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Introduction
Nowadays, the use of nanomaterials as a system for drug-
delivery has been widely considered, specially, in cancer 
therapy.1 It has been proved that materials in nanoscale 
(˂ 200 nm) can prolong the circulation time in body as 
well as entering the cells via endocytosis; consequently, 
cause intracellular absorption.2,3 Different nanomaterials 
such as micelles,4 dendrimers,5,6 superparamagnetic 
iron oxide nanoparticles (SPIONs),7 mesoporous silica 
nanoparticles,8 gold nanoparticles (GNPs),9 quantum 
dots,10 carbon nanotubes,11 and liposomes have been 
used in drug delivery systems.12 Among them liposomes 
are the most common nanocarriers due to their 
inherent advantages such as high biocompatibility, low 
immunogenicity, cell-like membrane, low toxicity, and 
ability to protect drugs from hydrolysis and prolong their 
biological half-life. They are able to encapsulate either 
hydrophobic or hydrophilic molecules and control the 
drug release.3,13,14 Besides, many efforts have been made 
in developing of smart drug carriers that deliver their 
cargo in response to an external or internal trigger. In 
this regard, liposomes are recognized as one of the most 
successful drug delivery systems.15,16

In general, liposomes are sphere-shaped microscopic 
vesicles with the hydrophilic portion completely enclosed 

by one or more phospholipid bilayers (Figure 1).17 Due 
to the amphiphilic nature of phospholipids, they favor 
to assemble as closed bilayer structures in such a way 
that minimize the confrontation between aqueous and 
hydrophobic domains. So, the lowest free energy state 
and the maximum stability to self-assembled structures 
are achieved. Besides, the hydrodynamic and other 
destabilizing forces can cause the fragmentation of the 
bilayer to form the smaller liposomes.18,19 In vivo and 
in vitro stability of liposomes are controlled by their 
physical and chemical characteristics such as lipid 
composition, size, charge, number of lamellae and 
surface modifications.20 Up to now, numerous researches 
related to liposomes have been performed owing to their 
importance in the nanomedicine field. Loaded drugs on 
liposomes can include a wide range of anti-cancer drugs, 
antibiotics, small interfering RNAs (siRNA), antisense 
oligonucleotides, and bacterial plasmids carrying 
therapeutic genes.21 Similarity of phospholipids to cell 
membrane facilitates passage of liposome through some 
membrane barriers for distribution in tissues and removal 
from the elimination organs. Besides, modification of 
liposomes with various ligands and polymers improves 
drug uptake and increases circulation time of drug in 
the blood.12,22 After the clinical approval of PEGylated 
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Abstract
Liposomes have been attracted considerable attention as phospholipid spherical vesicles, over 
the past 40 years. These lipid vesicles are valued in biomedical application due to their ability 
to carry both hydrophobic and hydrophilic agents, high biocompatibility and biodegradability. 
Until now, various methods have been used for the synthesis of liposomes and the numerous 
modifications have been performed to improve liposomes characteristics such as surface 
charge, size, number of their layers, and length of circulation in biological fluids. This article 
provides an overview of the significant advances in synthesis of liposomes via active or passive 
drug loading methods, as well as describes some strategies developed to fabricate their targeted 
formulations to overcome limitations of the “first-generation” liposomes.
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liposomal doxorubicin (Doxil®) as the first nanodrug by 
US FDA in 1995, 19 liposomal formulations have been 
clinically approved for the treatment of various diseases. 
Nevertheless, there are major concerns about their 
stability, controlled and predictable pharmacokinetics and 
pharmacodynamics as well as reproducible production 
in large scale that needs improvement.14,20,23 One of the 
challenges in application of liposomes in clinical use is 
the interaction of liposome constituents with the immune 
system. Liposome components can induce antibody 
production which leads to reduction of their efficacy.24 In 
addition, the lack of established techniques for large-scale 
production of liposomes, and suitable models that exactly 
imitate tumor heterogeneity, are limitations for clinical 
development of liposomes.25

Several review articles have been published describing 
liposomal structures, preparation methods and their 
application.12,15,17,19,24-31 The present review, besides the 
general aspects liposomes, focuses on the significant 
advances in their synthesis via active or passive drug 
loading methods, as well as describing some strategies 
developed to fabricate new-generation liposomes with 
target-specificity and stimuli-sensitivity.

Structural units of liposomes
In general, the structure of liposomes consists of two 
parts; phospholipid and cholesterol. Phospholipids are the 
major component of liposomal structure and cholesterol 
improves their stability. The hydrophilic head of these 
fats is a phosphate group that is joined to hydrophobic 
components by a water-soluble molecule like glycerol and 
can be natural or synthetic.18,22 A list of different types 
of phospholipids is presented in Table 1. Choosing the 
proper phospholipid for achieving the desired therapeutic 
goals is essential.32-34 Cholesterol incorporates within 
phospholipid bilayer because it cannot form liposomes 
alone. It is essential for the consolidation of bilayers, 
increasing the packaging of phospholipid molecules, 
controlling drug retention, and reducing the permeability 
of the bilayers.17,32,35,36

Characteristics of liposomes
The performance of liposomes depends on their size, 
number of layers, shape, and surface charge. Therefore, 
estimating and characterizing these properties is essential 

Figure 1. Schematic presentation of structure of a typical liposome loaded 
with hydrophilic and hydrophobic drugs

Table 1. Various types of phospholipids used in the preparation of liposomes

Chemical name Abbrev. Formula Source Ref.

Phosphatidylcholine PC C42H82NO8P Egg yolk, soybeans 37

Phosphatidylethanolamine PE C7H12NO8PR2 Chocolate, soybean milk 38

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine DSPE C41H82NO8P Synthetic 39

Dimyristoyl phosphatidylcholine DMPC C36H72NO8P synthetic 29

Dimyristoyl phosphatidylglycerol DMPG C34H67O10P synthetic 29

Dipalmitoylphosphatidylcholine DPPC C40H80NO8P cell membranes, pulmonary surfactant 29

Dioleoyphosphatidyl choline DOPC C44H84NO8P synthetic 29

dipalmitoyl phosphatidyl glycerol DPPG C38H75O10P mitochondrial membranes, pulmonary surfactant 29

2,3-dioleyloxy-N-[2(sperminecarbox amido)ethyl]-N,N-
dimethyl-1-propanammonium trifluoroacetate

DOSPA C56H111F3N6O5 synthetic 29

1,2-bis(oleoyloxy)-3-(trim ethylammonio)propane DOTAP C10H25N3 synthetic 29

1,2-dimystyloxypropyl-3-dimethyl  hydroxyethyl 
ammonium bromide

DMRE C20H29BrN2 synthetic 29

3β[N-(N',N'-dimethylaminoethane)-carbomoyl] 
cholesterol

DC-CHOL C32H56N2O2 synthetic 29

Dioctadecylamino-glycyl-spermine DOGS C10H26N4 As polycation in eukaryotic cells 29

Phosphatidylinositol PI C47H83O13P Endoplasmic reticulum 40

Phosphatidylserine PS C13H24NO10P Soy, white beans, egg yolks, chicken liver, beef liver 41

Phosphatidic acid PA C39H77O8P Cabbage and radish leaves,  Mallotus japonicas 42

Phosphatidylglycerol PG C40H77O10P Live amniotic fluid  surfactant 43

Cardiolipin CL C81H158O17P2 Mammalian and plant cells,  inner mitochondrial membrane 44

https://pubchem.ncbi.nlm.nih.gov/#query=C39H77O8P


What we need to know about liposomes

Advanced Pharmaceutical Bulletin, 2023, Volume 13, Issue 1 9

for clinical application as well as in determining their 
half-life.19 These colloidal vesicles have different number 
of layers are classified based on size and number of 
bilayers (Figure S1). They can be unilamellar (UV) or 
multilayer. UVs are also classified into four subgroups 
of small (SUVs), medium (MUVs), large (LUVs), and 
giant (GUVs) vesicles according to their size. The 
multilayer liposomes are divided to oligolamellar (OLVs), 
multilamellar (MLVs), and multivesicular (MVVs) 
vesicles.45,46 The zeta potential is the electrostatic charge 
of the particle surface that prevents the proximity and 
aggregation of particles.47 Zeta potential can provide 
perception about circulation times, stability, circulation 
times, and biocompatibility of nanoparticles.48 Moreover, 
Zeta potential is important factor in the initial adsorption 
of liposome onto the surface of cells.49

Synthesis methods of liposomes
Up to now, many methods have been reported for 
the production of liposomes which can be divided 
to conventional and novel techniques. Conventional 
strategies include thin-film hydration (Figure S2),50 
reverse phase evaporation (Figure S3),26 ethanol injection 
(Figure S4),51 ether injection (Figure S5, Supplementary 
file 1),52 electro-formation,53 and detergent depletion 
methods.54 These methods are easy to implement and do 
not require complicated equipment; however, scale-up for 
industrial manufacture and scale-down for point-of-care 
applications are challenging issues of them.19,55 In addition, 
limitations in process control, poor reproducibility, 
and inefficient use of materials and reagents are other 
significant problems.56 For overcoming these problems, 
some new methods have been developed for preparation 
of liposome.

Microfluidic methods
Microfluidic techniques refer to the strategies in which 
the procedures are performed in a small volume, typically 
in sub-millimeter scales and low Reynolds Numbers. By 
exploiting these microfluidic techniques the laboratory 
procedures can be performed in planar chips or other 
small devices result in reducing cost of chemical and 
biological experimentation.56,57 A number of microfluidic 
methods have been developed called modified Electro-
formation,58 lipid hydration,59 micro hydrodynamic 
focusing,60 Pulsed jetting,61 double emulsion templates,62 
lipid coated ice droplet hydration,63 transient membrane 
ejection56,64 modified droplet emulsion transfer65 either as 
modification of macro-scale techniques or as completely 
novel methods.

Supercritical fluid (SCF) based methods 
Some new methods exploit SCF which is increasingly 
replacing organic solvents due to its ability for efficient 
separation and purification. There are several strategies 
for liposome preparation using SCF method. In a 

technique, a compressed mixture of the lipids, SCF and 
organic co-solvent is injected into the aqueous phase, and 
sprayed into water to form liposomes (injection method).

Whereas, in another approach, the compressed phase 
composed of lipid, SCF as well as aqueous phase is sprayed 
into air through a nozzle (decompression method). 
The size of the obtained vesicles is related to the rate of 
depressurization. It has been claimed that through these 
methods sterile, solvent free and pharmaceutical grade 
liposomes having a narrow particle size distribution can 
be produced. The incorporation of aqueous phase is the 
major difference between these approaches.19,54 In another 
method, supercritical reverse phase evaporation (scRPE), 
a mixture of lipid, organic co-solvent and compressed 
gas are put in a stirred, variable volume cell above the 
lipid phase transition temperature, and then an aqueous 
solution is slowly introduced to the cell. The liposomes 
are formed upon the pressure is reduced by the release of 
the compressed gas. The principle of the scRPE method 
is similar to the decompression method. However, in 
this method the depressurization occurs by the release of 
the dense gas from a variable volume cell.54,66 In another 
method called supercritical anti-solvent precipitation, the 
phospholipid dissolved in an organic co-solvent is sprayed 
into the SCF as an anti-solvent, resulting in formation of 
micronized particles. The size of the particles depends on 
the droplet size of the spray and the concentration of the 
lipid in the co-solvent. After hydration of the particles 
in an aqueous buffer the liposomes are formed. It was 
reported that increase in the pressure of the system or 
the SCF/co-solvent ratio causes the reduction in the 
fraction of small liposomes in the system.67,68 It has been 
claimed that the scaling-up of the SCF methods can be 
implemented with less problems.19

Other new methods
In the method called “freeze-drying double emulsions”, 
preparation of liposomes is accomplished by the 
lyophilization of double emulsions (W1/O/W2) containing 
disaccharides as lyoprotectants in both the inner and outer 
aqueous phase, by a two-step emulsification procedure at 
room temperature.69 “Membrane contactor” is a modified 
ethanol injection method in which phospholipid solution 
in alcohol was extruded through a membrane contactor 
into an aqueous solution and the liposomes are formed.70 
In the method “hydration of deposited phospholipids 
on nanostructures” phospholipids are deposited on 
amphiphilic electrospun nanofibres composed of 
polyvinylpyrrolidone and soybean lecithin. The liposomes 
self-assembled upon addition of the nanofibers into 
water.71 In the other method namely “Curvature-tuning”, 
the phenomenon of spontaneous vesiculation and 
theory of curvature have been taken into consideration 
in solvent-free liposome preparation procedure. In this 
method, rapid pH change followed by a defined period 
of equilibration is exploited for the preparation of stable, 
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monodisperse, and unilamellar liposomes. Further, by 
direct addition of the lipids into an aqueous buffer, there 
is no need to first preparation of MLVs suspension. The 
size, shape, and dispersity of the liposomes are affected by 
some critical factors such as time interval of pH increase, 
time of equilibration, temperature, and type of lipid.19,72,73

Large-scale techniques for liposome production
Application of liposomal formulation in industrial scale 
has two challenging issues including; poor capability of 
transferring from academic bench to highly regulated 
technology and stability of liposomes.74,75 Ethanol injection 
method is one of the interesting methods for scaling-
up production of liposomes owing to reproducibility, 
fast implementation, and simplicity. Moreover, this 
technique did not cause oxidation and degradation of 
lipids. It has been reported that by use of this method, 
0.5 to 12 kg of liposomes can be obtained from batches.76 
Microfluidic is another effective reproducible method for 
scale up of liposomes. This method has a high potential 
to achieve more control over the physical properties of 
the end product, especially in terms of size distribution, 
lamellarity, and high encapsulation efficiency.75,77,78 

Modifications to conventional liposomes 
Vesicles with simple structure including; cholesterol 
and phospholipid are named conventional liposomes or 
“first-generation liposomes”. These liposomes have some 
drawbacks like fast release of drug, rapid elimination 
from the blood, capture by the mononuclear phagocyte 
system, and low entrapment efficiency of water–soluble 
drugs.45,79 To overcome the mentioned deficiencies 
some new strategies have been developed in liposome 
preparations and novel generations of these vesicles have 
been emerged.30,80 

Fusogenic liposomes (FLs)
Conventional liposomes are usually taken up into cells 
by phagocytosis or endocytosis and the main part of their 
content such as macromolecules might be degraded before 
reaching the cytoplasm.79,81 The induction of membrane 
fusion between liposomes and the cell membrane can 
overcome to this problem. FLs are nanocarriers which may 
fuse with biological membranes, thereby increasing drug 
contact and delivery into cells. FLs are composed of lipids, 
such as dioleoyl-phosphatidylethanolamine (DOPE) 
and cholesterylhemisuccinate (CHEMS), which cause 
increased fluidity in the lipid bilayer and can destabilize 
biological membranes.82 Due to their composition, 
the bilayer structure of FLs is efficiently fused with the 
cellular plasma membrane of cell to deliver the content 
of liposomes into the cytoplasm without degradation.79,83

One of the most interesting types of FLs is virosomes. 
These FLs are prepared by incorporation of conventional 
liposomes-based phospholipid with UV-disabled Sendai 
virus. The presence of the Sendai virus allows liposomes 

to rapidly and directly transfer their contents into the cells 
by membrane fusion. Therefore, these liposomes can be 
used as drug carriers for specific purposes.45,84,85

pH-sensitive liposomes
To date, various triggered release models are widely 
researched and reported in order to increase the 
therapeutic index of pharmaceutical or other materials 
encapsulated within liposomes. Liposome composition 
can be modified to obtain triggered release in response 
to environmental conditions. The pH-sensitive 
liposomes are designed to control the release of their 
contents in response to acidic pH of the endosomal 
system. These liposomes have obviously improved the 
intracellular delivery of a variety of materials such as 
anti-cancer drugs, toxins, proteins, and DNA.86-88 The 
typical lipids used to prepare pH-sensitive liposomes 
are phosphatidylethanolamine (PE) and its derivatives 
including; diacetylenic phosphatidylethanolamine 
(DAPE), phosphatidylethanolamine  (POPE) and DOPE. 
They are mixed with the compounds containing an acidic 
group that acts as a stabilizer at neutral pH. DOPE is 
usually combined with gently acidic amphiphiles such as 
oleic acid, CHEMS, and palmitoyl homocysteine.89,90 The 
most commonly used lipid combination is DOPE with 
CHEMS. Recently, a pH-responsive liposome has been 
prepared from 3ß-[N-(N’,N’-dimethylaminoethane)-
carbamoyl]cholesterol hydrochloride (DC-liposome) for 
endosomal escape mediated drug delivery. Doxorubicin-
loaded DC-liposome has exhibited higher cytotoxicity 
effect than free drug which supporting the endosomal 
escape of pH-responsive DC-liposome.91 

The pH-sensitive liposomes are stable at neutral pH. 
In this condition, amphiphilic acid molecules cause the 
electrostatic repulsion between carboxylate and phosphate 
groups resulting in the formation of lamellar phases. 
However, an acidic medium (in pH less than the normal 
physiological value), either in endosomal vesicles or in the 
extracellular tumor environment, causes the protonation 
of the carboxylate groups triggering a transition from 
lamellar to hexagonal phase leading the release of loaded 
drugs.89,92 The surface of pH-sensitive liposomes can be 
coated by PEG to prolong the circulation time. Therefore, 
the liposomes are prevented from rapid clearance via the 
reticuloendothelial system (RES).93

Cationic liposomes
Cationic liposomes are vesicles that are constructed from 
positively charged lipids and have increasingly been used in 
gene therapy because of their interactions with negatively 
charged DNA.94-97 It is notable that the negatively charged 
genetic material is not encapsulated in liposomes but form 
complex with cationic empty liposomes by electrostatic 
interactions whereas total surface charge of DNA/
liposome remains positive.81 DNA-cationic liposome 
complexes (lipoplexes) enter the cell by fusion with the 
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plasma or endosome membrane. Conventional liposomes 
are negatively charged and may release their contents in 
the circulation and/or extracellularly after interaction 
with blood components and tissues due to their weak 
affinity for cell membrane. However, unlike these vesicles, 
cationic liposomes with positive charge are highly 
interactive with cells (with negatively charged biological 
membrane) and can deliver contents into cells by fusion 
with cell membranes. They are usually constructed from 
a neutral phospholipid (DOPE) and a positive derivative 
such as stearylamine, dimethyldioctadecylammonium 
bromide, dimethyl-aminoethane carbamoyl cholesterol 
(DC-chol), and Dioleoyl-3-trimethylammonium propane 
(DOTAP).98,99 

Temperature-sensitive liposomes
The temperature-sensitive liposomes (TSLs) are vesicles 
that their content release behavior is controlled with 
temperature changes. TSLs rapidly release the loaded 
drug at few degrees above physiological temperature or 
hyperthermic conditions.100-103 The release of encapsulated 
hydrophilic drugs is related to the melting phase transition 
temperature (Tm) of the lipid bilayer; the temperature that 
the structure of the lipid bilayer changes from solid gel 
phase to liquid-crystalline phase. In the liquid-crystalline 
phase, the membrane of TSLs is more permeable to water 
and hydrophilic drugs than in the gel phase. In the most 
TSLs, the major component for liposome formulation is 
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) 
with Tm of 41.4°C. To prevent the drug leakage at body 
temperature, DPPC can be mixed with small amounts 
of other phospholipids, such as 1, 2-distearoyl-sn-
glycero-3-phosphocholine (DSPC; Tm = 54.9°C). The 
composition of the mixed phospholipids specifies the 
Tm of the formulation. Further, TSLs can be constructed 
by modification of conventional liposomes with 
thermosensitive polymers.104-106 TSLs in combination with 
local hyperthermia or high intensity focused ultrasound 
are concerned as effective route for external targeting of 
anti-cancer drugs to solid tumors.107,108

Stealth liposomes 
Stealth liposomes (long circulating liposomes) namely 
“second-generation liposomes” are obtained by modifying 
the surface of the vesicles with an inert molecule.29 At 
first, liposomes with modified surfaces were developed 
using several molecules, such as glycolipids or sialic 
acids. However, with inclusion of the synthetic polymer 
polyethylene glycol (PEG) in the liposome composition, 
the long-circulating pegylated liposomes as a new 
generation were emerged. It has been proved that such 
surface modification extends blood-circulation time of 
liposomes and stabilizes these nanocarriers by minimizing 
their interaction with the RES.45,109 So far, this technology 
has been used to formulate a large number of liposomes 
containing various drugs or other biomolecules with 

high efficiency and activity. Moreover, by combining 
of the terminal PEG with appropriate compound, long-
circulating liposomes can be synthesized to target on 
specified cells.109 

Magnetoliposomes
Combination of liposomes and SPIONs or other magnetic 
nanoparticles,110,111 that called magnetoliposomes (MLs) is 
an interesting strategy creating vesicles with the potential 
for the application in controlled drug delivery systems 
and diagnostic imaging. They are promising nanocarriers 
for the development of the selective and site-specific 
drug delivery systems in the cancer therapy which 
can effectively deliver the drug towards tumor cells by 
applying a magnetic field.112,113 MLs are widely exploited 
as contrast agents in magnetic resonance imaging and 
as chemotherapeutic agents.114 There are three different 
approaches in associating the SPIONs to liposomes: (i) 
encapsulation of magnetic nanoparticles directly within 
the liposome lumen,115-117 (ii) embedding them in between 
the lipid bilayer,118-120 and (iii) directly conjugating 
magnetic nanoparticles to the liposome surface.121 The 
different types of MLs are depicted in Figure 2. 

Photosensitive liposomes
In the contrary to internal triggerable liposomes like pH-
sensitive liposomes, external triggering system exploit 
the outside factors such as light, heat or magnetic field 
to release the liposomal cargo. On the other hand, the 
thermo-sensitive liposomes undergo phase transition of 
the phospholipids, while photo-triggerable liposomes 
are composed of a light-sensitive group engineered 
into the vesicle. Function of light-triggering liposome 
is based on two approaches: (i) photo-destabilization 
of liposome membrane to promote cargo release and 
(ii) light absorption of metal nanoparticles such as gold 
nanoparticles.122 Different photosensitive molecules can 
induce membrane destabilization and permeabilization. 
They can locate in the liposomal structure according 
to their intrinsic polarity. Phospholipid molecule 
modification can be performed in potential sites, 
namely, head group, glycerol backbone and fatty acyl 
chains.123-126 The various mechanisms for cargo release 
from photosensitive liposomes including; light-induced 

Figure 2. Schematic illustration of three approaches in associating of 
SPIONs to the liposomes: a) Encapsulation directly within liposome lumen, 
b) embedding in between the lipid bilayer, and (c) directly conjugating to 
the liposome surface115
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oxidation, photocrosslinking, photoisomerization, 
photocleavage, and photothermal release have been 
extensively reviewed by Miranda and Lovell.124

In case of incorporation of metal nanoparticles like 
GNPs in liposomal structure, they can localize within lipid 
bilayer, into the lumen, and on the surface of liposomes, 
aggregate with liposomes or be free in liposome solution 
(Figure 3). With irradiation of liposomes, GNPs 
convert the photo energy to thermal energy, inducing 
the instability of liposome membrane; therefore, the 
entrapped drug is released. Photo-responsive liposomes 
are powerful carriers for topical and transdermal drug 
delivery to superficial tissues like skin, eyes, and mucous 
membranes.16,127

Liposomes as targeting nanocarriers
Cancer therapy using liposomes can be accomplished 
through two main approaches including; passive and 
active targeting. 

Passive targeting of liposomes
In passive targeting, the nanocarriers are transported 
into the tumor interstitium and cells through leaky 
tumor capillary fenestrations by convection or passive 
diffusion.128 In general, all nanoparticle-based drug 
delivery systems use the tumor characteristics for 
targeting. The angiogenesis phenomenon in tumor tissues 
causes the irregularity of endothelial cells with pore sizes 
of 100 nm to 2 μm. The different pore sizes between the 
endothelial cells of the tumor microvasculature and the 
tighter structures of normal cells causes the nanoparticles 
such as liposomes have better and more access to 
the cancerous sites. The “enhanced permeability and 
retention effect” (EPR) causes the increased drug delivery 
to the affected tissues with a much less return of the fluids 
to the lymphatic circulation.129,130 All nanocarriers benefit 
from the EPR effect in passive targeting so that of drug-
loaded nanocarriers in tumor site are 10-50 folds higher 
than in normal tissue within 1-2 days.131 The nanocarriers 
must have at least three characteristics to exploit in 
passive drug delivery system: (i) The size of nanocarrier 
should be much less than 400 nm, and being in the range 
of 10-100 nm which is ideal for efficient extravasation to 
tumor site, (ii) having neutral or anionic charge for the 
nanocarriers is necessary to avoid the renal elimination, 
and (iii) the nanocarriers should be protected from 
the RES.128,131,132 The mechanism of passive targeting is 

illustrated in Figure 4. A number of successful results 
have been obtained from passive targeting property of 
liposomes in cancer therapy.133-138

Active targeting of liposomes
The reduction of drug toxicity and increase the 
therapeutic index can be implemented by the site-
specific delivery. Nanocarriers can reach tumor 
microenvironment passively through the EPR effect, 
whereas the surface engineered nanomedicine acts 
through binding to the receptors over-expressed 
by cancer or angiogenic endothelial cells such as 
epidermal growth factor, fibroblast growth factor, folate, 
transferrin, and nuleolin receptors (Figure 5). Targeting 
these overexpressed receptors to increase the anti-cancer 
agents up taken by cancer cell as well as accumulation 
in cancer microenvironment is a vital approach.31 
Surface modification of a variety of nanocarriers such 
as liposomes with antibodies specified for cancer cells, 
is a more common method. In addition to antibodies, 
the other molecules or biomaterials with the various 
strategies for the conjugation have been attached to 
PEGylated liposomes which enabling them to be actively 
taken up by the target cells via receptor-mediated 
endocytosis.128,139,140 Active targeting and efficient ligand 
receptor interaction are related to some factors such as 
the extent of expression of the receptor on tumor cells 
relative to non-target cells, availability of the receptor 

Figure 3. Different types of GNPs incorporation in liposome structure: (a) in 
the lipid bilayer, (b) in the lumen, (c) on the surface of liposomes, (d) free in 
the liposome solution, and (e) aggregate with liposomes16

Figure 4. Schematic illustration of the mechanism of passive targeting

Figure 5. A schematic presentation of various ligands used in liposome 
targeting
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on the surface of target cells, the internalization rate, 
and heterogeneous expression of tumor receptor.141 
Monoclonal antibodies, transferrin,1 folic acid,34 and 
aptamers142,143 have been frequently used for surface 
modification of nanocarriers such as liposomes.128,130,144,145 
A schematic presentation of entrance of these ligands into 
the cell is shown in Figure 6. A number of researches have 
been performed in this area. Recently, functionalization 
of liposomal surface and targeting strategies in treatment 
of solid tumors are extensively investigated. Recently, 
mannosylated liposomes have been developed to 
encapsulate Chlorogenic acid as a targeted delivery system 

to tumor-associated macrophages (TAMs) for cancer 
immunotherapy. It has been reported that chlorogenic 
acid-loaded liposomes conjugated with mannose 
exhibited superior accumulation in tumors through the 
mannose receptor-mediated TAMs-targeting effects.146 
Cancer cells overexpress α5β1, αvβ3 and αvβ5 integrins 
and it has been observed that the cyclic RGD (cRGD) 
can strongly attach to αvβ3 and αvβ5 integrins on cancer 
cells. cRGD-PEG liposomes loaded miR-34a have been 
developed for suppressing microRNA in breast cancer 
cells.147 In one study, it has been reported that tyrosine-
modified irinotecan-loaded liposomes exhibited more 
cellular uptake in MCF-7 and BxPC-3 cells due to highly 
expressed ATB0, + and LAT1 in cancer cells.148 In another 
study, the liposomes modified by glutamic hexapeptide 
and folic acid were designed for bone metastatic breast 
cancer. The results showed that paclitaxel loaded in 
co-modified liposomes presented high stability, more 
hydroxyapatite binding efficiency and also improved 
cytotoxic activity of the drug.149 Some of the more recent 
published works in this field are summarized in Table 2.

Methods for encapsulating materials into liposomes
Various methods of liposome loading largely depend on 
the physicochemical characteristics of the loaded agents. 
In general, the encapsulation strategies are divided in two 
categories: passive and active loading.166,167 

Figure 6. Schematic representation of active targeting using surface 
engineered liposomes

Table 2. Some recently published researches in active targeting of liposomes for cancer therapy

Targeting ligand Drug Liposome type Preparation method Loading method Cancer treated Ref.

Monoclonal antibodies Glycosylated paclitaxel Immunoliposomes Thin Film Passive Ovarian 150

Monoclonal antibodies Curcumin Cationic liposome Thin Film Passive Breast 151

Monoclonal antibodies Doxorubicin PEG-liposome Ethanol injection Passive Breast 152

Monoclonal antibodies Doxorubicin PEG-liposome Thin Film Passive Breast 153

Folate Oleuropein PEG-liposome Thin Film Passive Prostate 154

Folate
Gold nanorods and 
doxorubicin

PEG-liposome Thin Film Passive Breast 155

Folate Rapamycin PEG-liposome Thin Film Passive Bladder 156

Folate Arsenic trioxide PEG-liposome Thin Film Active Cervical 157

Transferrin
Doxorubicin
and Sorafenib tosylate

PEG-liposome Thin Film Passive Breast 158

Transferrin Doxorubicin Cationic liposome Ethanol injection Passive Glioma 159

Transferrin Plumbagin PEG-liposome Thin Film Passive Carcinoma, glioblastoma 160

Transferrin Resveratrol PEG-liposome Thin Film Passive Glioblastoma 161

Aptamer
A-particle 
generator 225Ac

PEG-liposome Thin Film Passive Prostate 162

Aptamer All-trans retinoic acid PEG-liposome Thin Film Passive Bone 163

Aptamer MiR-139-5p Cationic Liposome Thin Film Passive Colorectal 164

Aptamer Paclitaxel and siRNA Cationic Liposome Thin Film Passive Breast 165

Mannose chlorogenic acid PEG-liposome Thin Film - glioblastoma 146

RGD microRNA PEG  liposomes Thin Film - Breast 147

Amino acid irinotecan Liposome Thin Film - Breast 148

Glutamic hexapeptide 
and folic acid

paclitaxel liposome Thin Film -
Bone metastatic breast 
cancer

149

http://scholar.google.com/scholar_url?url=https://patentimages.storage.googleapis.com/65/a7/f8/216fdd65c75dac/US4515736.pdf&hl=en&sa=X&scisig=AAGBfm1klV92wjY0I1p9mvFY9b5uGuMxAQ&nossl=1&oi=scholarr
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Passive loading
In the all techniques where the lipids and encapsulating 
agents are introduced in an aqueous buffer solution 
and the entrapment is achieved while the liposomes are 
being formed, a passive trapping is occurred. Passive 
loading of pharmaceutical agents into the liposomes 
are implemented by two ways including (i) entrapment 
in liposomal membrane (bilayer) by hydrophobic 
interaction, electrostatic interaction or combination of 
these two mechanisms, or (ii) entrapment of hydrophilic 
substances such as salts (ionic compounds), amino acids, 
antibiotics, and proteins in intra-liposome aqueous phase 
(shown in Figure 1). However, the lipophilic substances 
are added in the organic solvent containing lipids, before 
formation of liposomes.168 In both routes, encapsulation 
is occurred simultaneously with the lipid self-assembly 
and liposome formation.169 In this method the loading 
efficiency, and therefore, drug/lipid ratio (D/L) is usually 
low (10-50%). However, some additional procedures such 
as freeze-thaw and dehydration-rehydration can provide 
higher encapsulation efficiencies. Besides, encapsulation 
efficiency depends on some factors such as the lipid 
amount and concentration, and the solubility of the 
entrapping agent in aqueous phase.166,170-172 

Active loading
Passive encapsulation method presents some 
disadvantages including; low entrapment efficiency (20-
30%), non-loaded drug loss, organic solvent impurities, 
and fast release of drug. Hydrophilic small molecules 
are usually passively loaded during the phospholipid 
self-assembly. However, amphiphilic substances can be 
actively loaded into liposomes after liposome formation 
without diffusing back out. In active encapsulation, the 
molecules cross through the lipid bilayer into the internal 
aqueous compartment of liposomes, and cannot diffuse 
back out or return into the external aqueous solution. 
The active loading methods are typically based on two 
phenomena: (i) a given lipophilic molecule diffuse 
the lipid bilayer and gain a charge upon entering the 
liposomal core and (ii) the molecule as an ion cannot 
be able to cross the bilayer and accumulation of the 
encapsulated agent is achieved.167,173 Some frequently 
used active drug loading methods are summarized in the 
following sections.

The pH gradient method
In this method, penetration of the drug into the preformed 
liposomes is driven by a transmembrane pH gradient. In 
order to achieve the efficient active loading, the aqueous 
solubility of the encapsulating drug and the presence of 
ionizable functional groups in its structure (e.g. amine 
group in weak bases) are necessary.174 In the pH of the 
extra-liposome aqueous phase the drug exists in the 
unionized form and is able to migrate across the liposome 
bilayer. Upon translocation into the liposomal core, the 

drug changes to ionized form due to the differing pH and 
retained there. Thus, for amphiphilic drugs which are 
weak bases or acids, a pH gradient can be the driving force 
to translocate and retain in liposomes. A pH gradient of 
3 units can cause a 1000-fold higher concentration of a 
substance within the liposome core in comparison to the 
external aqueous phase.167,173-175

Citrate method
In this approach pH of intra-liposomal core is 4 owing 
to the presence of citrate buffer and extra-liposome 
aqueous phase has a pH equal to 7.4 which is adjusted 
with HEPES buffer.176 Therefore, a proton gradient is 
observed when substances such as biogenic amines and 
anti-cancer doxorubicin are present in extra-liposomal 
aqueous solution. In the presence of HEPES buffer (pH 
7.4), the compounds containing the amine groups are 
in the neutral form and therefore, are able to cross the 
lipid bilayer. By entering the amines inside the liposome, 
they produce low-soluble citrate salts due to the presence 
of citrate ions. This method has been used for remote 
loading of anthracycline into the liposomes with coffee 
bean liposome appearance.177,178 Citrate method was 
successfully exploited in commercially manufacturing of 
doxorubicin and daunorubicin products namely Myocet 
and DaunoXome, respectively.173

Ammonium sulfate gradient method
The remote loading strategy that called transmembrane 
ammonium sulfate gradient method was introduced by 
Haran et al. for the encapsulation of amines.179 In this 
method, there is no need to prepare the liposomes in 
the acidic pH and alkalinize of extra-liposomal aqueous 
phase.180 Ammonium ion gradient is generated via its 
counter-ion sulfate which stabilizes anthracyclines by 
aggregation and gelation as anthracycline sulfate salt. 
Firstly, the empty liposomes are formed in ammonium 
sulfate solution using thin-layer method. Then, the 
liposomes are dialyzed in PBS solution to form ammonium 
sulfate gradient inside and outside of liposomes. After 
the formation of ammonium sulfate gradient, remote 
encapsulation is carried out by incubation of liposomes 
with drug solution. The neutral ammonia molecules 
(permeability coefficient 0.13 cm/s) are diffused towards 
extra-liposomal solution and left behind a proton due to 
the higher concentration of ammonium ions in aqueous 
core of liposome; therefore, the pH gradient is formed. 
The drug including; amine group in its neutral form (in 
pH 7.4 buffer) penetrates the bilayer and precipitation 
of the drug as sulfate salt is occurred. Doxil as the first 
commercially available long circulating liposomal 
doxorubicin was produced using ammonium sulfate 
gradient method.173,179-181 

Calcium acetate method
The transmembrane calcium acetate method is based 
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on different permeability coefficients of acetic acid and 
calcium ions. In this technique, the blank liposomes 
are prepared in calcium acetate solution. Whereas the 
calcium ions remain in the liposomal aqueous core, 
the acetic acid molecules act as proton shuttles. This 
generates a pH gradient, with higher pH value inside the 
liposomes, results in entrapping the weak amphiphilic 
acid molecules inside the liposomes in a way similar to 
that of weak amphiphilic bases.173,181,182 In the another 
method, similar to the aforementioned strategy, arsenic 
trioxide as an anti-cancer agent has been actively loaded 
into the liposomes that contain acetate salts of bivalent 
cations such as Co(II), Ni(II), Cu(II), and Zn(II). The 
external neutral As (OH)3 penetrates across the bilayer 
and forms the low-soluble heavy metal- arsenite complex 
in the liposomal core. On the other hand, the released 
protons associate with the acetate anions produce the 
weak acid (HOAC) which diffuses out of the liposome. 
Both phenomena: the formation of insoluble nickel (II) 
arsenite compound and the diffusion of the acetic acid out 
of the liposome drive drug uptake.183

Ionophore-mediated method
This protocol involved the use of ionophore agents 
such as antibiotic nigericin or A23187 which mediate 
the exchange of K + and H + across the liposomal bilayer 
generating pH gradient of about 2 units. When, loaded 
liposomes with K2SO4 are placed in the K + -free aqueous 
phase containing an ionophore, the pH of the intra-
liposomal aqueous solution decreases due to the release of 
potassium and the entry of protons.184 This pH decrease 
results in the active encapsulation of weak bases. It is 
notable that nigericin cause a one-for-one exchange of 
K + for H + , whereas A23187 makes it possible to move 
two protons per every divalent metal cation such as Ca2 + , 
Mn2 + , or Mg2 + . In the use of divalent cations, the presence 
of EDTA as external chelator is required to bind with the 
released cations and complete the uptake process as well 
as prevent aggregation of liposomes.173,185

EDTA gradient method
It has been reported that EDTA can form low soluble 
precipitates with anthracyclines or other weak bases and 
the formation of low soluble EDTA-drug complexes inside 
of liposomes can lead to increased drug encapsulation 
and retention. The protocol is especially suggested for 
the encapsulation of idarubicin because of its very low 
solubility in EDTA solutions at acidic pHs. In this case, 
the liposomes are formed via hydration of the lipid film 
with EDTA disodium salt or EDTA di-ammonium salt 
solution and then, idarubicin hydrochloride solution is 
added to the liposomal suspension. The accumulation 
of idarubicin in liposomes is pH-dependent, so that in 
higher external pH (8.5) and lower internal pH (4) the 
drug is better accumulated and higher encapsulation 
efficiency is achieved.173,186 

Phosphate gradient method
The main concept in transmembrane phosphate gradient 
strategy is the same as in the case of other pH gradient 
methods. In this case, the liposomes are prepared in 
(NH4)2HPO4 solution. It is reported that a near 100% 
doxorubicin accumulation inside the liposomes via both 
protonation and precipitation of drug have been observed 
as in the case of other gradients. Besides, in pHs close to 
physiological level no drug leakage is observed from the 
liposomes. However, in acidic extra-liposomal medium 
accelerated drug leakage is achieved. It was suggested that 
doxorubicin can be retained in the hydrophilic liposomal 
core by protonation and precipitation, or incorporated 
in the bilayer. This remote loading process depends on 
various factors such as intra-liposomal salt concentration 
and pH value.173,187 

Solvent-assisted active loading method
In all the aforementioned remote loading methods 
the compounds with high solubility and membrane 
permeability are solubilized in the exterior aqueous phase 
and penetrate through the liposome bilayer into the 
internal aqueous phase. However, a large number of drugs 
have low-water solubility and are passively encapsulated 
in the lipid bilayer of liposomes. The solvent-assisted 
active loading technology (SALT) has been used for 
remote encapsulating of poorly soluble drugs in the 
liposomal core in order to achieve the better loading 
efficiency and formulation stability. In this technique, a 
small volume (~5 v/v %) of a water miscible solvent is 
added to the loading solution for complete dissolution 
of the compound. Then, the dissolved compound 
diffuses into the internal compartment of liposome and 
interacts with a precipitating agent to form low-soluble 
precipitate. The solvent can be eliminated using dialysis 
or gel filtration techniques. It is reported that a rapid 
and complete encapsulation with high D/L ratio and 
improved circulation half-life are achieved by exploiting 
this method.188 

Medical applications of liposomes
Liposomes can be used in the various clinical fields 
including; therapeutic systems, medical imaging, and 
cosmetic products which have been summarized below13:

Therapeutic systems
Liposomes are used in many fields of medical treatment 
such as cancer therapy, anti-infective therapy, protein 
or peptide drug delivery, gene delivery, macrophage 
activation, and vaccination.13,15,27,45 The first application 
of liposomes as drug delivery system was the delivery of 
chemotherapeutic small molecules.15 A large number of 
drugs are formulated into the liposomes taking advantage 
of high therapeutic efficiency and low systemic toxicity 
compared with the free drug. Anti-infective drugs 
and anti-tumor drugs are two major classes of small 
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molecules that can be loaded in liposomal formulations. 
After approval of liposomal systems for delivery of 
small molecules, delivery of macromolecules such as 
nucleic acid-based therapeutics (gene therapy agents) 
was noticed. Nucleic acid-based materials with high-
molecular weight and highly charged molecules cannot 
cross cell membranes by passive diffusion. Moreover, 
applications of these materials as therapeutic agents 
are limited by their rapid enzymatic degradation, low 
selectivity, and poor cellular uptake. Lipoplex is a complex 
between negatively charged nucleic acid-based material 
and cationic liposome which can enter the cell via fusion 
with the plasma membrane. Thereby, gene therapy 
is performed through these liposomal formulations. 
Protein or peptide based therapeutic agents including; 
enzymes, peptide hormones, and cytokines are the other 
class of drugs that can be encapsulated in liposomes.189,190 
Incorporation of these agents into the liposomes resulted 
in some advantages such as improving therapeutic activity 
of protein and peptide drugs, reducing their side effects 
and modulating the immune response towards these 
proteins and peptides.45

Diagnostic imaging
Apart from the method used, in diagnostic imaging the 
appropriate intensity of signal from an area of interest 
is needed to differentiate specified structures from 
surrounding tissues. On the other hand, molecular 
imaging has an important role in diagnosis and treatment 
tracing of diseases. Liposomes can be targeted to specified 
disease tissues by combining with specific targeting 
ligands and imaging molecular probes. These probes are 
loaded with liposomes in four ways: (i) incorporating 
into the liposome during its formation, (ii) penetration 
into the lipid bilayer of preformed liposome, (iii) 
encapsulation into the preformed liposome via various 
active methods, and (iv) attaching on the surface of 
preformed liposome.45,191,192

Cosmetics
Liposomes have been considered in the delivery 
of ingredients in cosmetics due to their unique 
physicochemical properties. Incorporation of liposomes 
in cosmetic formulations has shown some advantages 
such as increasing in skin moisture, improving the cell 
membrane fluidity, and causing deep penetration of oil 
or water-soluble cosmetic ingredients through the skin. 
Liposomal cosmetics have been manufactured by famous 
company namely Christian Dior, for first time in 1987. 
After that, some other liposomal cosmetic formulations 
are reported and manufactured.13,45

Future prospective of liposomal formulations
Today, many approved liposomal and nano-liposomal 
products entered the commercial market. Some of these 
products are presented in Table 3.193-196 However, there 

are huge challenges in their clinical translation. It seems 
that the most important field of research ahead is related 
to solving problems related to the targeted liposomal 
formulations. Many of these nanocarriers have shown 
more efficiency in animal and in vitro studies; however; 
a few of them have been entered to clinical trials, and 
there is not any investigation and evaluation guideline 
for active targeting liposomal formulations in cancer 
treatment.20 To achieve the successful clinical use of these 
formulations, many problems have to be solved. It has 
been shown that a number of factors such as liposome size 
and charge, type and amount of ligand, the ligand binding 
with the serum proteins, and the elimination by the body 
immune system can influence on the function of targeted 
liposomes.197-202 Owing to the excellent clinical potential 
of targeted liposomes to improve the therapeutic index 
of drugs, further research is required for their clinical 
applications.

Conclusion
Liposomes have been recognized as therapeutic carriers 
in very diverse clinical fields because of their unique 
physicochemical properties. They are the first nano-
delivery systems that some of them are already successfully 
translated into the clinical use, and some liposomal 
formulations are approved or under clinical trials. 
Employing of liposomes as drug delivery systems provide a 
platform for delivering of drugs with reducing side effects 
and increasing their efficacy, solubility, and bioavailability. 
Despite the improvements made to these carriers to reduce 
their adverse effects and increase the therapeutic index of 
the cargo, investigations to fabricate the liposomes with 
fewer deficiencies are ongoing. A number of synthesis 
methods have been developed to obtain liposomes with 
various structure, size, and polydispersity. Ethanol 
injection technique is one of the interesting methods for 
scaling-up production of liposomes due to simplicity, 
fast implementation, and reproducibility. To overcome 
some practical challenges such as precise process control, 
poor reproducibility, and inefficient use of materials and 
reagents novel strategies such as microfluidic and SCF 
based methods have been designed for preparation of 
liposomes. Microfluidic is effective reproducible method 
for scale-up of liposomes owing to achieve more control 
over the physical properties including; size distribution, 
lamellarity, and high encapsulation efficiency. Moreover, 
solvent free and pharmaceutical grade liposomes having 
a narrow particle size distribution can be produced by 
SCF method. Fabrication of the PEGylated liposomes 
is the important modification to solve the problem of 
uptake by RES and rapid clearance from bloodstream. 
However, the selective delivery of these liposomes to 
the action site is limited. Today, research in fabrication 
of stimuli-sensitive and functionalized liposomes are 
two forefront fields to increase of their target specificity. 
Besides, to overcome to the passive loading drawbacks 
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such as low entrapment efficiency, non-loaded drug loss, 
and fast release of drug, several active loading methods 
have been developed. Furthermore, in order to enhance 
internalization of liposomes by the specified tissues, 
their surfaces can be modified with targeting ligands 
such as transferrin, integrins, polysaccharides, folic acid, 
aptamers and antibodies. However surely, liposomes have 
found their place in the modern pharmaceutics and their 
use is increasing day by day. Nowadays, many liposomal 
anti-cancer drugs have been used in the treatment of 
breast, ovarian cancers, and sarcoma. Due to the potential 
clinical applications of liposomes, challenges such as 
therapeutic and loading efficiency, stability, and scale up 
of industrial production with more clinical success, needs 
further investigation. 
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