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Introduction
Cancers, the second cause of global mortality, are 
accounted for seven to nine million deaths from 2005 to 
2015 (Figure 1).1 Despite significant progress in diagnosis, 
treatment and prevention studies of cancer in the last 
decades, the mortality rate of most cancer cases, especially 
brain tumors, is still considerable and remains a medical 
challenge.

Glioblastoma multiforme (GBM), the most invasive 
and common malignant tumor of brain (55% of all cases),2 
has two types: primary (90%) and secondary (10%): the 
former develops acutely with no previous lower grade 
pathological signs or symptoms, while the latter which 
is seen mostly at younger ages arises from evolving and 
transforming astrocytomas. Both have different genetic 
profiles and are detectable by specific cell markers, 
although clinically similar.3 Surgical excision of the 
tumor, co-temporaneous post-surgical radiotherapy and 
chemotherapy are the therapeutic regimen. Nevertheless, 
the survival rate is still 1 to 2 years (3–5%).4 

The abovementioned therapeutic regimen does not 
offer a practical solution to target brain tumors in an 
effective way which can be justified due to the failure of 
anticancer drugs to exert their maximum effect mainly 
due to the following: (a) overexpression of P-glycoprotein 
(P-gp) receptors in GBM chemoresistant cancer cells 

causing increased drug efflux; (b) hypoxic tumor 
tissues further aggravating drug delivery by promoting 
ischemia; (c) high heterogeneity and variability of GBM 
at molecular, histopathological and genetic levels5,6; (d) 
the effect of treatment on cancer tissue is unpredictable7; 
and (e) the intrinsic feature of GBM; sustaining 
proliferative signaling, evading growth suppressors, 
activating invasion and metastasis, enabling replicative 
immortality, inducing angiogenesis, resisting cell death, 
evading immune destruction and reprogramming 
cellular energetics. The highly-resistant character of GBM 
cancer cells makes them relapse and penetrate healthy 
brain tissues quickly resulting from their unique cellular 
heterogeneity, presenting a challenging case in cancer 
patient management.

Searching for a brain tumor targeted drug delivery 
system, numerous “nanomedicines” and de-novo 
chemotherapeutics have been investigated to overcome 
low drug penetration and cellular resistance,4 and to 
specifically and accurately deliver the drug to their target 
tissue without having adverse effects on the adjacent 
intact tissues.8 Despite promising in-vitro results, most in-
vivo studies fail when administered systemically mainly 
due to the biological and pathological barriers, namely 
as blood-brain barrier (BBB), blood-brain tumor barrier 
(BBTB), arachnoid barrier and blood cerebrospinal fluid 
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Mini Review

Abstract
Brain, predisposed to local and metastasized tumors, has always been the focus of oncological 
studies. Glioblastoma multiforme (GBM), the most common invasive primary tumor of the brain, 
is responsible for 4% of all cancer-related deaths worldwide. Despite novel technologies, the 
average survival rate is 2 years. Physiological barriers such as blood-brain barrier (BBB) prevent 
drug molecules penetration into brain. Most of the pharmaceuticals present in the market cannot 
infiltrate BBB to have their maximum efficacy and this in turn imposes a major challenge. This 
mini review discusses GBM and physiological and biological barriers for anticancer drug delivery, 
challenges for drug delivery across BBB, drug delivery strategies focusing on SLNs and NLCs and 
their medical applications in on-going clinical trials. Numerous nanomedicines with various 
characteristics have been introduced in the last decades to overcome the delivery challenge. 
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were introduced as oral 
drug delivery nanomedicines which can be encapsulated by both hydrophilic and lipophilic 
pharmaceutical compounds. Their biocompatibility, biodegradability, lower toxicity and side 
effects, enhanced bioavailability, solubility and permeability, prolonged half-life and stability 
and finally tissue-targeted drug delivery makes them unique among all.
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barrier (BCSF) barrier, which restrict the delivery of 
chemotherapeutic drugs to the tumor tissue.9 Hence, it is 
necessary to investigate these more profoundly. 

The focus of the present mini review is on two types 
of drug delivery systems, solid lipid nanoparticles (SLNs) 
and nanostructured lipid carriers (NLCs), to target brain 
tumors. But, it is worthwhile to discuss first the barriers 
for brain anticancer drug delivery. 

Barriers to brain drug delivery
Blood-brain barrier
BBB by modulating the transfer of different substances 
from the blood to CNS maintains a stable concentration 
of endogenous and exogenous substances in the 
body which are selected according to their structural 
and molecular features.10 BBB originates from the 
neurovascular unit which is extended along the cerebral 
capillaries, and is formed by endothelial cells, pericytes, 
vascular smooth muscle cells, neurons, astrocytes 
and perivascular macrophages.11 However, there are 
anatomical differences between brain and peripheral 
capillaries; the peripheral capillaries lack fenestrations 
and intercellular pores (while present in brain capillaries) 
because of endothelial tight and adherent junctions which 
limit transportation through paracellular pathways. 
Another difference is related to their components; tight 
junctions are composed of cingulin, occluding, claudins 
and zonula occludens proteins, while adherens junctions 
are cadherins.11 Different molecules (e.g. nutrients, 
enzymes and proteins) are transferred inside and outside 
of the CNS mediated by four mechanisms (Table 1). 
The unique structure of BBB restricts the penetration of 
almost 98% of new therapeutic molecules into the brain 
tissue following systemic administration which poses a 
serious problem to access the brain microvasculature (20 

m² surface area, 640 km length).12 This large and long 
vascularization provides a rapid transportation (by simple 
diffusion) of tiny molecules less than a second,13 which is 
almost impermeable through the peripheral circulation.13 
Furthermore, periendothelial accessory structures 
(astrocytes) act to mediate and produce growth factors 
and cytokines, keep potassium ion levels and inactivate 
neurotransmitters.14

The different “drug delivery” transport mechanisms 
across BBB have the principal role of delivering drugs, 
considering that pro-drugs and drugs, resembling 
endogenous compounds and nutrients, are encapsulated 
according to the required therapeutic dosage of 
compounds and nutrients.13

Besides, it is proved that the P-gp receptors (an ATP-
dependent drug transport protein) on the BBB endothelial 
cells interfere with the penetration of molecules inside by 
exporting them outside the cells. Overcoming P-gp drug 
export mechanism could maximize massively the drug 
absorption into the brain tissue.22,23 

Blood-brain tumor barrier
In definition, when a brain tumor is formed, the BBB will be 
based between this new tumor tissue and capillary vessels. 
Thus, the BBB is referred to as the BBTB.24 According to 
the shape and permeability of the BBTB, there are three 
stages which mainly rely on the progression of adjacent 
brain tumor changes.24

In stage one (early-stage malignant tumor), the BBTB 
capillaries are consistent, non-fenestrated and intact, 
consequently the normal brain capillaries are still being 
supplied with necessary growth nutrients.25 However, 
during stage two which is tumor growth, after the adjacent 
intact brain tissues are invaded by cancer cells and the 
tumor tissue enlarges more than 2 mm, new capillaries 
form by the angiogenesis mechanism (neovasculature) 
which are consistent with fenestrations of about 12 nm. 
This in turn changes the permeability and subsequently 
only molecules smaller than twelve nm can infiltrate 
inside BBTB.25,26 In stage three, inter-endothelial gaps are 
established between cerebral endothelial cells (CECs) due 
to continuous tumor growth which consequently damage 
the BBTB integrity.

A study in mouse reported thinner than normal 
microvessel basement membrane of CECs with 1 μm 
inter-endothelial gaps and 48 nm fenestration size.25 The 
high permeability of BBTB can be used to accumulate 
higher doses of anticancer drugs in the tumor site.27

The damaged BBTB forms tiny holes to compensate for 
their high metabolic demands and this phenomenon is 
widely seen in GBM. Hypoxia triggers the angiogenesis 
in particular zones of GBM and ultimately damages the 
BBB integrity.28 Although, GBM spread aggressively and 
rapidly in the adjacent intact tissues this does not affect 
the BBTB with enhanced permeability and retention. 
Therefore, overcoming the BBTB promotes higher 

Figure 1. Cancer world demography (2005-2015)
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anticancer drug delivery to GBM tumors.29,30

Tumor microenvironment
In order to have a more efficient drug delivery and 
successful treatment of brain cancers, a complete studying 
of tumor microenvironment (TME) is also necessary to 
interpret and justify the tumor molecular and biological 
processes.31,32 Generally, TME is considered as a complex 
heterogeneous environment where different physiological 
factors, such as mechanical stresses and protein-binding 
drug degradation, is required to be evaluated for a drug 
delivery system. So far, various components of TME 
have been studied and explained, namely as extracellular 
matrix (microglia, astrocytes and neurons) and blood 
vessels (also the ones forming the BBB), through the 
latter the vital role of immune and lymphatic systems 
and vascular cells in successful brain tumor treatment has 
been proved.33-38

Macrophages of the myeloid cells and microglia – 
collectively referred to as tumor-associated macrophages 
(TAMs)39,40 – have been provoked by GBM cells to 
generate immunosuppressive tumor- related cytokines 
and elevated T-cell apoptosis.41 Moreover, GBM cells 
also inhibit antitumor immune system activities by 
preventing immune-stimulatory cytokines’ production 
and activating the regulatory T-cells.42 Further studies 
suggest that preventing TAMs activity and readjusting 
them phenotypically to be functional against tumor 
progression is more efficacious than deactivating them,32,43 
and this concept has been the basis of the innovation of 
the recently introduced anti-cancer therapies; immune-
checkpoint inhibitors, cellular therapies (such as chimeric 
antigen receptor T cells) and vaccines.42-44

Nevertheless, unlike their promising features as a 
new approach in cancer therapy,31 there are factors 
hampering their maximum therapeutic effect in tumor 
tissue, the most important one is the BBB and its 
contribution toward immunotherapies penetration and 
other chemotherapeutics (such as Temozolomide) local 

co-existence. It is commonly believed that tumor vessels 
are significantly more permeable than the ones in intact 
tissues,45 and could diffuse more blood from vessels 
into the interstitial space to increase the interstitial fluid 
pressure.

The tumor vessels lose their well-established structure 
with the progression of tumor; they are not as functional 
as arteries, capillaries and veins in intact tissues. Decreased 
blood velocity and pressure gradient,46,47 increased 
interstitial fluid pressure and suppressed transvascular 
convection prevent drug delivery to the cancer tissue and 
subsequently limits the drug diffusion.48,49 Furthermore, 
the systemic administration diminishes even more delivery 
of chemotherapeutic by exposing them to enzymatic/
hydrolytic degradation. Hence, only small doses reach 
the cancer site with hypoxia and low pH which further 
aggravate the situation and the administered drug will not 
exert a therapeutic effect.

Challenges for oral delivery of anticancer drugs across BBB
The oral route to target brain cancers is a striking 
challenge, in part due to the limited oral absorption, 
short plasma half-life and the BBB as a barrier. The oral 
delivery of hydrophilic drugs to brain requires absorption 
and infiltration through the gastrointestinal tract (GIT) 
and then across the BBB. Moreover, the hydrogen bonds 
formed between hydrophilic drugs and GIT aqueous 
contents, hindering the absorption, further limits 
epithelial infiltration process.50 Additionally, peptide 
drugs are rapidly degraded upon their administration in 
GIT and this decreases their plasma half-lives.51

The application of nanomedicines for brain anticancer 
drug delivery
During recent decades, various nanomedicines of 
different size, material (Synthetic, natural, organic and 
inorganic) and shape have been employed for cancer 
treatment,52,53 and these components of construction 
affect their characteristics. Since their early introduction 

Table 1. Different mechanisms of physiological transport across BBB 

Pathway Transporter Process Feature of molecules Note Reference

Paracellular 
diffusion 

Across cells 
Non-saturable, non-
competitive

Small water-soluble 
Limited diffusion due to 
endothelial cells tight 
junction 

15

Transcellular 
diffusion 

Across cells 
Non-saturable, non-
competitive 

High lipophilicity, unfit for active efflux 
transport, low molecular weight ( < 400 
Dalton)

- 15,16

Carrier- 
mediated 
transport

Glucose transporters (GLUT1 & 
GLUT3), monocarboxylate (lactate; 
pyruvate) transporter system (MCT1), 
specialized carriers (essential amino 
acids and vitamins)

Active transport by 
selective membrane- 
bound carrier systems

Glucose, galactose, amino acids, 
nucleosides, lactates and pyruvates, 
adenine and guanine, choline, vitamins 
and hormones

Establishment of 
transient narrow pores 

15,17-19

Receptor- 
mediated 
endocytosis 

Specific receptors on the luminal side 
of the barrier for insulin, 
insulin-like growth factors, 
angiotensin II, folates and transferrin

Absorptive
transcytosis without 
specific plasma- 
membrane receptors 

Endogenous proteins 
and hormones, low- density lipoproteins 
(LDL), Polycationic proteins (albumins 
and immunoglobulins) 

Polycationic substances 
bound to 
negative charges of 
endothelial cells of 
plasma membrane

15,20,21



Solid lipid nanoparticles and nanostructured lipid carriers to target brain tumors

Advanced Pharmaceutical Bulletin, 2023, Volume 13, Issue 3 515

they have been rapidly evolved, mostly due to replacing 
unfit conventional clinical techniques with improved 
ones for refractory diseases, and since then have found 
their application in pharmaceutical and biomedical 
industries.54

In order to exert their maximum therapeutic effect 
with the lowest side effects, effective nanomedicines 
must be precisely engineered to target the complex 
pathophysiology of each disease. Therefore, they could 
be modified in such a way to be responsive according to 
different endogenous or exogenous stimuli; this feature 
can be employed for controlled and sustained release of 
loaded drug. Besides their application for therapeutic 
purposes, some of them (e.g. inorganic and polymeric/
lipid nanoparticles) have been employed for diagnosis 
purposes. Their dual-purpose application both as 
therapeutic and diagnostic resulted in the introduction 
of “theranostic” nanoparticles for which, among all, only 
synthetic polymers are used.

Each disease possesses its own specific etiology which 
is also influenced highly by environmental and genetic 
factors, and all these differences apply a very specific 
drug delivery design for targeting the affected area 
with minimum adverse effect on adjacent intact tissues 
resulting in tumor regression or complete healing. With 
regard to the CNS diseases, they all share one challenge: 
drug delivery through the BBB. In order to overcome 
this issue, a huge range of therapeutics such as drugs 
(functionalized with specific targeting segments), DNA/
RNA, genes, enzymes, antioxidants can be precisely 
loaded into the matrix of polymeric/lipid nanomedicines. 
In some studies on brain cancer, the majority of synthetic 
nanomedicines used are polymers such as polyethylene 
glycol (PEG) or Poly(lactide-co-glycolide) with different 
surface/physicochemical properties, size and shape.55,56 
however, their degradation produces acidic by-products 
which are toxic for brain tissue, making them unsuitable 
for extended drug delivery application, hence, inorganic 
nanoparticles (still toxic) and lipid-based structures have 
been introduced.

With regard to brain cancers, drug delivery happens 
at local or systemic level; the former will permeate the 
BBB, accumulating a higher concentration of drug 
with minimum adverse effects for adjacent intact 
tissues, evading also degradation/hydrolysis and 
clearance processes before its in-site delivery. Implants, 
intraventricular/intrathecal and convection enhanced 
delivery (CED) all can be named as examples of local drug 
delivery. The latter, systemic drug delivery on the other 
hand, is the most common one in terms of compliance 
for patients since it doesn’t require surgical or clinical 
intervention, with possibility of repeated doses which 
makes them less invasive and more favorable compared 
to the local drug delivery.

So far, numerous nanomedicines with various size, 
surface charge and hydration and targeting character have 

been exploited for brain anticancer delivery, among them 
nanoparticles, nanofibers and hydrogels (Polymer-based 
nanostructures), lipid nanocapsules, liposomes, SLNs 
and NLCs (lipid-based nanostructures) have been widely 
studied.

SLNs and NLCs belong to lipid-based nanosystems 
of drug delivery. They offer better advantages over the 
polymeric or inorganic nanoparticles; biocompatibility, 
better penetration through the BBB without any structural 
modification influencing their function and easy large-
scale production. Nevertheless, their low loading capacity 
is a disadvantage for their clinical application hence the 
low number of systems marketed commercially.57

Solid lipid nanoparticles
Seeking for a substitute nanostructured system with 
lower toxicity, higher loading capacity and stability SLNs 
were developed and introduced thirty years ago,58 and 
since then numerous studies have proved their efficacy 
and advantage over emulsions, micelles, polymeric 
nanoparticles and liposomes.59

SLNs are composed of different lipids with the same 
features: containing surfactants/co-surfactants, solidness 
at various temperatures and low melting points. As for 
lipids cetyl palmitate, Compritol® 888 ATO, Precirol® 
ATO5, glycerol monostearate, stearic acid, stearyl alcohol, 
and for surfactants (function also as a stabilizer) dimethyl 
dioctadecyl ammonium bromide and Tween® 80 and 
poloxamer 188 have been used as the most common 
ones. The appropriate choice of lipids, surfactants and 
the composition of SLNs (the solid core: 0.1–30% w/w, 
surfactants: 0.5–5% w/v) influences their release profile, 
drug encapsulation, stability over time, surface charge, 
polydispersity, size and physicochemical features.

SLNs have several advantages; (a) ability to effectively 
deliver both hydrophilic and lipophilic drugs to various 
tissues, (b) potential encapsulation with a wide range of 
therapeutic molecules, such as oligonucleotides, peptides, 
genes and other tiny nanoparticles like superparamagnetic 
iron oxide particles, (c) ability to protect the loaded 
therapeutic molecule from reticuloendothelial system 
clearance, (d) poor water solubility that favors the 
encapsulated substance for controlled and sustained 
release, (e) long-term stability and lower toxicity making 
them applicable for long-term administration, (f) due to 
their biocompatibility, they are easily sterilized and there 
is no need for organic solvents use which might influence 
the toxicity of the final product, (g) they have large-
scale industrial production capacity, (h) with modified 
targeting features they can specifically target the affected 
tissue.

Their disadvantages can be addressed as the following; 
a) encapsulated therapeutic particles export, (b) gelation 
predisposition, and (c) low encapsulation efficiency.58,59 
The latter is the result of the crystallization process which 
leaves the lipid core internal structure without enough 
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space for therapeutic substance loading.

Nanostructured lipid carriers
NLCs were introduced by Müller et al60 to improve the 
low-encapsulation efficiency of SLNs, with increased 
internal free space in solid lipid core structures. To 
synthesize such structure, a mixture of liquid and solid 
lipids with mono-, di- and triglycerides of different 
chain lengths is employed.61 Besides improving the 
encapsulation efficiency, other drawbacks of SLNS were 
improved, namely as stability and no drug expulsion 
during storage.61,62

It has been proved that hydrophobic drugs have higher 
dissolution rate in the liquid lipids than in solid ones, 
leading to increased encapsulation efficiency and higher 
solubility of drugs which in turn even results in higher 
encapsulation efficiencies.63 However, for hydrophilic 
drugs a lipid conjugation approach is used, by which 
the functional group of the drug (e.g. amine group) is 
conjugated with the functional group (e.g. carboxylic acid 
group) of lipids like oleic acid, through carbodiimide or 
another type of chemistry.

Among all the liquid lipids in use for NLCs Capmul® 
MCM C8, L-phosphatidyl choline (PC), Tegosoft® M, 
Tegosoft® P, soy lecithin, sesame oil, Speziol® EOL NF, 
Mygliol® 812 N, almond oil, olive oil, Suppocire® NC, 
cetiol, peanut oil, corn oil, soybean oil and oleic acid can 
be named. As for the surfactants N-[1-(2,3-dioleyloxy) 
propyl]-N,N,N-trimethyl-ammonium chloride 
(DOTMA), Tween® 20, Tween® 80, Lutrol F68, Tego Care 
450, Pluronic® F68, Speziol® TPGS Pharma, Myrj™ 59, 
Span® 85, Eumulgin SML, Cremophor® RH, Cremophor® 
EL. For NLCs synthesis the following ratio could be 
employed: the surfactant concentration 0.25–6% w/v, 
solid and liquid lipid 4:1–1:4, total lipid concentration 
1–30% w/v.

Novel drug delivery strategies for brain tumors
Targeting moieties
The inability to locate or target cancer tissue; deposition 
of drug in the wrong tissue; Adsorption of drug by intact 
cells; Low in-site amount of therapeutic nanoparticles 
following poor cell endocytosis have been mentioned 
as the main reasons of failure in cancer targeted drug 
delivery of new biotechnological medicines.

Hence, exploiting cell and molecular biology techniques, 
specific targeting moieties for GBM have been discovered 
which have been under investigation for therapeutic 
purposes by nanotechnology. There are two ways to target 
tumor cells by nanoparticles; passive in which the tiny 
therapeutic molecules of drug reach and accumulate in 
cancer tissue by taking advantage of extravasation process 
through the “leaky” vessels, and active in which specific 
ligands attach to a specific receptor or molecular marker 
of the cancer cell which this feature in turn can be used 
for targeted-drug delivery.64 Since then, a new concept 

called ”biosensors” has been emerged in nanotechnology 
and drug delivery systems,65 and there have been clinical 
trials to investigate this concept for active drug delivery 
(Table 2).

Cancer cells overexpress numerous surface receptors 
which can be targeted by various biological ligand and 
moieties in drug delivery for brain cancer treatment; so 
far protein, peptides and antibodies have been under 
investigation. According to some studies (Table 3), there 
are various endothelial cell receptors in the brain for which 
there are specific ligands that can be exploited for the drug 
delivery purposes through the BBB. Nevertheless, given 
their ubiquitous expression in body cells, the risk of non-
specific adverse effects might limit this approach.

Intranasal drug delivery; a “shortcut” to brain
Intranasal delivery is a novel therapeutic drug delivery 
directly to the brain through the epithelium of the 
olfactory nerve (cranial nerve І) and trigeminal nerve 
(cranial nerve V) as anatomic connections. Since the 
nanoparticles are administered in nasal cavity, they 
protect the chemotherapeutic drug from the biophysical 
barriers namely as BBB. However, the administered drug 
is not able to recognize the intact and cancer brain tissue.79 
There have been studies of successful brain delivery of 
anticancer drugs (such as methotrexate, 5-fluorouracil 
and raltitrexed) using intranasal delivery, evaluating 
the cellular mechanisms, involved cellular receptor and 
main vectors.80 Given its novelty, still further studies are 
required to assess the benefits and drawback of this route 
for brain cancer treatment. 

Conclusion
Despite promising progress in recognizing 
pathophysiological and cellular behavior of malignant 
brain tumors such as GBM, yet they remain a medical 
challenge with high mortality rate. Recent in-depth 
understanding of the biochemistry, specific markers, 
ligands and receptors involved resulted in novel 
chemotherapeutic drugs, which are mostly hydrophobic 
and consequently reach into insufficiently to the tumor 
tissue to exert their maximum therapeutic effect. 
Furthermore, unique structure of BBB and BBTB 
which function as a barrier prevent in-site anticancer 
drug delivery to the cancer tissue. Hence, various 
nanomedicines have been investigated with in-vitro/in-
vivo studies to overcome these barriers to provide high 
drug diffusion, controlled drug release profile, tumor-
specific targeting and long-term blood circulation. Lipid 
nanoparticles among all offer promising drug delivery 
and can be modified in such a way to by-pass barriers and 
deliver the encapsulated therapeutics to the affected brain 
tissue. They also offer so many advantages over other 
polymeric nanoparticles with enhanced efficacy, reduced 
toxicity and enhanced drug stability.
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Table 2. Preclinical and clinical trials of nanomedicines for the treatment of brain tumors (http://www.clinicaltrials.gov)

Clinical trials ID Condition Intervention Phase

NCT00734682
Glioblastoma, gliosarcoma, 
anaplastic astrocytoma, 
anaplastic oligodendroglioma

Drug: Nanoliposomal CPT- 11 Phase 1

NCT02340156 Recurrent glioblastoma
Genetic: SGT-53
Drug: Temozolomide

Phase 2

NCT00769093 Brain neoplasms Drug: Ferumoxytol Phase 1

NCT00313599 CNS tumor Drug: lapatinib, paclitaxel Phase 1

NCT01967810
Glioma glioblastoma
brain tumor, recurrent

Drug: ANG1005
Drug: Bevacizumab

Phase 2/ ongoing

NCT02048059 Breast cancer brain metastases Drug: ANG1005 Phase 2/ ongoing

NCT02820454 Brain metastases
Drug: AGuIX Radiation: whole brain
radiation therapy

Phase 1/ongoing

NCT03020017 Gliosarcoma, recurrent GBM
NU-0129, spherical nucleic acid (SNA) arranged on the surface of a small 
spherical gold nanoparticle/ targeted molecular therapy

Early Phase 1/on going

NCT02766699 GBM, astrocytoma, grade IV
EGFR(V)-EDV-Dox [EGFR
(vectibix sequence) targeted EnGeneIC dream vectors containing 
doxorubicin]

Phase 1/ongoing

NCT03086616 Diffuse intrinsic pontine glioma
CED of nanoliposomal
irinotecan (nal-IRI)

Phase 1/ongoing

NCT02022644 High grade glioma
CED of nanoliposomal
irinotecan

Phase 1/ongoing

NCT01386580
Brain metastases,
malignant glioma

2B3-101 (phase1)
/Trastuzumab (phase2)

Phase1&2/completed
(2014)

NCT02861222 Malignant glioma
Liposomal doxorubicin
(MYOCET)

Phase 1/completed
(2013)

NCT00944801 GBM
PEGylated liposomal
doxorubicin

Phase1&2/completed
(2009)

NCT00019630 Brain tumor Doxorubicin HCl liposome Phase 1/completed

NCT01906385 GBM, astrocytoma Rhenium nanoliposome Phase 1&2/ongoing

NCT01517464 Neoplasm Genetic: SGT-94 Liposome Phase 1/ongoing

NCT01266096 Malignant brain tumors Drug: PET scan with 124I- cRGDY-PEG-dots silica nanoparticles Phase 0/ongoing

NCT03020017
Gliosarcoma recurrent 
glioblastoma

Laboratory Biomarker Analysis Pharmacological Study
Drug: Targeted Molecular Therapy
gold nanoparticles

Early Phase1/ongoing

Table 3. Targeting moieties for brain drug delivery of nanomedicines

Class of ligand Model drug Receptor Nanoparticle Reference

Antibodies Loperamide
Transferrin/anti-transferrin receptor monoclonal 
antibodies (OX26 or R17217)

human serum albumin (NHS-PEG-MAL-5000 linker) 66

Antibodies _ Transferrin Transferrin/bovine serum albumin 67

Antibodies Loperamide
Insulin/anti-insulin receptor monoclonal 
antibody (29B4)

human serum albumin (NHS-PEGMAL-5000 linker) 68

Antibodies Anti-IL13αR mAB IL3αR2 _ 69,70

Antibodies Specific mAB CD133 Carbon Nanotubes 71

Peptides paclitaxel
Angiopep (Thr-Phe-Phe-Tyr- Gly-Gly-Ser-Arg-
Gly-Lys-Arg- Asn-Asn-Phe-Lys-Thr-Glu-Glu-Tyr)/ 
low density lipoprotein

Angiopep-conjugated poly(ethylene glycol)-co- poly(ε-
caprolactone) copolymer

72

Peptides loperamide
H-2N-Gly-l-Phe-d-Thr-Gly-l-Phe-l-Leu-l-Ser-O-
ß-d- glucose-CONH2

Gly-l-Phe-d-Thr-Gly-l-Phe-l-Leu-l-Ser(O-β-d-glucose)- 
CONH2 bound to poly(D,L- lactide-co-glycolide)

73

Peptides Synthetic RGD αvβ3 integerin _ 74,75

Peptides
Tat protein (from 
HIV)

_ liposomes 76

Proteins siRNA Transferrin Cyclodextrin polymer-based 77

Proteins
Chlorotoxin (from 
scorpion)

Membrane bound matrix metalloproteinase-2 
(MMP-2)

- 78

http://www.clinicaltrials.gov
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