MPs are drug loading efficiency 
and drug release controlling.125

Synthetic polymeric MPs were used as drug delivery 
vehicles in clinical trials due to their safety and 
biocompatibility. However, they have some limitations, 
such as their migration tendency away from the injection 
site, leading to a potential risk of embolism and further 
organ damage.126 Wu et al prepared insulin-loaded 
porous microspheres to control blood glucose levels for 
at least 18 days. The carrier acquired a unique glucose 

sensitivity property due to incorporating glucose oxidase, 
where insulin was released from the delivery system upon 
elevated blood glucose levels.115 For example, exenatide, 
an antidiabetic drug with a short half-life, was loaded into 
porous MPs to improve its characteristics. It was reported 
that the prepared exenatide-loaded porous microspheres 
had a sustained release for 30 days in rat models.127

Furthermore, rosiglitazone maleate mucoadhesive 
microspheres were prepared for achieving controlled 
drug release. The mucoadhesive microsphere tended to 
adhere to the mucosal tissue for a prolonged period of 
12 hours.128 In another study, polylactic acid MPs were 
approved as a successful sustained release delivery system 
of metformin hydrochloride in the treatment of diabetes. 
The MPs improved the drug bioavailability and overcame 
the difficulty of oral tablet swallowing, which could be 
considered a potential alternative to oral pills.129

Antidiabetic drugs mucosal delivery 
Adhesion describes the sticking and bioadhesion as 
sticking a drug to the membrane using water-soluble 
polymers. The mucoadhesive MPs are intrinsically 
prepared by incorporating a mucoadhesive polymer-
based matrix in the formulation or coating the MPs with 
a mucoadhesive polymer.130 These MPs have offered 
several advantages over the conventional formulations, 
including a prolonged residence time at the application 
site, controlled drug release, and enhanced drugs 
permeation and bioavailability.131 Mucoadhesive MPs 
may be delivered to different body sites lined with mucous 
membrane, such as the oral, buccal, ocular, rectal, vaginal, 
and nasal. Figure 7 displays the mechanism of the drug 
release from the MPs at the target site of absorption.

However, the mucoadhesive efficacy of a dosage form 
is dependent on various factors, such as the nature of 
the mucosal tissue and the physicochemical properties 
of the polymeric formulation. These mucoadhesive 
agents are typically high molecular weight polymers of 
high molecular weight and interact with the mucus layer 
of the mucosa epithelium through hydrogen bonding, 
ionic, hydrophobic or van der Waals interactions.132 
Table 4 describes several examples of the mucoadhesive 
MPs on their polymer components, preparation method, 
administration routes, and aim of the preparation.

Routes of administration 
Various options for the administration of antidiabetics 
were proposed to treat patients with DM. As a result, 
researchers formulated the antidiabetic drugs-loaded 
MPs to be delivered in several administration routes 
for more appropriateness in patients’ perception. For 
example, the pulmonary route of administration143 had 
been used for many decades to deliver drugs for systemic 
and local applications to treat various respiratory system 
diseases (Figure 8). Recently, inhaled antidiabetic drugs-
loaded MPs have become a highly focused research trend 
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in the pharmaceutical industry. For instance, Rashid et 
al conducted a study evaluating rosiglitazone-loaded 
porous microspheres for pulmonary administration. 
The candidate inhaled formula was non-invasive and 
successfully released 87% of rosiglitazone within 24 
hours.19 

It is well-known that one of the key factors deciding the 
drug bioavailability is the residence time at the absorption 
site. The strategy of using mucoadhesive polymers was 

employed for this purpose. In a previous study, N-trimethyl 
chitosan MPs with permeation enhancers were prepared 
for pulmonary insulin delivery in diabetic rats. Chitosan-
based MPs were found pharmacologically efficient 
and relatively bioavailable compared to subcutaneous 
administration. The histological examination of the rat’s 
lung proved the safety of the formula.144 Hamishehkar 
et al prepared long‐acting, respirable, biodegradable 
microcapsules loaded with insulin. The dry powder 

Figure 7. A scheme demonstrates the release of drug’s molecules from the mucoadhesive microparticles at the site of absorption

Table 4. Examples of antidiabetic drugs-loaded mucoadhesive microparticles

API Delivery system Polymer(s) Method of preparation
Route of 
administration

Aim Reference

Insulin
Hydrogel 
microparticles

Whey protein/ 
alginate

Cold gelation technique and 
an adsorption

Oral
Improvement of intestinal 
absorption and drug 
bioavailability

131

Metformin Gastroretentive discs
Emulsification, solvent 
evaporation, and compression

Oral
Gastroprotective formulation 
to improve therapeutic 
performance

132

Insulin Microsphere CP/EC Spray drying Nasal
Non-injectable
system for insulin

133

Insulin
Polyelectrolyte 
microparticles

Fumaryl 
diketopiperazine

Aggregation Oral Improve bioavailability 134

Insulin
Hydrogel 
microparticles

Chitosan and 
Dextran sulfate

Ionic gelation Oral
Improve the oral delivery of 
proteins/peptides

135

Insulin Microsphere Spray drying Nasal
Improve the systemic 
absorption

136

Insulin
Multicomponent 
microparticles

PMAA/PEG/
chitosan

Layer‐by‐layer assembly Oral Improve bioavailability 114

Metformin HCl
Microparticle 
compressed into discs

Chitosan/PVA
Emulsification solvent 
evaporation

Oral
Controlled drug release and 
enhancing bioavailability

88

Insulin Microspheres Membrane emulsification Oral
Improve bioavailability and 
oral delivery

137

Exenatide Microparticles
Dextran sulfate/
Chitosan

Coprecipitation and 
Micronization

Nasal Enhanced drugs permeation 138

Sitagliptin Microsphere
Carbomer 
934P/E.C.

Spray drying Oral Controlled drug release 139

Metformin Microsphere Ionic gelation Oral
Sustained release and enhance 
absorption

140

Repaglinide Microparticle Chitosan Spray drying Nasal
An alternative route of 
administration

141

Glipizide Microbeads PAA
Emulsification solvent 
evaporation

Oral Prolonged-drug release 142

CP: Carbopol 934; E.C.: Ethylcellulose; PMAA: Polymethacrylic acid; PEG: Polyethylene glycol; PVA: Polyvinyl alcohol; PAA: Polyacrylic acid.
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inhaler formulation was tested on diabetic rats through 
the pulmonary route. Results showed that the prepared 
microcapsules had a longer residence time and ability to 
control blood glucose levels for up to 48 hours.123

Buccal drug administration was another proposed 
route for the delivery of the antidiabetic drugs-loaded 
MPs. The bioadhesive metformin loaded MPs for the 
oromucosal administration was prepared by Sander et 
al The prepared formula was tested for its bioadhesive 
properties using an ex vivo flow retention model. The 
results indicated improved metformin retention on 
porcine mucosa, making it the right candidate for 
the buccal route of administration.145 Nasal and oral 
mucoadhesive MPs were the most commonly investigated 
delivery systems for insulin and oral hypoglycemic drugs. 
For example, the nasal delivery of insulin-loaded gelatin 
MPs was investigated in healthy rats. The hypoglycemic 
effect was assessed for both suspension and dry powder 
MPs formulations. A significant decrease in blood glucose 
levels was observed after the dry powder administration. 
The bioavailability enhancing effect of the mucoadhesive 
gelatin microspheres was attributed to the long residence 
time of the MPs at the nasal mucosa besides opening the 
tight intercellular junctions.146

Multilayered surface-modified MDDS were suggested 
for oral insulin delivery. The MPs were prepared via the 
alternative deposition layer by layer of ferric ions and 
dextran sulfate at the surface of the microspheres. Insulin 
hypoglycemic effect was mainly determined by the 
number of layers and lasted for 12 hours, with ten bilayers 
deposition.147 Table 5 displays examples of antidiabetic 
drugs-loaded polymeric MPs, their component polymer, 
preparation method, and administration route.

Current status and future developments 

Despite the global evolution in developing innovative 
microparticulate systems for the delivery of antidiabetic 
drugs, there are still numerous challenges due to the 
wide variations in drug loading, particles characteristics, 
and manufacturing processes. Therefore, there are few 
antidiabetic MPs-based products currently available in 
the market. For example, Bydureon® is a sustained-release 
injection in a pre-filled pen containing exenatide, a 
glucagon-like peptide-1 receptor agonist, for subcutaneous 
administration. This depot is produced by AstraZeneca 
U.K. Limited using microspheres technology, where the 
drug particles are loaded into PLGA based microspheres. 
This medication helps to control blood glucose levels in 
type 2 diabetic patients.24

Furthermore, to reflect the current status and future 
developments in this field, relevant patents published 
on Google Patent.com were also reviewed. Table 6 
shows examples of patents/innovations (from year 2000 
onwards) of antidiabetic drugs-loaded MPs related to 
patent applications.

Conclusion 
MDDS offer several merits over traditional pharmaceutical 
dosage forms, such as increasing efficacy, reducing 
toxicity, and improving patient compliance and comfort. 
Several methods are used for MPs preparations such as 
single emulsion, double emulsion, spray drying, solvent 
extraction, and phase separation coacervation technique. 
The content and physical state of the drug; polymer’s 
nature, molecular weight, and concentration; and type 
of excipients used are the main factors affecting the drug 
release profile from the MPs. Diabetes is considered a 
global disease; nevertheless, research and development 
in drug delivery and disease management are ongoing 
to improve drugs efficacy and safety. Antidiabetics-

Figure 8. Pulmonary therapeutic applications and drug targeting of microparticles delivery systems
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laden MPs were created for their unique applications in 
targeting drugs to a specific site in the body, improving 
drug dissolution, controlling drug release, reducing side 
effects, and enhancing bioavailability and stability. The 
interest in applying MDDS for the treatment of diabetes 
for administration via different routes is currently 
increasing. Through the combination of different 
strategies, the MPs can be effectively placed and used, 
particularly in cell sorting, diagnosis, genetics, and 
biological products.
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