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Introduction
In drug delivery and pharmaceuticals, oral delivery is 
more widely accepted by patients and bio/pharmaceutical 
industry as compared to other routes of delivery owing 
to several benefits that it offers over others, especially 
injectables. These include a well-established delivery 
system, patient acquiescence, convenience, cost 
effectiveness, and noninvasiveness.1,2 Historically and 
even in current age, solid orals remain the most accepted 
dosage form for oral delivery, as also depicted by the 
percentage of industry involvement (percentage of bio/
pharmaceutical companies developing oral dosage forms 
and academic research undergoing in oral delivery). 
Nevertheless, extensive research has been done in 
exploring novel systems such as micro/nano-particles, 
lipid-based systems, nose-to-brain delivery, etc.3-7 for 
drugs that are either difficult to deliver by oral routes or for 
better pharmacological performance. Specifically, if the 
indication is localized to skin, then other than the invasive 
hypodermic needle, microneedles (MNs, non-invasive) 
accessing target site as compared to topical therapies.

Apart from the most acceptable route, delivery through 
skin has always been a fascinating route for researchers 
for its distinct benefits over other routes, such as non-
invasiveness, elimination of first-pass effect, reduction 
of adverse effects, and greater patient compliance.8 
Nevertheless, topical/transdermal delivery is not as easy 
since stratum corneum poses a main barrier for drug 
permeation. Vaccines, as compared to small molecule 
drugs that are synthetically derived are challenging 
in terms of delivery through skin owing to their large 

molecular weight, polarity, and risk of degradation by 
skin enzymes. Delivery of vaccine with skin pre-treatment 
opens avenues for a much higher and better delivery 
than topical or transdermal route without any assistance 
(passive delivery).9-13 

Various techniques have been used since years to 
improve transdermal drug delivery which include, the use 
of chemicals, iontophoresis, and MNs, to name a few.14-17 
Combination of these techniques have also been reported 
with major success in improving the drug delivery across 
skin.18-20 This review article will focus on recent updates 
and strides in MN assisted drug delivery focusing on 
vaccine delivery. 

Current research and updates in microneedles mediated 
vaccine delivery
A study reported by a group of researchers investigated 
an inactivated influenza vaccine (IIV) in a microneedle 
patch (MNP) for delivery of IIV in a Ph-I human trial, in 
terms of safety, reactogenicity, and immunogenicity. The 
clinical trial included 100 cohorts aged between 18 to 49 
years and randomized to 4 groups of 25 per arm: (1) IIV 
by MNP administered by healthcare worker (HCW), (2) 
IIV by MNP self-administered by study participants, (3) 
IIV by IM injection administered by HCW or (4) placebo 
by MNP administered by HCW. Four questionnaires were 
administered: at Day 0 before and after study product 
delivery, and at Days 8 and 28. Compliance reported by 
subjects with MNP vaccination was 98.6% and 86.4% for 
IM vaccination. In terms of safety and compliance, MNP 
faired higher than the traditional vaccination.21
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Editorial

Abstract
Recent coronavirus pandemic and its global socio-economic impact has re-emphasized the need for 
safe, fast, and efficient delivery of vaccines for humankind. With advent of technological advances, 
and to improve patient acquiescence, several techniques for fast, effective, and safe delivery of 
vaccines have been researched and published in the literature in last three decades. These delivery 
enhancement techniques include but are not limited to electroporation, microneedles (MN), 
ultrasound, iontophoresis, etc. This review aims at discussing the current research undergoing in 
vaccine delivery, specifically focusing on MNs assisted, the historical background of MNs and their 
introduction to drug delivery area, and a special focus on formulation challenges and stability in these 
systems. The review also sheds light on regulatory challenges one must keep in mind for bringing a 
successful MNs-based vaccine delivery into market as well as a snapshot of current commercially 
available MNs-based products in cosmetic and pharmaceutical industry. 
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Lanza and group have manufactured dissolvable MNs 
with LiHyp1- antigen along with TLR9 agonist, CpG, and 
compared with a cationic liposomal product containing the 
same antigen and agonist but delivered intravenously. The 
results indicated an elevated immune reaction and high 
levels of defense against L. donovani in MNs formulation 
in comparison to liposomal formulation. The study was 
performed in BALB/C mice and was characterized by 
measuring T cell responses, parasitic load in hepatic system 
and spleen, and antibody responses. These dissolvable 
MNs presented a great option for delivery, albeit a through 
stability/shelf life and scale up study needs to be evaluated 
in future.22 

Stinson and group investigated a MNP (MIMIX), made 
with silk fibroin for vaccine tips that implants itself in the 
skin, while releasing the influenza virus toxin for a few 
weeks, thus representing the usual timeline of a typical 
infection from this virus. The antigens that were utilized 
for this study include A/Michigan/45/2015 (H1N1), A/ 
Hong Kong/4801/2014 (H3N2), and B/Brisbane/60/2008 
(B Victoria lineage). For 2018–19 vaccine, influenza 
antigens included A/ Michigan/45/2015 (H1N1), A/
Singapore/INFIMH-16–0019/2016 (H3N2), and B/
Maryland/15/2016 (B/Colorado/6/2017-like virus, B 
Victoria lineage). Silk fibroin solution was prepared from 
Bombyx mori silkworm fibers, and the MIMIX device, 
containing a 11x11 array of vaccine-loaded, insoluble silk 
fibroin tips was molded on dissolvable polymer casts. On 
administration, the casts disintegrate rapidly, thus leaving 
the silk tips inserted into the dermis for sustained delivery 
of vaccine payload over a period (14 days).23

Chen et al utilized the MNs technology for delivering 
vaccines in animals for prevention of plague.24 F1 protein 
of Yersinia pestis (YP), which is the key moiety for eliciting 
protection was loaded into polyethylene glycol (PEG)-
modified lipoparticles. The lipoparticles were inserted in 
immunocompromised Balb/c mice using MN. Cytokine 
level determination IL-4, IFN-γ and TNF-α along with 
IgG levels indicated that these tiny needles helped in an 
efficient delivery of vaccine. Further, challenging the mice 
with the toxic YP strain (Yokohama-R 00703) kept all 
mice protected indicating that the vaccine delivery was 
successful and efficient. 

Dissolving MNs fabricated from chitosan, poly(vinyl 
alcohol) and poly(vinyl pyrrolidone) were loaded with 
bovine serum albumin and proteolipid protein, PLP139-

151 for peptide delivery through skin for treating multiple 
sclerosis. Drug loading for bovine serum albumin was 
high, and PLP139-151 co-localized with the chitosan in the 
MNs structure as indicated after labeling them with a 
fluorescent tag. The release of PLP peptide reported to 
be sustained with 40% released over 4 days, and within 
therapeutic doses thus promising a future potential drug 
delivery system for peptide delivery.25 

With the need of hour with COVID-19 pandemic, Kim 
and group investigated to deliver Middle East respiratory 

syndrome coronavirus (MERS-CoV) through dissolving 
CMC MNs.26 Adenovirus proteins, MERS-S1f, MERS-
S1fRS09, MERS-S1ffliC, SARS-CoV-2-S1, or SARS-CoV-
2-S1fRS09) were utilized. In-vivo study in BABL/c mice, 
after 6 weeks displayed that serum levels of immunized 
animals demonstrated not only a long-lasting but also 
substantial levels of virus neutralizing activity. This 
indicates a better antigen activity as compared to typical 
stratum corneum delivery, despite of the adjuvant. 
Additionally, the antigenicity of γ-exposed MNs vaccines 
was similar to unexposed MN thus suggesting stability 
and potential delivery system for MNs assisted SARS-
CoV-2 subunit vaccines.

To combine a bolus with a sustained release, Kim et al 
manufactured dissolvable MN with hepatitis-B vaccine 
(HBsAg). For the bolus dose, CMC formulation was 
coated on whereas for slow release it was plain polylactic 
acid (PLA) tips. These MNs achieved similar clinical 
efficacy as that of two separate shots of conventional 
IM administration.27 The bolus dose released within 20 
min, when tested in vitro in female BALB/C mice. The 
PLA tips slowly dissolved and released the antigen by 
hydrolytic degradation over 55 days, thus providing an 
excellent combination of bolus and sustained delivery for 
a potential delivery system for vaccines. 

Jeon et al has developed a compartmental microneedle 
array (CMA) for attaining simultaneous delivery of two 
influenzas vaccines, however delivering at the same time 
as a single product, thus avoiding multiple injections. 
PLA MNs were coated with two strains of influenza 
vaccines, B/Yamagata (B-Y) and B/Victoria (B-V), in two 
compartments within the microneedles system, without 
physical mixing. Weight delta and survival made the 
key evaluating parameters in female BALB/C mice and 
CMA was compared with (a) combined vaccines with 
MN, (b) two monovalent vaccines with MN, (c) IM with 
a combined vaccine, and (d) IM with two monovalent 
vaccines. The CMA mice group demonstrated better 
survival and weight delta than other two groups. When 
challenged with Yamagata, the survival rate and body 
weight for all the MN groups were 100%, however, for 
control phosphate buffered saline and IM administered, 
B-Y + B-V were 0% and 60%, respectively. CMA group 
demonstrated relatively higher or equivalent survival rate 
and weight change as compared to IM administered B-Y 
+ B-V. This opens avenue for a futuristic dual delivery 
system using these CMA techniques.28

Delivery of influenza virus in VaxiPatch™ containing 
subunit glycoprotein that act as vaccine antigens along 
with adjuvants in a MN system is reported by Ellison 
and group at Verndari Inc. rHA of influenza virus B/
Colorado/06/2017 was combined with synthetic virosomes 
(SV). Further QS-21 from Saponaria quillaja was used to 
formulate adjuvant liposomes that either contained SV 
or not. This was further made with trehalose and dye for 
better stability and detection. Stainless steel MN arrays 
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were utilized for this study. In-vivo study conducted in 
Sprague Dawley rats that were administered VaxiPatches™ 
containing 0.3 mg of rHA, 0.5 mg QS-21 and 0.2 mg 3D 
- (6-acyl) PHAD and dye, demonstrated 100-fold higher 
toxoid-specific immunoglobulin-G titers as compared 
to 4.5 mg of FluBlok (P = 0.001) provided by IM route. 
Further, stability studies of these VaxiPatches™ under 
accelerated conditions suggested retention of virosomal 
antigenic activity for at least two months at 60℃.29

Conclusion
MNs are not any novel technique to skin delivery, and 
span in areas of pharmaceutical and cosmeceuticals. 
Extensive research has been done in MNs-assisted vaccine 
delivery, alone or in combination with other techniques, 
and has produced encouraging results. Yet, from a 
commercial standpoint, not a lot of MNs-based products 
make to the market on annual basis. This is attributed to 
the formulation as well as scale up challenges that these 
systems pose, which makes it challenging from regulatory 
perspective as well. With the rise in several start-ups 
and funding available, along with clarity on regulations 
from US, EU, and other country-specific authorities, it 
is expected that in next 5 years, more MNs-based drug 
and vaccine delivery products/platform technologies will 
get approval, and commercial reality of this technique in 
par with conventional dosage form such as tablets and 
capsules, is not very far in future. 
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