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Introduction
Lung cancer is one of the fatal types of cancers worldwide.1 
Non-small cell lung carcinoma (NSCLC) is the most 
common subtype of lung cancer with a high prevalence in 
the clinic.1,2 Based on Medscape (https://www.medscape.
com), only 30% of NSCLC tumors have localized 
properties. Chemotherapy, instead of surgery/radiation 
therapy, is considered the first step of the treatment 
approach. Cisplatin is usually included as a first-line 
medicine in most NCLC chemotherapy protocols.3-5 
Cisplatin exerts its effects by forming crosslinks in the 
DNA and inhibiting the DNA replication, G2/M phase 
cell cycle arrest, and inducing apoptosis.6,7 Nowadays, 
chemoresistance is the main reason for Cisplatin 
treatment failure.8,9 Galluzzi et al10 have classified cisplatin 
resistance mechanisms as pre-target resistance (e.g., drug 
efflux), on-target resistance (e.g., enhanced DNA repair 
machinery), post-target resistance (e.g., alternation in the 
drugs’ mechanism of action), and off-target resistance 

(alterations in compensatory signaling pathways); which 
were summarized in Table 1.

Among various cellular signaling pathways, the 
PI3K-AKT has a higher impact on cancer progression 
and drug resistance. The PI3K-AKT regulates 
survival, differentiation, proliferation, migration, and 
chemoresistance in cancer cells. Consequently, targeting 
PI3K-AKT pathways has been considered a good strategy 
for battling cancer through Apoptosis induction.12,13

However, as several other molecular pathways 
contribute to cancer survival and chemoresistance, 
overcoming the drug resistance for Apoptosis induction 
in different types of cancers might be challenging.8,9,14 
So, opting for another cell death strategy might help re-
sensitize these immortal cells.15,16

Numerous types of cell death strategies have been 
implemented in cancer therapy research.16-19 Previous 
studies have remarkably revealed that reactive oxygen 
species (ROS) over-accumulation is a predominant 
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Abstract
Purpose: Drug resistance is a challenging issue in cancer chemotherapy. Cell death induction 
is one of the main strategies to overcome chemotherapy resistance. Notably, ferroptosis has 
been considered a critical cell death mechanism in recent years. Accordingly, in this study, the 
different cell death strategies focused on ferroptosis have been utilized to overcome cisplatin 
resistance in an in vitro lung cancer model. 
Methods: The physiological functions of Akt1 and GPX4, as critical targets for ferroptosis 
and apoptosis induction, were suppressed by siRNA or antagonistic agents in resistant A549 
cells. Afterward, the interventions’ impacts on cell viability and reactive oxygen species (ROS) 
amount were analyzed by flow cytometry. Moreover, the alteration in the relevant gene and 
protein expression levels were quantified using Real-time PCR and western blot methods. 
Results: The result showed that the treatment with Akt1 siRNA reversed the cisplatin resistance 
in the A549 cell line through the induction of apoptosis. Likewise, the combination treatment 
of the GPX4 siRNA or FIN56 as ferroptosis inducers alongside cisplatin elevated ROS’s cellular 
level, reduced the cellular antioxidant genes level and increased the cisplatin cytotoxic effect.
Conclusion: In conclusion, our study indicated that ferroptosis induction can be considered a 
promising cell death strategy in cisplatin-resistant cancer cells.
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phenomenon in cancer cells.17-21 Therefore, ROS-
dependent, Caspase-independent programmed cell death, 
“ferroptosis,” attracted the researcher’s attention.22,23

Particular criteria such as iron accumulation, lipid 
peroxidation, loss of mitochondrial function, and membrane 
integrity are ferroptosis hallmarks.23 Several compounds 
and siRNAs induce ferroptosis by interfering in the role 
of glutathione-peroxidase 4 (GPX4), Mevalonate pathway, 
cysteine-glutamate-anti-porters, and mitochondrial 
transporters.24-26 In this regard, FIN56, as one of the 
famous ferroptosis inducers, interacts with the squalene 
synthase enzyme in the Mevalonate-pathway, which leads 
to cytoplasmic CoQ10 depletion.27,28 Moreover, FIN56 
indirectly promotes GPX4 degradation and causes cellular 
oxidants accumulation.29,30 The cellular CoQ10 depletion, 
besides higher amounts of cytoplasmic ROS, results in the 
peroxidation of cellular phospholipids, accumulation of the 
lipid ROS, and finally, ferroptosis induction.31

Interestingly, ferroptosis induction by approved clinical 
anticancer drugs such as sulfasalazine, sorafenib, lapatinib, 
temozolomide, cisplatin,21 and even by cytotoxic T-cells26 
have been reported.

Considerable researches indicate that ferroptosis 
inducers would attain a good percentage of the novel 
cancer therapeutics,32,33 especially in chemotherapy 
resistance forms. Favorably, Roh et al have reported 
that ferroptosis induction through silencing specific 
genes such as cystine-glutamate-antiporter (xCT) can 
increase cisplatin’s efficacy in cisplatin-resistant cancer 
cells.16 Similarly, according to Sugiyama, xCT inhibitor 
sulfasalazine eradicates paclitaxel-resistant uterine 
serous carcinoma.34 Likewise, GPX4 siRNA was used 
for ferroptosis induction in chemoresistance aggressive 
Panc-1 cancer stem-like cells.26

Despite these achievements, ferroptosis’s effectiveness 
vs. apoptosis in eradicating cancer resistance cells was 
not addressed. Therefore, this study tested the efficacy of 
these two cell death strategies combined with Cisplatin 
drug in the cisplatin-resistant A549 as the NSCLC model. 
At first, ferroptosis effectiveness was examined using 
GPX4 siRNA and FIN56 agents; then, apoptosis efficacy 
was investigated with AKT1 siRNA. Finally, the ability of 
these coadministrations in eradicating resistance A549 
cells was compared.

Materials and Methods
Cell culture 
The cisplatin-resistant lung cancer cell line (A549 CDDP) 

was generously gifted by Dr. Roya Salehi, faculty of 
Advanced Medical Science, Tabriz University of Medical 
Science, Tabriz, Iran. The normal human foreskin 
fibroblasts (HFFs) cell line was purchased from the 
National Cell Bank Pasteur institute of Iran. The cell lines 
were cultured in RPMI-1640 medium (Gibco, MD, USA) 
supplemented with 10% fetal bovine serum (FBS) (Gibco, 
MD, USA) and (penicillin 100 U/mL and streptomycin 
100 µg/mL) (Inoclon Co, Iran, 12PS2-100) at 37°C, 
humidified 5% CO2. 

Cell death induction and Cytotoxicity assay
To assess the possibility of using the ferroptosis strategy 
in combating cancerous resistance cells, we applied 
both chemical (FIN56) and biological (GPX4 siRNA) 
treatments. Moreover, Akt1 siRNA was used to evaluate 
the effect of the Apoptosis induction strategy in this battle.

MTT test was performed to determine the effective 
dose of FIN56 against the resistant A549 and HFF normal 
cell lines. In brief, the resistant A549 and HFF cell lines 
were seeded with the cell density of 1 × 104 cells/well in 
96-well microplates and were treated with different FIN56 
concentrations (0, 5, 10, 12, 14, 18, 20, 22, 25, 30, 35 μM) 
for 48 hours, and subsequently subjected to the MTT 
assay as previously described.35

The GPX4 and Akt1 siRNAs (Table 2) were designed 
by the siRNA direct website (http://design.RNAi.jp/); 
and purchased from Eurofins Genomics Company 
(Ebersberg, Germany). The siRNA transfection procedure 
was conducted as in the previous study.36 In brief: the 
resistant A549 cell line was seeded in a 6-well plate one day 
before transfection at an initial density of 0.7 × 105 cells/
well. Then, based on the numerous previous published 
papers,37-39 100 nM of each siRNAs were complexed 
with HiPerFect reagent (Qiagen, Germany) in a serum-
free media, and mixtures were applied to the cells. After 
one hour of incubation, treatment media was removed, 
and the cells were washed with PBS and finally further 
incubated in the complete media for 48 hours.40

Table 1. Mechanism of Cisplatin resistance

Cisplatin resistance Mechanism of action Reference

Pre-target resistance Avoiding to create cisplatin DNA adduct by decreasing cellular accumulation and efflux the cisplatin outside of the cell

7,10,11

On-target resistance Enhanced DNA repair machinery and increase toleration of DNA

Post-target resistance Alternation or signaling pathway after DNA deficiency through cisplatin exposure

Off-target resistance
An indirect cellular mechanism side effect that is not directly relative to cisplatin exposure but causes evasion of 
Apoptosis and Cisplatin cell death

Table 2. The sequence of siRNA

Gene siRNA sequence Length

AKT-1
S: 5′- CCAUGAACGAGUUUGAGUACC -3′

21 nt
A: 5′- UACUCAAACUCGUUCAUGGUC -3′

GPX4
S: 5′- CUACAACGUCAAAUUCGAUAU -3′

21 nt
A: 5′- AUCGAAUUUGACGUUGUAGCC -3′

S: Sense, A: Anti-sense.

http://design.rnai.jp/
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Ferroptosis assay
Cellular lipid ROS and total ROS were assessed after 
treating cells with FIN56 and GPX4 siRNA by DCFDA 
and Boron dipyrromethene (BODIPY) dyes according 
to published protocols41; The emitted fluorescence was 
detected by a FACSCalibur flow-cytometry (Becton 
Dickinson, USA).

Apoptosis assay 
Determination and analysis of Apoptosis after treatment 
by Akt1 siRNA and cisplatin has been performed by 
Annexin V FITC/PI test flowed by published protocol.42

Western blot analysis
The Akt1 and GPX4 proteins’ expression was measured 
by western blot analysis after siRNA transfection followed 
by the published protocol.43 In a few words, proteins 
were lysed for 10 minutes on ice after extraction. Then, 
the extracted proteins were separated by 12.5% SDS-
PAGE and transferred to a polyvinylidene difluoride 
membrane blocked by BSA. The blocked membrane was 
incubated with the desired primary antibodies. Finally, 
horseradish peroxidase-conjugated secondary antibodies 
were applied with ECL reagent to the reaction based on 
the manufacturer’s instructions.

RNA isolation, cDNA synthesis, and real-time PCR
Real-time PCR was performed for determining the 
expression of AKT1, GPX4, Nerf2, and CoQ10 after 
treatment by FIN56 and the siRNAs in relation to 
GAPDH as the internal control. Resistance A549 cell line 
was seeded in a 6-well plate and treated as mentioned in 
the previous section. Total cellular RNA isolation and 
cDNA synthesis were performed based on our previously 
published paper.36 According to the manufacturer’s 
instructions, the total RNA was extracted by Triazole 
(GeneAll Biotech, South Korea) reagent. The amount 
and purity of total RNA were measured by Nanodrop 
260/280 nm (Thermo Scientific™ NanoDrop). To 
synthesize cDNA, 1 µg of total mRNA was used based 
on a commercially available protocol of BioFact cDNA 
synthesis kit (Daejeon, South Korea).44 Amplification and 
alternation of target genes were performed by StepOne™ 
Real-Time PCR System instrument (Applied Biosystems, 
USA) with SYBR Green detection system. Suitable primers 
were designed by NCBI primer blast (https://www.ncbi.
nlm.nih.gov/tools/primer-blast), as mentioned in Table 3. 
The amplification reaction was performed in a 20 μL final 
volume which contained 1 μL cDNA sample, 2 μL F and R 
primers (20 pmol), 10 μL Master-mix, and 7 μL RNAs free 
water. The PCR program was carried out for 40 cycles: 
first denaturation time at 95°C for 20 minutes, which is 
followed by 40 cycles of 95°C for 20 seconds, an ideal 
annealing temperature (Table 3) for 30 seconds; and 72°C 
for 10 seconds. Afterward, to acquire melting curves, the 
temperature increased step by step from 65°C to 95°C. 

Finally, the relative expression of genes was calculated 
using the ∆∆ Ct method. 

Trypan blue exclusion and Cell viability assay
The Trypan blue exclusion assay was conducted to 
evaluate the viability of cell lines after treatments. The 
resistant A549 cell line was seeded in a 6-well plate. Cells 
separately were treated with FIN56 (5μM), the Akt1 
siRNA (100 nM), or the GPX4 siRNA (100 nM), along 
with cisplatin (1μM) for 48 hours to set up a combination 
effect. Then, cells were trypsinized and incubated 
with Trypan Blue solution (0.4% Trypan Blue, Merck, 
Germany) for 10 minutes. The percentage of viable and 
dead cells was measured by FACSCalibur flow-cytometry 
(Becton Dickinson, USA).

Results and Discussion
Ferroptosis and apoptosis against chemotherapy-
resistance lung cancer cells
Several genetically or epigenetically alterations in 
cancer cells, like gene rearrangements, pathogenic 
gene mutations, gene expression, post-transcriptional 
and translational regulation by non-coding RNAs, are 
responsible for the heterogeneity of different cancers.45-52 
These heterogeneities make it impossible to provide a 
unique magic bullet for cancer treatment. Meanwhile, 
due to cancer cells’ ever-changing nature, the inherited or 
acquired resistance forms of cancer cells accumulated in 
the tumor cells’ environment, which led to a relapse of 
resistant tumors.53,54

Considering the clinical data of NSCLC in the NCBI 
ClinVar database, the primary oncogenic driver activating 
mutations frequently occur in EGFR, HER2, MET, 
BRAF, RAS, PIK3CA, and MAP2K1 genes. Moreover, 
chromosomal instabilities, translocation, and fusion of 
oncogenes such as anaplastic lymphoma kinase (ALK) 
greatly impact cancer cell generation.13,54,55

Several genetic expression alterations and mutations 
establish inherited or acquired resistance NSCLC by 
altering cancer-related proteins’ activity or therapeutic 
target site (on target resistance). For example, ERCC1 
and RRM1 repairing proteins’ overexpression has been 

Table 3. List of primers used for detecting specific RNAs using real-time PCR

Gene Sequence Annealing
Fragment 

length

GAPDH
F: 5′-TTGACCTCAACTACAGGTTTACA -3′
R: 5′-GCTCCTCCTGGAAGATGGTGATG -3′ 60°C 100

GPX4
F: 5′-TGGGAAATGCCATCAAGTGGA-3′
R: 5′-GGGCAGGTCCTTCTCTATCAC-3′ 60°C 123

AKT1
F: 5′-GAGTTCACGGCCCAGATGAT-3′
R: 5′-CGAGTAGGAGAACTGGGGGA-3′ 57°C 105

Nrf2
F: 5′-ATGCCACAGGACATTGAGCA-3′
R: 5′-TTGGCTTCTGGACTTGGAAC-3′ 60°C 119

CoQ10B
F: 5′-TTGGATTTCCACCTGTGTTG-3′
R: 5′-CGCCAAATAGTCTCCAAATGA-3′ 59°C 118

F: forward primer, R: reverse primer.

https://www.ncbi.nlm.nih.gov/tools/primer-blast
https://www.ncbi.nlm.nih.gov/tools/primer-blast
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associated with gemcitabine and cisplatin resistance 
tumors. The mutated EGFR, BRAF, ALK, KRAS cancer 
cells are resistant to various tyrosine kinase inhibitors 
(TKIs)56-59; and, losing the transmembrane domain of PD-
L1 in some mRNA splicing variants led to resistance to 
anti-PD-1 treatment.60

Moreover, overexpression of the EGFR, c-MET, HER2, 
FGFR3, and AXL TKIs serves as compensatory signaling 
pathways such as PI3K-Akt, RAS-ERK, STAT establish 
off-target resistance to the TKI’s in NSCLC patients.61-65 

Additionally, the role of long and small non-coding 
RNAs in NSCLC chemotherapy resistance is undeniable. 
Mainly LncRNAs, through alternating the expression of 
drug efflux proteins, apoptosis, and autophagy modulating 
proteins, can establish the on-target resistance in NSCLC 
tumors.66 Besides the roles mentioned above, LncRNAs 
by induction of cancer stem-cell-like phenotypes and 
Epithelial-mesenchymal transition can augment the 
compensatory signaling pathways and establish the off-
target resistance in NSCLC.67

The A549 cell line, isolated from human lung alveolar 
epithelial cell carcinoma, is considered one of the 
standard NSCLC models for in vitro chemotherapy 
studies.68 Different cancer cell sub-populations with 
various genetic mutations, phenotypes, and sensitivity to 
chemotherapeutic drugs are present in this heterogeneous 
lung cancer model.69-71

The clinically relevant cisplatin concentration is about 
14 µM in the patient’s plasma,72 which is remarkably 
lower than the expected IC50 of 252.7 µM in the A549 
resistance cell line (Figure 1a). Since applying more than 
14 µM of cisplatin to the normal cell is highly toxic, in 
this study, a combination of chemotherapy and gene 
therapy strategies was applied to assess the possibility of 
eradicating the cisplatin-resistant A549 cell line, using 
ferroptosis or apoptosis induction.

Ferroptosis is a ROS-dependent and caspase-
independent cell death pathway, which is naturally 
applied by cytotoxic killer cells to eradicate tumor cells.73,74 
In ferroptosis, usually cellular lipid peroxidation levels are 
augmented due to the accumulation of ROS molecules. 
The excessive cellular ROS production in ferroptosis is 

related to the malfunction of mitochondrial membrane 
potential, cellular thiol-dependent antioxidant system 
malfunction, and cellular antioxidant regulatory pathways 
such as mevalonate and Nrf2 pathways.75,76

Notably, ROS plays diverse roles in cancer cell’s fate. 
Based on the cancer cells’ distinct metabolism and tumor 
hypoxia, the cancer cells have higher ROS concentrations 
than normal cells. The increased ROS level can induce 
DNA mutagenesis and help the heterogenicity of the 
tumors. Moreover, ROS molecules’ continuous exposure 
can persuade cell proliferation by activating oncogenic 
proteins, including growth factor receptors, VEGF, Ras, 
MAPK, and PI3K/AKT. Furthermore, ROS molecules 
elevate the activity of Nrf2, FOXO, and HIF1α antioxidant 
transcription factors and subsequent antioxidant enzymes 
in cancer cells. This procedure led to a higher level of the 
cellular antioxidant system such as Heme oxygenase, 
glutathione peroxidase (GPX), superoxide dismutase, 
catalase, and glutathione (GSH) in cancer cells.77

However, as most chemotherapeutic drugs are ROS 
generators, these compounds’ administration can alter 
the cancer cells’ redox homeostasis. The elevated ROS 
concentrations suppress regular cellular enzymatic activity 
and cell connectivity, cause DNA damage, and cease cell 
cycle progression. ROS, while at higher concentrations, 
impairing the cells’ physiological function, results in a 
distinct type of regulated cell death such as ferroptosis.78

Therefore, ROS-dependent cell death strategies such as 
ferroptosis have been used in cancer therapy, especially 
for eradicating the resistant forms of cancers.77,79

FIN56 and GPX4 siRNA induce ferroptosis in A549 
cisplatin-resistant cells
In this study, two ferroptosis inducers, FIN56 small 
molecule and, GPX4-siRNA were harnessed in the 
battle against cisplatin-resistant A549 cells. We used 
the MTT assay to determine the cytotoxicity of FIN56 
in both cancerous and normal cell lines. As shown in 
(Figure 1b), both cell lines’ viability was reduced after 
48 hours incubation with FIN56 in a dose-dependent 
manner. However, the IC50 value of FIN56 for A549 and 
HFF was calculated as 12.71 and 24.97 μM, respectively. 

Figure 1. Cisplatin-resistant A549 cells’ sensitivity to cisplatin (a) and FIN56 (b) were evaluated by MTT assay. Cancerous A549 has higher sensitivity to FIN56 
than normal HFF cells.
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Therefore, these results indicate that resistant A549 
cells are more sensitive to FIN56 than the HFF normal 
cells. Additionally, as 5µM of the FIN56 is sufficient for 
inducing the ferroptosis, and the normal cells have an 
upper than 80% viability (Figure 1b), this concentration 
opted for the rest of this study.

Along with the chemical induction of ferroptosis, GPX4 
siRNA gene silencing was also performed. To determine 
the efficacy of gene silencing, we performed the western 
blot analysis after 48 hours of siRNA incubation. We 
observed that GPX4 protein’s quantity decreased by 
35%, calculated using ImageJ software, compared to their 
control groups, as shown in (Figure 2).

The cellular accumulation of ROS molecules is 
considered hallmarks of ferroptosis induction. The 
emission of fluorescent dyes DCFDA and BODIPY-C11 
was assessed by flow-cytometry to confirm the ferroptosis 
induction in FIN56 and GPX4 siRNA-treated A549 cells. 
As shown in (Figure 3), the total and lipid ROS amount 
were shifted to higher signals in FIN56 (5μM), and GPX4 
siRNA (100nM) treated cells (48 hours) compared to their 
control groups, which indicates successful ferroptosis 
induction in both treatments.

Akt1 siRNA induce ferroptosis in A549 cisplatin-resistant 
cells
There are numerous reports on the role of the Akt and its 
cooperator proteins such as PI3K, mTOR, NF-κB, c-Met, 
c-Myc, and ERK1/2 in cisplatin resistance induction in the 
A549 cell line.80-83 These signaling pathways alter apoptotic 
(Bax, Bad, Bim) and anti-apoptotic (Bcl2, Bcl-xl) gene 
expression levels, inhibiting apoptosis induction in these 
resistance cells. Therefore, Akt-related pathways have 
been the center of attention in several chemoresistances 
re-sensitization studies.84-88 

Based on previous in vitro reports, administration of 

vinorelbine, sunitinib, BAICALEIN, or genistein alleviates 
the cytotoxicity of cisplatin in the resistance of the A549 
cell line through inhibition of the Akt pathway and other 
cisplatin resistance-related mechanisms such as drug 
metabolism, efflux, and DNA repair machinery.52,89-91 

Correspondingly, gene therapy strategies also have been 
applied to overcome chemoresistance in cisplatin-based 
therapies. Replacement gene therapy of tumor suppressor 
genes such as PTEN,92 IL-2493,94 re-sensitize the cisplatin-
resistant A549 cells via downregulation of the PI3K/
AKT/hTERT pathway. Similarly, knocking down the 
overexpressed aldehyde dehydrogenase 1A1,95 Tripartite 
motif-containing 59 oncogene protein,96 and MDR197 
restore the cisplatin toxicity in the resistance A549 cell 
line in an Akt dependent manner.

Similarly, in this study, silencing the Akt1 gene 
expression using the 100 nM, specific siRNA was opted to 
eradicate the cisplatin-resistant A549 cells. The western 
blot analysis after 48 hours of siRNA incubation indicates 
that total amounts of Akt1 protein were successfully 
downregulated distinctively to 41% (Figure 2). 

Correspondingly, the flow-cytometry technique’s shift 
of Annexin V/PI stained cells revealed that Akt1 siRNA 
increased the percentage of late apoptotic cells from 
0.75% to 48.1% and early apoptotic cells from 1.48% to 
30.5% meaningfully (Figure 4). Therefore, the Akt1 siRNA 
effectively induces apoptosis in the A549 resistant cells.

Antioxidant related genes were down-regulated after 
FIN56 and siRNA treatments
Based on the previous knowledge about ferroptosis 
and its inducers, the ROS accumulation in the cells is 
negatively correlated with the level and activity of the 
antioxidant gene regulator (NRF2 and AhR), antioxidant 
enzymes (GPX4), and antioxidant molecules (CoQ10, 
glutathione).73,98,99 Mainly, ferroptosis inducers disturb 

Figure 2. Effects of Akt1 and GPX4 siRNA on the expression of GPX4 and AKT1 in A549 cells. siRNAs were added to the A549 cell culture for 48 h, and cells 
were harvested to be processed for Western blot analysis. (A) Protein bands were shown as above, Lane 1: control; lanes 2&3: 1ng Akt1 siRNA; lane 4: scramble 
RNA. (B) Viability of A549 cell line after treatment by siRNAs for 48h

A

B
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the function of this antioxidant redox balance regulator 
system.100 However, these antioxidant systems’ elevated 
levels and activity can induce resistance against ferroptosis 
in a cell-type-specific manner.101,102

Correspondingly, this study evaluated the expression 
variation of anti-ferroptosis and anti-apoptosis-related 
genes, mainly GPX4, CoQ10, Nerf2, and Akt1 genes, using 

a real-time PCR technique. The graphical representation 
of different treatments’ gene expression ratios presents in 
(Figure 5). Considering the ferroptosis induction, after the 
treatment of FIN56, the gene expression ratio of GPX4, 
CoQ10, and Nerf2 was calculated as 0.0216, 0.00059, and 
0.05 compared to the non-treated control group. While 
following the transfection of GPX4 siRNA, the gene 

Figure 3. Effect of FIN 56 (Panels a and b) and GPX4 siRNA (Panels c and d) on the cellular lipid and total ROS levels. Cells were treated with 5μM FIN56 and 
1 ng siRNA for 48 h. DCFDA and BODIPY-C11, respectively, measured total ROS and lipid ROS levels

Figure 4. Flow-cytometry analysis of treated Akt1 siRNA and the control group. The panels are shown in the following order: (a) control group; (b) Akt1 siRNA 
treated group. Dots with Annexin V−/PI + (Q1), Annexin V + /PI + (Q2), Annexin V + /PI− (Q3), and Annexin V−/PI− (Q4) and features represent necrotically, late 
apoptotic, early apoptotic, and viable intact cells, respectively
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expression ratio of the mentioned genes was 0.02, 0.039, 
and 0.69, respectively. The results reveal that following 
either GPX4-siRNA or FIN56 treatments, the expression 
level of anti-ferroptosis Nrf2, GPX4, and CoQ10 genes 
was significantly declined (P < 0.001) compared to the 
correspondence untreated control group. Likewise, for 
apoptosis induction, the Akt1 gene expression ratio in 
Akt1 siRNA-treated A549 cells was 0.0138, indicating 
effective inhibition of the Akt1 expression.

FIN56, along with GPX4 and Akt1 siRNAs, destroy A549 
cisplatin-resistant cells
The results of this indicated cell viability alterations 
in combination therapy of “Cisplatin combined by 
ferroptosis or apoptosis inducers” in A549 resistant 
cells by Trypan blue exclusion dye assay, using the Flow 
cytometry technique. As shown in (Figure 6), the highest 
percentage of dead cells was observed after treatment 
with “Cisplatin + 5μM FIN56” at 92%. Meanwhile, 
administration of either “Cisplatin + 100 ng Gpx4 siRNA” 
or “Cisplatin + 100 ng Akt1 siRNA” results in 85% dead 
cells compared to the control group.

Similarly, several reports from Roh and colleagues 
highlight the ferroptosis cell death strategy’s impact on 
eradicating the cisplatin-resistant cancer models.16,103 
They showed that Erastin and Sulfasalazine could be 
used to overcome cisplatin resistance through ferroptosis 
induction. However, another ferroptosis inducer, like 
RSL3 activity against the same cisplatin-resistant cell line, 

depends on the NRF2 pathway activity.15 Similarly, RNA 
sequencing data of the Erastin sensitive and resistant cell 
lines reveals that the transcriptional activity of NRF2 and 
AhR is one of the most critical factors in the ferroptosis-
related resistance phenotype. Principally, it was shown 
that A549 cells, as an epithelial lung cancer model, have 
NRF2 and AhR mediated resistance to Erastin. However, 
A549 transdifferentiated mesenchymal lung cancer cells, 
which have chemoresistance to some therapeutics, are 
sensitive to erastin.104 

This difference in the A549 ferroptosis sensitivity may 
also be related to the mechanism of ferroptosis inducers. 
Erastin and Sulfasalazine are Cystine-Glutamate-
antiporter inhibitors that lead to cellular glutathione 
depletion. However, RSL3 is a GPX4 antagonist, and 
FIN56, like siRNA, depletes cellular GPX4 protein, 
leading to lipid ROS accumulation.21

Previous studies show that directly targeting the Akt 
using siRNA can induce apoptosis in resistance cells.105,106 
Similarly, in this study, based on the Trypan blue exclusion 
assay and Annexin-PI staining flow cytometry results, 
Akt1 downregulation using the siRNA induced about 
80% programed apoptosis death. This outcome might 
be related to the down-regulation of the Akt1-dependent 
several anti-apoptotic proteins such as the Bad and Bcl 
families.107 

Conclusion
In conclusion, chemotherapy resistance NSCLC cells 

Figure 5. Akt1, GPX4, CoQ10, and, Nerf2 gene expression ratios were obtained by real-time PCR with treatments (Akt1 and GPX4 siRNAs separately and FIN56) 
in resistant A549 cell lines. Target genes were normalized to GAPDH as a control gene
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could be eradicated either by reinforcing the apoptosis by 
targeting the Akt1 as a critical cellular survival regulator; 
or by disrupting the cellular ROS homeostasis using 
ferroptosis inducers. Therefore, Akt1 or GPX4 siRNA 
combined with drug administration could be considered 
a promising strategy in NSCLC therapy.
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