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Introduction
Lung cancer is the leading cause of cancer-associated 
mortality in males and females worldwide.1 In the United 
States, 228 150 new cases (116 440 in men and 111 710 in 
women) and 142 670 deaths (76 650 in men and 66 020 
in women) of lung cancer have been reported for 2019 
(according to the American Cancer Society’s estimates for 
lung cancer).2 There are two major types of lung cancer: non-
small cell lung cancer (NSCLC) and small cell lung cancer 
(SCLC). NSCLC accounts for 85% of lung cancer cases.3 

Chemotherapy is the main treatment approach for 
NSCLC and SCLC.3 In this regard, the chemotherapy drugs 
commonly used for the treatment of lung cancer patients 
are cisplatin, carboplatin, paclitaxel and daunorubicin. 
However, these chemotherapeutics are associated with 
treatment failure due to drug resistance and resulted in 
various side effects.4,5 Therefore, demands are increasing 
for new therapeutic candidates and novel approaches 
such as combinational chemotherapy and applying novel 
drug-delivery systems for improving treatment efficiency 
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Abstract
Purpose: Chemotherapy drugs used to treat lung cancer are associated with drug resistance and 
severe side effects. There have been rising demands for new therapeutic candidates and novel 
approaches, including combination therapy. Here, we aimed to investigate the combinatorial 
effect of a dendrosomal formulation of curcumin (DNC) and daunorubicin (DNR) on the A549 
lung cancer cell line.
Methods: We performed cytotoxicity, apoptosis, cell migration, colony-formation capacity, and 
gene expression analysis to interpret the mechanism of action for a combination of DNC and 
DNR on A549 cells.
Results: Our results revealed that the combination of DNC and DNR could synergistically inhibit 
the A549 cells’ growth. This synergistic cytotoxicity was further approved by flow cytometry, 
migration assessment, colony-forming capacity and gene expression analysis. DNR combination 
with DNC resulted in increased apoptosis to necrosis ratio compared to DNR alone. In addition, 
the migration and colony-forming capacity were at the minimal range when DNC was combined 
with DNR. Combined treatment decreased the expression level of MDR-1, hTERT and Bcl-2 
genes significantly. In addition, the ratio of Bax/Bcl2 gene expression significantly increased. 
Our analysis by free curcumin, dendrosomes and DNC also showed that dendrosomes do not 
have any significant cytotoxic effect on the A549 cells, suggesting that this carrier has a high 
potential for enhancing the curcumin’s biological effects. 
Conclusion: Our observations suggest that the DNC formulation of curcumin synergistically 
enhances the antineoplastic effect of DNR on the A549 cell line through the modulation of 
apoptosis/necrosis ratio, as well as Bax/Bcl2 ratio, MDR-1 and hTERT gene expression. 
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and lowering drug resistance.6 For this purpose, the 
synergistic effect in combinational chemotherapy could 
boost the effectiveness of a single chemotherapeutic and 
lessen drug resistance. In addition, the application of 
drug-delivery systems in combinational chemotherapy 
could significantly improve the pharmacokinetics of the 
drugs and reduce their side effects.7 

Daunorubicin (DNR) is an anti-tumor antibiotic that 
has been clinically proven for the treatment of solid 
and non-solid tumors.8 It has been indicated that DNR 
inhibits telomerase activity in lung cancer by increasing 
ceramide which induces apoptosis and inhibits cell 
growth. DNR interacts with DNA and inhibits DNA 
synthesis and DNA-dependent RNA synthesis.9-11 
However, the clinical use of DNR is often associated with 
severe side effects such as cardiotoxicity. In addition, the 
development of the drug resistance in cancerous cells 
against DNR is another major challenge. To overcome 
these problems, the application of DNR in combination 
with other chemotherapy drugs reduces drug resistance 
and intensifies the toxicity of the combined drugs on 
cancer cells compared to DNR alone.12 DNR anticancer 
function is the result of its incorporation into the minor 
groove of DNA, resulting in an arrest in replication.10 
In addition, DNR inhibits the topoisomerase II enzyme 
by stabilizing the interaction of the enzyme and DNA.11 
DNR metabolism in the body produces and accumulates 
free radical species and causes DNA damage through a 
nonspecific approach. In this regard, DNR is cytotoxic to 
all proliferating cells. Although anthracyclines are used 
for the treatment of human leukemias, lymphomas, and 
multiple solid tumors, they are associated with severe 
side effects, including cardiotoxicity, which could lead 
to cardiomyopathy and heart failure.13 In addition to 
reducing drug dosage, several attempts are made to 
develop different formulations of DNR to minimize the 
side effects.14 Prolonged administration of DNR often 
leads to drug resistance in patients. Likewise, recent 
studies have reported the therapeutic effect of DNR in 
combination with other agents.12

Potential pharmacological activities of phytochemicals, 
including antioxidant,15 antimicrobial,16 antidiabetic,17 
anti-inflammatory,18 and anticancer activity are used in 
medicine.19-21 Recently, various phytochemicals such as 
capsaicin22 and curcumin23 have been evaluated for their 
anti-cancer effects. Curcumin is a yellow, polyphenol 
derivative of the rhizome of turmeric (Curcuma longa) 
and affects a wide variety of cellular processes through 
modulating different molecular targets. It has been 
reported that curcumin has a cytotoxic effect on cancer 
cell lines and has a positive effect on the inhibition 
of tumor growth in animal models.24,25 Furthermore, 
several studies showed that curcumin attenuates 
chemotherapy-induced side effects such as cardiotoxicity 
and neurotoxicity. Modulation of cell proliferation, 
enhancement of apoptosis, inhibition of nuclear factor 

kappa B (NF-κB), suppression of angiogenic cytokines, 
and reduction of B-cell lymphoma 2 (Bcl-2) gene 
expression are some of the well-studied functions of 
curcumin.26 However, low bioavailability and solubility in 
an aqueous medium and poor pharmacokinetic features 
limit the curcumin efficacy in vivo. To overcome these 
limitations and improve the efficacy of curcumin, nano-
carriers are employed for synthesizing nano-curcumin 
formulations.27-29 Accordingly, dendrosomes were used 
as an efficient carrier for curcumin, called dendrosomal-
curcumin (DNC). The anticancer properties of DNC in the 
mouse models of fibrosarcoma30 and colorectal cancer26 
have been studied, and the results are remarkable. It has 
been reported that dendrosomes significantly improve 
the solubility of curcumin in an aqueous medium and 
facilitate its cellular uptake into target cells.31

Curcumin interacts with various targets in angiogenesis, 
metastasis, and cell cycle pathways24 and plays an 
antineoplastic role through directing various microRNAs 
expression.25 It is worth noting that the safety of curcumin 
has been shown even with high doses.32 Due to low-safety 
concerns, curcumin has been widely used in combination 
with other drugs. Most recently, we showed potential 
synergistic interaction between curcumin and metformin 
against prostate cancer cells.33 Similarly, a combination 
of curcumin with docetaxel,34 metformin,35 5-FU, 5-FU/
oxaliplatin,36,37 and cisplatin38 in cancer cell lines showed a 
significant synergistic effect. In addition, strong evidence 
showed that curcumin enhances the treatment efficacy 
of anthracyclines. A combination of curcumin and 
doxorubicin (DOX) showed an additive effect in Hodgkin 
lymphoma cells29 by enhancing the uptake of DOX 
through the inhibition of ATP-binding cassettes.39 

The low solubility of curcumin limited its clinical 
application and various formulations of curcumin, such 
as alpha-tocopherol polyethylene glycol 1000 succinate 
(TPGS) formulation, liposomal curcumin27 and solid 
lipid nanoparticles have improved the kinetic profile and 
activity of curcumin.28,29 In this regard, we developed 
dendrosomal-curcumin (DNC) for the combination with 
DNR. Dendrosomes are polymeric micelle/polymersome 
structures introduced for the first time by Sarbolouki et al 
as a gene delivery system of 100 nm size.40 

In this study, regarding the drug resistance and 
cardiotoxicity of DNR,13 as well as positive potentials of 
curcumin for the side effects of drugs,26 we used DNC 
as an adjuvant for DNR. In addition, the effects of DNR, 
DNC, and their different combinations were evaluated 
on cell viability, apoptosis, gene expression, and cell 
migration in A549 lung cancer cells.

Materials and Methods
Materials
The human lung carcinoma cell line, A549, was obtained 
from the Pasteur Institute of Iran, Tehran, Iran. RPMI-
1640 medium (Gibco, UK) and supplemented with 
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10% heat-inactivated fetal bovine serum (FBS: Gibco, 
Invitrogen, UK), and then used for cell culture. For the 
synthesis of dendrosomes, oleoyl chloride, polyethylene 
glycol 400 (Sigma-Aldrich, USA) and triethyl amine 
(Merck) were used. Methyl-Thiazol-Tetrazolium (MTT) 
from Sigma-Aldrich, Seelze, Germany, was used for MTT 
assay. MabTag’s Annexin-V Apoptosis Detection Kit 
(MabTag GmbH, Germany) was used for the analysis 
of apoptosis and cell death. Total cellular RNA was 
isolated with One Step-RNA extraction kit (BIO BASIC 
INC, Canada). DNase I s purchased from Thermo Fisher 
Scientific, UK. Complementary DNA (cDNA) was 
synthesized by Prime Script™ RT reagent kit (Takara Bio 
Inc., Shiga, Japan). Primers were synthesized by Sinaclon, 
Tehran, Iran, RealQ Plus 2x Master Mix Green Without 
ROX™ (Ampliqon, Denmark) for real-time PCR. 

Cell culture
The human lung carcinoma cell line, A549, was obtained 
from the Pasteur Institute of Iran, Tehran, Iran. For the 
cell culture of A549 cell line, the RPMI-1640 medium 
(Gibco, UK) was used. This medium was supplemented 
with 10% heat-inactivated fetal bovine serum (FBS: Gibco, 
Invitrogen, UK), 2 mM L-Glutamine, and 1% penicillin/
streptomycin (100 units/mL). The A549 cultured cells 
were incubated at 37 °C in 5% CO2.

Dendrosomal-curcumin preparation
Dendrosome nanoparticles and DNC were prepared 
based on our previous protocol.37 Oleoyl chloride (0.01 
mol) and polyethylene glycol 400 (0.01 mol) esterification 
were carried out in the presence of triethyl amine (0.012 
mol) at 25°C for 4 hours for the synthesis of OA400 
dendrosome carrier. Chloroform was used as a solvent. 
After filtration of triethylamine hydrochloride salt, 
chloroform was eliminated from OA400 dendrosomes by 
evaporation in a vacuum oven at 40°C. 

To synthesize DNC, various ratios of dendrosome/
Curcumin (W/W) were tested and DNC was prepared by 
a 25:1 ratio of dendrosome/curcumin. The absorbance of 
curcumin was measured through spectrophotometry.41 
The prepared DNC solution filter was sterilized and 
stored at 4 °C in dark. Characterization and confirmation 
tests of the prepared DNC were performed according to 
our protocols.30,42

Cell viability assay
Cell viability of A549 cells under drug treatment was 
determined by MTT assay. Briefly, 6 × 103 A549 cells/
well were seeded into 96 well plates with supplemented 
RMPI-1640 medium and were incubated overnight for 
the development and surface attachment of the cells. 
The well-attached cells were treated with different 
concentrations of DNR (0.1-30 μM), curcumin (5-100 
μM), dendrosome (5-100 μM), DNC (5-100 μM) and the 
combination of DNR and DNC for 24 and 48 hours. After 

incubation time points, 20 μL of MTT solution (5 mg/mL) 
was added to each well of a 96-well plate and incubated for 
4 hours at 37°C. Subsequently, the medium was removed 
and the formazan crystals dissolved in 100 μL of dimethyl 
sulfoxide (DMSO). Absorbance was measured at 570 nm 
with the microplate reader. The effect of each treatment 
was evaluated as the percentage of the viability of treated 
cells relative to control cells without any treatments.

Colony formation assay
For the assessment of colony formation capacity of A549 
cells under different treatments, a 6-well plate was used 
for the seeding of cells at a density of 0.4 × 103 cells/well. 
The seeded cells were incubated overnight followed by 
the treatments. After 24 hours of treatment with 10 μM 
of DNC, 0.7 μM of DNR, and a combination of them, the 
medium was removed and replaced by a fresh medium 
and incubated for 7 days. After 7 days of incubation, the 
media was removed and the plate was stained with 0.1% 
crystal violet for 20 minutes and the colonies (with > 50 
cells) were counted by light microscope.

Apoptosis induction assay
MabTag’s Annexin-V Apoptosis Detection Kit was used 
for the analysis of the stages of apoptosis and cell death 
in A549 cells following the manufacturer’s instructions. 
Approximately, 100 × 103 A549 cells/well were seeded into 
a 6-well plate. After 24 hours of incubation, the cells were 
treated with 10 μM of DNC, 0.7 μM of DNR and their 
combination (10 μM of DNC + 0.7 μM of DNR) for 24 
hours. The treated cells were trypsinized and centrifuged 
at 200x g for 5 minutes. The pellet of cells was washed 
with medium or PBS and resuspended in 90 μL (1x) 
Annexin-V- binding buffer. Then, 5 μL of Annexin-V 
conjugate, and 5 μL of propidium iodide (PI) solutions 
were added to cells and incubated for 20 minutes at 15-
20°C in the dark. Afterward, 400 μL of Annexin-V binding 
buffer (1x) was added, and the solution was centrifuged at 
400 g for 5 minutes. The pellet of cells was resuspended in 
200 μL (1x) Annexin-V binding buffer and immediately 
analyzed by flow cytometry (FACSCalibur, Becton-
Dickinson). The results were analyzed with FlowJo V10 
analysis software.

Wound healing assay
In this assay, a 6-well plate was used for seeding A549 
cells at a density of 5 × 104 cells/well for the assessment 
of their in vitro wound healing capacity. The cells were 
incubated until reaching 80% confluency. A clean scrape 
was created through the center of the layer of cells using 
a sterile yellow pipette tip. In the 0, 24 and 48 h time 
intervals, the cells were analyzed and photos were taken 
under a microscope. The migration distance of cells was 
determined by ImageJ software.
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RNA isolation, cDNA synthesis and real-time polymerase 
chain reaction (PCR)
For gene expression analysis of A549 cells under 
treatments with DNC, DNR and their combination, the 
cells were seeded at a density of 3 × 105 cells/well into a 
6-well plate and treated with 10 μM of DNC, 0.7 μM of 
DNR and their combinations for 24 hours. Untreated cells 
were considered the control group. Total cellular RNA 
was isolated using One Step-RNA extraction kit followed 
by digestion with DNase I. cDNA was synthesized by 
PrimeScript™ RT reagent kit. The synthesized cDNA was 
used as a template for real-time q-PCR test via Ampliqon, 
RealQ Plus 2x Master Mix Green Without ROX™ in a light 
cycler (Roche Diagnostic). Quantitative RT-PCR was 
performed by the following steps. An initial activation 
step was considered for 5 minutes at 95°C. After initial 
activation, 45 cycles of amplification continued with a 
denaturation step (30 seconds at 95°C), an annealing step 
(15 seconds at 60°C), and an extension step (30 seconds at 
72°C). The specificity of the PCR products was confirmed 
via a melting curve analysis. All the experiments 
were carried out at least in triplicate. GAPDH mRNA 
expression was used as a normalizer of the changes in 
mRNA expression level of the genes. Eventually, the 2-∆∆CT 
method was employed for the quantification of mRNA 
expression fold changes. The sequences of the primers 
and the relevant amplicon size and genes are shown in 
Table 1.

Statistical analysis
Statistical analysis was performed in Prism® 8 software 
(GraphPad Software, Inc., La Jolla, CA, USA) and analyzed 
using one and two-way ANOVA analysis of variance 
followed by Tukey’s and Sidak multiple comparison tests. 
The statistical significance was set at P < 0.05. All the 
experiments were carried out at least in triplicate. 

Results and Discussion
Dendrosomal curcumin synthesis and characterization
The synthesized dendrosomes were mixed with 
curcumin in a certain ratio and the DNC was 
synthesized (Figure 1). Studies on the dendrosomal 
structural properties of curcumin showed a uniform size 
distribution of about 155 nm. DNC characterizations, 
such as degradation and cell uptake, have been presented 
in our previous studies and are not displayed here. The 
first report for our DNC formulation was published in 

2012 by Babaei et al in which 1:25 (W/W) curcumin was 
encapsulated into dendrosomes. The data showed that 
dendrosomes significantly increased the water solubility 
of curcumin.30

The effect of curcumin, DNC and DNR on A549 cells 
viability
The cytotoxic effect of DNR, DNC, curcumin, 
dendrosome, and combination of DNC and DNR on the 
A549 cells was determined by the MTT assay (Figure 2). 
A549 cells were seeded into 96-well plates and treated 
with 0.1-30 μM DNR and 5-100 μM DNC, 5-100 μM 
curcumin and 5-100 μM dendrosome and analyzed after 
24 and 48 hours. Based on the MTT assay results, DNC 
inhibited the proliferation of A549 cells compared to the 
control group (Figure 2a and 2b) in a dose-dependent 
and time-independent manner. In contrast, curcumin 
inhibited the proliferation of A549 cells in a dose- and 
time-dependent manner (Figure 2a and Figure 2b). 
Likewise, DNR significantly (P < 0.0001) inhibited the 
proliferation of A549 cells (Figure 2c). Furthermore, the 
half-maximal inhibitory concentration (IC50) value for 
DNR after 24 and 48 hours was determined by 4.043 and 
0.637 μM, respectively (by GraphPad Prism 8 software). 
Similarly, the IC50 values calculated for DNC were 20.44 
and 24.07 μM, and for curcumin the values were 91.42 and 
83.17μM in 24 and 48 hours, respectively. Furthermore, 
no significant toxic effect was observed in dendrosome 
treatments. According to the mentioned results, the 
inhibitory effect of DNC is stronger than curcumin in the 
same concentrations. 

Our previous studies showed that DNC suppresses 
cancer cells in low doses compared to free curcumin. 
Besides, no significant cytotoxicity related to dendrosome 
carriers was observed in our previous studies.30,37,43-52 
Similarly, in the present study, we used 5-100 µM 
dendrosomes and did not observe significant cytotoxicity 
in A549 cells. In addition, the assessment of acute and 
chronic cytotoxicity of DNC in BALB/c mice showed that 
DNC is a safe formulation even in higher concentrations.42

Evaluation of combination index 
To indicate the impact of combined treatments, 
combination index (CI) values were calculated for 
the combined treatment of DNR and DNC. CI values 
demonstrate the interaction degree between DNC with 
DNR. For this purpose, after evaluating the effects of the 

Table 1. The sequence of the specific primers was used for real-time PCR

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

GAPDH CACCAGGGCTGCTTTTAACTCTGGA CCTTGACGGTGCCATGGAATTTGC

hTERT TCCATCAGAGCCAGTCTCACC GCTGTTCACCTGCAAATCCAGA

Bcl-2 ATCGCCCTGTGGATGACTGAG CAGCCAGGAGAAATCAAACAGAGG

Bax GGACGAACTGGACAGTAACATGG GCAAAGTAGAAAAGGGCGACAAC

MDR-1 GTCATCTTGTCCAAACTGCCTG GTTTTGGGTTTGAGAGCCACC



DNC and DNR inhibit A549 cells growth

Advanced Pharmaceutical Bulletin, 2023, Volume 13, Issue 3 543

Figure 1. Structural characterization of DNC. a) TEM image of synthesized DNC and b) Size distribution curve of DNC obtained from DLS data

Figure 2. Cell viability assay (MTT) results. a and b) The cytotoxicity of free curcumin, DNC, and dendrosomes treatments, after 24 and 48 hours respectively, 
c) DNR treatment after 24 and 48 hours and d) combined DNC and DNR treatment after 24 and 48 hours on the A549 cells, P < 0.05 (**** P < 0.0001, ns: not 
significant)
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compounds separately, the three different concentrations 
of DNR (0.7, 1, 2 μM), as well as DNC (5,10,15 μM) were 
selected for the combination study. After the selection 
of concentrations, A549 cells were treated for 24 and 48 
hours. According to the MTT assay result of the combined 
treatments shown in Figure 2d, a combination of DNR 
and DNC showed a significant (P < 0.0001) inhibitory 
effect against A549 cells compared to DNR and DNC 
alone. In 24 hours, the combined treatment showed a 
dose-dependent pattern, but in 48 hours, it did not follow 
this pattern. However, all treatments showed a time-
dependent inhibitory effect.

The synergistic, additive, or antagonistic effect of 
DNR and DNC combined treatments were evaluated by 
CompuSyn software, version 1, based on the CI calculated 
by the Chou-Talalay equation (CI > 1.2, CI = 0.9–1.2 and 
CI < 0.9 related to an antagonistic, additive and synergistic 
effect, respectively).

In this regard, the combined treatments of 0.7-2 μM 
DNR with 5-15 μM DNC at 24 hours were evaluated for the 
calculation of CI. The CI = 0.607 as the lowest CI belonged 
to the treatment of 0.7 μM DNR + 10 μM DNC and is 
associated with a complete synergistic effect. However, 
other doses showed a synergistic effect. In addition, for 
the same concentrations at 48-hour time interval, CIs for 
all treatments were reduced compared to CIs of 24 hours, 
except for the treatment of 2 μM DNR + 15 μM DNC 
(Table 2). Totally, all the combined treatments of DNR 
and DNC showed a synergistic effect in both 24- and 48-
hour intervals (Figure 3).

Generally, the administration of an anticancer 
chemotherapeutic is dose-dependent and often fails 
to achieve complete cancer remission owing to the 
heterogeneity of cancer cells and the development 
of multidrug resistance colonies.53 Further evidence 
shows that the combination of chemotherapeutic drugs 
could strongly enhance the treatment efficacy without 
multiplication of the toxicity.54 The combined treatment 
results in synergistic, additive or antagonistic effects. 
The synergistic effect is the most suitable outcome 

of combinational drug therapy. Recent studies used 
multiple methods for the interpretation of combined 
effects of drugs, including CI,55 isobolographic analysis,56 
Bliss independence model,57 Loewe additivity model.58 
However, the dose optimization and adjustments of each 
drug is a major effort, because different concentrations of 
drugs could result in different clinical outcome.59 

Effects of DNC and DNR treatments on apoptosis 
induction in A549 cells
A549 cells were treated with 10 μM DNC, 0.7 μM 
DNR, and 10, 0.7 μM of DNC + DNR, respectively 
(concentrations obtained based on cytotoxicity and CI 
analyzes) (Figure 4a-d). 

Based on the results of the apoptosis assay (in 24 hours), 
the lower dose of DNC did not show significant cell death. 
In contrast, DNR treatments showed a significant necrosis 
induction of about 60% compared to the control group. 
A combination of DNC and DNR (10 μM DNC and 
0.7 μM DNR) revealed a synergistic effect on induction 
of apoptosis by up to 30% compared to DNC and DNR 
alone (P < 0.05) (Figure 4e). Regarding the high necrosis 
in DNR-treated cells, it seems that combined DNC and 
DNR treatment diminished the necrosis induced by 
DNR and simultaneously induced apoptosis. However, 
other biochemical assays such as caspase activation, Bid 
cleavage, cytochrome c release, analysis of supernatant 
for caspases, HMGB1, the release of cytokeratin 18 and 
phosphatidylserine exposure are necessary to confirm 
that DNR does indeed cause necrosis, and a combination 
of DNC and DNR shifts the cell life condition from 
necrosis to apoptosis. Therefore, with our analysis, it may 
be primarily concluded that DNC and DNR simultaneous 
treatment increased the induction of apoptosis, 
decreased necrosis, and showed a synergistic effect on the 
cytotoxicity to A549 cells.

Table 2. The CI data for different treatments on the A549 cells obtained with 
CompuSyn software

Time 
point

DNC (μM) DNR (μM)
Effect 

(Inhibition %)
CI

Interaction 
type

24 h

5.0 0.7 0.36 0.68389 Synergistic

10.0 0.7 0.5 0.60778 Synergistic

15.0 0.7 0.59 0.79371 Synergistic

15.0 1.0 0.64 0.74708 Synergistic

15.0 2.0 0.69 0.70199 Synergistic

48 h

5.0 0.7 0.85 0.32941 Synergistic

10.0 0.7 0.85 0.39010 Synergistic

15.0 0.7 0.86 0.42722 Synergistic

15.0 1.0 0.85 0.56595 Synergistic

15.0 2.0 0.87 0.84179 Synergistic

Figure 3. Fa-CI plot for the combination effect of DNC and DNR in 24 and 
48h intervals. The points under the diagonal line suggests the synergistic 
effect of combined treatment, CI: Combination Index, Fa: Fraction Affected
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Effects of DNC and DNR treatment on the colony 
formation capacity of A549 cells
Colony formation assay results demonstrated that the 
proliferation rate and colony numbers of the A549 cells 
treated with DNC, DNR and their combination were 

significantly decreased compared to the control group 
(P < 0.05) (Figure 4a-d). In addition, the inhibitory 
effect of the combined treatment of DNC and DNR was 
significantly (P < 0.05) higher compared to their separate 
treatments (Figure 5e). 

Figure 4. Flow cytometry diagrams of cells treated with DNC, DNR and their combination at 24 hours. a) control group without any treatment, b) DNC, c) DNR 
and d) combined DNC and DNR treated A549 cells. e) the proportion of apoptosis and necrosis in control, DNC, DNR and combined DNC and DNR treated 
A549 cells, P < 0.05 (****P < 0.0001, ns: not significant)
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Our colony-formation assay showed that all the 
treatment groups (DNC, DNR, DNC + DNR) reduce 
clonogenic capacity of A549 cells but the minimum 
colony-forming capacity was observed in DNC + DNR 
treated cells through a synergistic effect. Furthermore, we 
investigated whether cell migration could be affected by 
DNC, DNR, and DNC + DNR. 

Effects of DNC and DNR treatment on Bax, Bcl-2, 
hTERT, MDR-1 genes mRNA expression level 
The Real-time qPCR test was run to indicate the effects of 
the treatment of 10 μM DNC, 0.7 μM DNR, and 10, 0.7 μM 
DNC     + DNR, respectively at 24 hours intervals on the mRNA 
expression levels of Bax, Bcl-2, hTERT and MDR-1 genes 
in A549 cells. Analysis of the results showed an 0.60 and a 
~2-fold increase in the expression level of the Bax gene in 
the cells treated with DNR and a combination of DNC and 
DNR. In contrast, DNC treatment did not show a statistically 
significant change in Bax gene expression compared to the 
control group. Furthermore, Bcl-2 gene expression was 
increased (P < 0.05) in all treatment groups (Figure 6a). 

For evaluating apoptosis at the molecular level, the Bax/
Bcl-2 expression ratio was assessed as a suitable indicator 

of apoptosis. We observed that the ratio increased only in 
the combined treatment of DNC and DNR (P < 0.0001) 
in comparison with single drugs. Also, the combination 
treatment ratio rose by one-fold compared to the control 
group, which is consistent with the results of our flow 
cytometry analysis and previous studies.

In this study, changes in the expression of the MDR-1 
gene were studied. In DNC treated cells, the expression of 
this gene decreased, which was not statistically significant. 
In contrast, in DNR-treated cells, the expression of the 
MDR-1 gene increased 4-fold compared to the control 
group. Eventually, in the cells treated with DNC + DNR, 
the expression of this gene was reduced by about 1.2-
fold compared to the DNR group. The effect of DNC to 
MDR-1 gene expression at the transcriptional level could 
lower the level of MDR pumps on the plasma membrane 
of cancer cells and mitigate drug resistance to DNR.60-62 
In addition, our findings regarding the MDR-1 gene 
expression could be confirmed by a previous study that 
provided evidence for reversing the multidrug resistance 
by co-delivery of DOX and curcumin.63

The telomerase coding gene, hTERT, is activated in most 
human tumors64 and results in uncontrolled growth and 

Figure 5. Colony forming assay results. a) control group, b) DNC, c) DNR and d) combined DNC and DNR treated A549 cells after 24 hours. e) shows the results 
of colony forming assay under different treatments, P < 0.05 (**P < 0.01, *** P < 0.001). Cnt: Control, DNC: Dendrosomal Curcumin and DNR: Daunorubicin

Figure 6. Gene expression analysis results. a) expression level of Bax, Bcl-2, hTERT and MDR-1 genes in A549 cells treated with DNC, DNR and their 
combination as well as control group without any treatment. b) the ratio of Bax/Bcl-2 expression level as an indicator of apoptosis in DNC, DNR and their 
combination as well as control group without any treatment, P < 0.05 (****P < 0.0001, ns: not significant)
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proliferation of cancer cells.65 Targeting the activity of this 
enzyme can reduce cancer cell progression.66 Previously, 
we showed that curcumin downregulates the hTERT 
gene through TGF-B pathway.45 In the present study, the 
expression analysis of hTERT gene significantly decreased 
(P < 0.05) in the DNC + DNR treated cells. Interestingly, 
low doses of DNC and DNR enhanced the activity of this 
enzyme. Interestingly, while DNC and DNR individually 
increased the expression of hTERT gene, a combination 
of two drugs decreased its expression, which could 
consequently inhibit the progressiveness feature of cancer 
cells. Our results represent that the combined treatment 
effect on hTERT expression reduction is higher compare 
to control, DNC, and DNR alone (Figure 6b).

In general, the results of qRT-PCR support the results 
of the combined treatment of DNC and DNR with 
MTT, apoptosis, wound healing, and colony formation 
assays for efficient inhibition of A549 cells by reducing 
the expression of Bcl-2, hTERT, and MDR-1 as well 
as increasing the ratio of the bax/bcl-2 and Bax gene 
expression.67 

Effect of DNC and DNR treatment on migration capacity 
in A549 cells
We investigated whether A549 cells migration could 
be affected by DNC and DNR alone and combined 
treatments. For this purpose, A549 cells were treated 
with DNC and DNR and their combination (DNC and 
DNR) at the same concentrations of previous assays. The 
scratches widths were measured at different time points 
by ImageJ software. 

Our wound healing assay demonstrated that DNC 
treatment decreases the migration of cells more than 
the control group and DNR-treated cells (Figure 7a). 
According to Figure 6, the combined treatment of 
DNC and DNR led to a significantly higher inhibition 
in cell migration compared to the other treatments. 
The results of the analysis of the effect of treatments on 
migration capacity have been shown in Figure 7b. Based 
on the results depicted in Figure 6a, the DNC and DNR 
combined treatment is the most effective treatment for 
the inhibition of A549 cells migration. As a malignant 
feature of high metastatic cancer, cell migration reduction 
may decrease the metastatic feature of NSCLC. According 
to the other studies on the A549 cell line and focusing on 
their results of wound healing, cell motility of A549 can 
be reversed by mAChR3, EGFR, c-Srcand genes inhibitor, 
or MMP-7 neutralizing antibody.68 Other studies also 
suggested that mAChR3 activation induces cell migration 
and invasion in multiple cancers.69-71 It was also shown that 
the overexpression of these genes in NSCLC cells elevates 
the cancer progress.72 However, different and complex 
pathways are involved in the migration of cancer cells and 
tumor metastasis, and further studies are needed for the 
exact mechanism and pathways underlying the decreased 
migration potential of DNC + DNR treated A549 cell line.

Eventually, a limitation of our study is the analysis of 
these combinations and formulation of the exact ratio 
of DNC to DNR in other lung cancer cell lines including 
HLC-1. In addition, in vivo experiments on animal model 
of lung cancer could further approve the results found in 
this study. 

Conclusion
In this study, we showed that the combination of the 
DNC and DNR could dramatically inhibit the growth, 
induce apoptosis and reduce the cell migration of A549 
cells in a dose- and time-dependent manner compared 
to single treatment of DNC and DNR. In addition, the 
drug resistance due to DNR treatment was lowered in 
the combined treatment of DNC and DNR. It could be 
concluded that the synergistic effect of the cytotoxicity of 
DNC + DNR treatment on A549 cells is associated with 
the downregulation of hTERT and MDR-1 genes as well as 
an increase in the ratio of Bax/Bcl-2 gene expression. Due 
to obvious limitations of curcumin, we used an improved 
formulation of curcumin (DNC). DNC shows better 
solubility and uptake and consequently higher toxicity 
than free curcumin at similar doses. We used a minimal 
dose of DNC as an adjuvant for DNR and the interaction 
of the two compounds was observed as a strong synergism. 
The use of DNC as an adjuvant for DNR increased the 

Figure 7. In vitro wound healing assay and cell migration results. a) the in 
vitro wound healing and migration capacity of control group without any 
treatments, DNC, DNR and combined DNC and DNR treated A549 cells 
in three time point (0, 24 and 48), and b) the pooled results of migration in 
response of DNC, DNR and their mix in A549 cells, P < 0.05 (* P < 0.05, ** 
P < 0.01, **** P < 0.0001 )
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toxicity, and apoptosis instead of necrosis in A549 cells.
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