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Introduction
Many drugs interact with plasma or other molecules, 
such as DNA, to form a drug-molecule complex. The 
process is called protein binding, more specifically the 
binding of drugs to proteins. The bond drug remains in 
the bloodstream while the unbound component can be 
metabolized or excreted to become the active component.1 
In short, protein-binding process is defined as the 
formation of complexes: hydrogen bonding, hydrophilic 
bonding, ionic bonding, Vander Walls bonding, and 
covalent bonding. 

The binding of drugs to proteins can be reversible or 
irreversible.2,3 Irreversible drug-protein binding is the 
result of chemical activation of a drug tightly binding to 
a protein or macromolecule through a covalent chemical 
bond. Irreversible drug binding is responsible for some 
types of drug toxicity that can occur over a long period 
of time.4 Reversible drug- protein binding means that the 
drug binds to weaker chemical bound, such as hydrogen 
bonds or Vander Waals forces. At low drug concentrations, 
most of the drug is bound to the protein, while at high 
drug concentrations, the protein is bound to the sites 
to saturate, leading to a rapid increase in the free drug 

concentration. Therefore plasma protein binding plays a 
key role in drug therapy as it affects the pharmacokinetics 
and pharmacodynamics of the drug as it is often directly 
related to the concentration of free drug in plasma.5,6

The construction of in silico models that establish 
a mathematical relationship between the molecular 
structure and the properties of interest is an important 
step in drug discovery as it avoids chemical synthesis and 
expansive and lengthy ones laboratory tests reduced.7,8

In recent years, several QSAR models have been 
developed to predict plasma protein binding and powerful 
plasma protein binding prediction algorithms are used, 
such as support vector machines and their derivatives,9-11 
the random forest,12 neural networks,13,14 and gradient 
boosting decision trees.15 In 2017, Sun et al constructed 
QSAR models using six machine-learning algorithms 
with 26 molecular descriptors.16 Kumar et al presented 
in 2018 a systematic approach using support vector 
machine, artificial neural network, K-nearest neighbor, 
probabilistic neural network, partial least square, and 
linear discriminant analysis for a diverse dataset of 735 
remdies.17 Yuan et al. published a global quantitative 
structure-activity relationships (QSAR) model for plasma 
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Abstract
Purpose: The purpose of this study was to develop a robust and externally predictive in silico 
QSAR-neural network model for predicting plasma protein binding of drugs. This model aims 
to enhance drug discovery processes by reducing the need for chemical synthesis and extensive 
laboratory testing.
Methods: A dataset of 277 drugs was used to develop the QSAR-neural network model. The 
model was constructed using a Filter method to select 55 molecular descriptors. The validation 
set’s external accuracy was assessed through the predictive squared correlation coefficient Q2 
and the root mean squared error (RMSE).
Results: The developed QSAR-neural network model demonstrated robustness and good 
applicability domain. The external accuracy of the validation set was high, with a predictive 
squared correlation coefficient Q2 of 0.966 and a root mean squared error (RMSE) of 0.063. 
Comparatively, this model outperformed previously published models in the literature.
Conclusion: The study successfully developed an advanced QSAR-neural network model 
capable of predicting plasma protein binding in human plasma for a diverse set of 277 drugs. 
This model’s accuracy and robustness make it a valuable tool in drug discovery, potentially 
reducing the need for resource-intensive chemical synthesis and laboratory testing.
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protein-binding in 2020, and developed a novel strategy 
to construct a robust QSAR model for predicting plasma 
protein-binding.18 Altae-Tran et al introduced deep–
learning healthcare techniques successfully predicting 
drug activity and structure.19 Wallach and his co-authors 
introduced AtomNet, known as the first structure-based 
deep convolutional neural network, to predict small 
molecule bioactivity for drug discovery applications.20

This work uses a systematic methodology based on 
QSAR, Filter method, and feed-forward neural network 
(FFNN) to predict plasma protein binding for 277 
molecules. Filter method, known as the most popular 
feature selection technique, was used to reduce the 
descriptors. A feed forward neural network was then used 
to predict plasma protein-binding from the extracted 
descriptors.

Materials and Methods
A five-step process was employed to predict the plasma 
protein-binding, as shown in Figure 1: (1) data set 
collection, (2) molecular descriptors generation, (3) 
selection of relevant descriptors by a filter method, (4) 
FFNN modeling, (5) validation of models.

Data set collection
The experimental data values of protein-binding of 
the 277 drugs used in this study were selected from the 
pharmacological basis of the therapeutics handbook21 and 
the handbook of clinical drug data.22 Chemical names 
and experimental protein-binding values are presented 
in Supplementary file 1. This dataset was divided into 
two parts. The first one with 235 plasma protein-binding 
values, dedicated to develop the QSAR model. The second 
included 42 elements left for the external validation. The 
data was partitioned using holdout cross-validation.

Molecular descriptors generation
The numerical representation of molecular structure 
was assessed in terms of molecular descriptors; The 
SMILES script (simplified molecular input line-entry 
system) required to calculate descriptors was extracted 
from the open-access database PubChem.23 SMILES is a 
standard for specifying the structure of chemical species 
that takes the form of a line notation.24 Table 1 lists 1666 
descriptors that were sorted into twenty categories using 
the SMILES scripts for the 277 drugs. The E-Dragon 
online programs,25 also known as the electronic remote 
version of the well-known software DRAGON created by 
the Milano Chemometrics and QSAR Research Group by 
Prof. R. Todeschini, were used to collect all descriptors. In 
Supplementary file 2, the name and number of calculated 
descriptors are presented.

Figure 1. Flow sheet of the procedure followed

Table 1. Number of calculated descriptors and their categories

Descriptors category Number

Constitutional descriptors 48

Topological descriptors 119

Walk and pathcounts 47

Connectivity indices 33

Information indices 47

2D autocorrelations 96

Edgeadjacency indices 107

Burdeneigen value descriptors 64

Topological charge indices 21

Eigen value based indices 44

Randic molecular profiles 41

Geometrical descriptors 74

RDF descriptors 150

3D-morse descriptors 160

WHIM descriptors 99

GETAWAY descriptors 197

Functional group counts 154

Atomcentred fragments 120

Charge descriptors 14

Molecularproperties 31

Total 1666
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Selection of relevant descriptors
Feature selection techniques are applied to decrease the 
number of elements in the dataset by choosing features 
that will give us better accuracy with less data.26-28 It also 
reduces the overfitting and the overtraining risk.29 Feature 
selection methods are widely available in the literature. 
The characteristics, advantages, and disadvantages of the 
three main strategies that can be used for the selection of 
relevant descriptors are reported in Table 2.30

The following procedure was used to reduce the number 
of molecular descriptors31:
1. Descriptors having constant values (min = max) were 

eliminated.
2. Quasi-constant descriptors (1st quartile 25% = 2nd 

quartile 75%) were removed.
3. Descriptors with standard relative deviation 

RSD < 0.05 were deleted. 
The three steps above were performed using 

STATISTICA software.32

4. Matrices of the pairwise linear correlation between 
each pair of the column in the input matrices were 
calculated via MATLAB.33 Additionally, every 
variable that has a correlation coefficient R > 0.75 
were removed. For more robustness of the model, 
the variance inflation factor VIF whose equation is as 
follows was calculated:

2
1  

1i
i

VIF
R

=
−

                                                                         (1)

Where 2
iR  is the squared correlation coefficient 

between the ith descriptor and the others. All descriptors 
with VIF > 5 were eliminated from the model.34 

Model development
For the purpose of predicting the plasma protein-binding, 
the selected descriptors were used as inputs in FFNN. 
There are different approaches to discover the number of 

hidden neurons required for a modeling task explained in 
detail in a review named methods of selecting the number 
of hidden nodes in Artificial Neural Networks review.35 
In this work, the following steps were used to choose the 
number of neurons in the hidden layer36:
1. Initially, only five hidden neurons were taken.
2. The FFNN is trained until the mean square error does 

no longer seem to improve. 
3. At this moment, five neurons are added to the hidden 

layer, each with randomly initialized weights, and 
resumed training.

4. The steps 2 and 3 are repeated until a termination 
criterion has been satisfied. 

The mathematical equation of the model used for the 
prediction of protein binding is:
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xi (i = 1…p) is the input that corresponds to the number 
of data included in the training of the ANN, i from 1 to 
15, wij(i = 1…p, j = 1…k) are weights from input to hidden 
layer, b j (j = 1…k) are biases of the neurons in the hidden 
layer, k = 40 for filter method, w2j(j = 1…k) are weights 
from the hidden to the output layer, b is the bias of the 
output neuron and fb is the output.

Model validation
We established internal and external validation criteria to 
assess the QSAR models’ generalizability and predictive 
power. The following statistical parameters were used 
in our investigation to evaluate the models’ efficacy: 
the mean squared error (MSE), correlation coefficient 
(R), predictive squared correlation coefficient (Q2), and 
coefficient of determination (R2) values.

2 1 RSSR
SS

= −                                                                               (3)

Table 2. Feature selection methods and their advantages and disadvantages

Feature selection with filter methods Feature selection with wrapper methods Feature selection with embedded methods

Relevance of the features is calculated by considering 
the intrinsic properties of the data.

Wrapper methods select a subset of relevant 
features using a learning algorithm.

Includes the classifier construction for the 
optimal feature selection.

Use feature relevance score to select the top rank 
features.

Conduct search in the space of possible 
parameters.

Like wrapper approaches, these methods are 
specific to a given learning algorithm.

Examples Examples Examples

Information gain
Correlation coefficient scores
Chi squared test
T-test

Genetic search
Sequential forward selection
Sequential backward elimination

Decision tree
Weighted Naive Bayes
SVM

Advantages Advantages Advantages

Can scale to high-dimensional data sets
Fast and computationally
inexpensive in comparison to wrapper method

Considers features dependencies
Interaction with classifier
Simple to implement

Classifier interaction
Considers feature dependencies

Disadvantages Disadvantages Disadvantages

No interaction with the classifier
Univariate feature selection methods do not consider 
feature dependencies/ redundancy

Higher risk of overfitting
Selection based on classifier
Computationally intensive

Classifier dependencies



A quantitative structure-activity relationship for human plasma protein binding

Advanced Pharmaceutical Bulletin, 2023, Volume 13, Issue 4 787

2

1

( )predn
i i

i

y yMSE
n=

−
=∑                                                                     (4)

2 1 PRESSQ
SS

= −                                                                              (5)

The residual sum of squares (RSS) is the difference 
between the fitted values and the observed values. The 
sum of squares (SS) refers to the difference between the 
observation and their mean. The PREdictive residual SS 
(PRESS) is the difference between the predictions and the 
observations.

Results and Discussion
The results obtained from the selection of the most 
important descriptors using the correlation coefficient 
R and the variance inflation factor VIF showed that 
55 descriptors seemed to be the most appropriate. The 
calculated VIFs among the values of the selected descriptors 
are less than five, indicating that multicollinearity between 
the selected descriptors is acceptable. To get an overview 
of the correlation structure we used a heatmap to highlight 
what is important (Figure 2). Table 3 shows the VIF values 
for the selected descriptors and their meanings. 

We followed the above-mentioned procedure to 
determine the required number of hidden neurons. 
The best model’s accuracy was assessed using the R(all), 
MSE(validation), 2

trainR , and Q2 criteria. The best model 
was chosen based on the maximum R(all), 2

trainR , and Q2 
and the lowest MSE (validation).31,37 Table 4 shows 10 
network models developed. The results obtained show 
that network eight with 40 neurons is the best model 
with R (all) = 0.990, 2

trainR  = 0.981, Q2 = 0.989, and MSE 
(validation) = 0.002. The best performance of the model 
had a topology of (55-40-1): 55 input nodes, one hidden 
layer with 40 nodes having the hyperbolic tangent as a 
transfer function, and one output layer with an identity 
function. The neural networks were implemented using 
Neural Network Toolbox for MATLAB.33 Figure 3 
shows the predicted protein-binding values versus the 
experimental ones for the training and validation sets. The 
results show a close correlation between predicted and 
observed plasma protein-binding. The network type used 
is a Feed-Forward Network with the Levenberg-Marquardt 
backpropagation training function  and gradient descent 
with momentum weight and bias learning function and 
the data was partitioned using holdout cross-validation. 
The difference between 2

trainR  and Q2 was equal to 0.008. 
this difference did not exceed 0.3 indicating the robustness 
of the model.38

In order to investigate the predictability and performance 
of the model developed in this work, a statistical evaluation 
is carried out, as shown in Table 5. The model’s robustness 
is demonstrated by the fact that the internal validation’s 
statistical coefficients are all acceptable and satisfactory 
(lowest MSE, RMSE, and MAE, as well as high 2 ,trainR  Q2, 

2
adjustedR ). External validation parameters were also used to 

evaluate the model’s quality. We can say that this model 
stands out due to its high predictive power. The excellent 
Q2 value is greater than 0.9.38

Comparison between models from literature
We made a comparison between the few models reported in 
the literature with our developed model for the prediction 
of the binding of drugs to plasma proteins (Table 6). The 
evaluation of the advantages and disadvantages of these 
methods is quite difficult (each study used different data 
sets and different modeling approaches). We can see that 
the statistical parameters of our study exceed the models 

Figure 2. Heatmap of the correlation matrix for Filter method

Figure 3. Comparison between experimental and predicted values for training 
and validation sets
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Table 3. The VIF values for the selected descriptors by filter method

Descriptor Type Description VIF

nX Constitutional descriptors number of halogen atoms maximal 2.6615

MAXDN Topological descriptors Electrotopological negative variation 4.4004

MAXDP Topological descriptors maximal electrotopological positive variation 3.5133

PJI2 Topological descriptors 2D Petitjean shape index 1.7543

Lop Topological descriptors Lopping centric index 1.9696

MATS1m 2D autocorrelations Moran autocorrelation - lag 1 / weighted by atomic masses 2.9735

MATS2m 2D autocorrelations Moran autocorrelation - lag 2 / weighted by atomic masses 4.0324

MATS4m 2D autocorrelations Moran autocorrelation - lag 4 / weighted by atomic masses 2.6631

GATS2m 2D autocorrelations Geary autocorrelation - lag 2 / weighted by atomic masses 3.3624

GATS4m 2D autocorrelations Geary autocorrelation - lag 4 / weighted by atomic masses 2.7846

JGI2 Topological charge indices Mean topological charge index of order2 2.4942

JGI3 Topological charge indices Mean topological charge index of order3 3.5132

JGI4 Topological charge indices Mean topological charge index of order4 1.8913

JGI5 Topological charge indices Mean topological charge index of order5 2.3317

JGI6 Topological charge indices Mean topological charge index of order6 1.9848

JGI7 Topological charge indices Mean topological charge index of order7 2.0805

JGI8 Topological charge indices Mean topological charge index of order8 1.6600

JGI9 Topological charge indices Mean topological charge index of order9 2.0077

JGI10 Topological charge indices Mean topological charge index of order10 1.8634

FDI Geometrical descriptors Folding degree index 2.7337

PJI3 Geometrical descriptors 3D Petitjean shape index 1.8725

DISPm Geometrical descriptors d COMMA2 value / weighted by atomic masses 2.3418

DISPe Geometrical descriptors d COMMA2 value / weighted by atomic Sanderson electronegativities 4.0247

Mor04m 3D-MoRSE descriptors 3D-MoRSE - signal 04 / weighted by atomic masses 2.4145

Mor12m 3D-MoRSE descriptors 3D-MoRSE - signal 12 / weighted by atomic masses 3.0770

Mor17m 3D-MoRSE descriptors 3D-MoRSE - signal 17 / weighted by atomic masses 1.8941

Mor26m 3D-MoRSE descriptors 3D-MoRSE - signal 26 / weighted by atomic masses 2.3693

Mor28m 3D-MoRSE descriptors 3D-MoRSE - signal 28 / weighted by atomic masses 2.5970

Mor31m 3D-MoRSE descriptors 3D-MoRSE - signal 31 / weighted by atomic masses 2.7935

G2u WHIM descriptors 2st component symmetry directional WHIM index / unweighted 2.5765

G2m WHIM descriptors 2st component symmetry directional WHIM index / weighted by atomic masses 2.7232

E2m WHIM descriptors 2nd component accessibility directional WHIM index / weighted by atomic masses 2.9830

G2v WHIM descriptors 2st component symmetry directional WHIM index / weighted by atomic van der Waals volumes 2.6210

G2e WHIM descriptors 2st component symmetry directional WHIM index / weighted by atomic Sanderson electronegativities 3.5147

G2p WHIM descriptors 2st component symmetry directional WHIM index / weighted by atomic polarizabilities 2.8308

G2s WHIM descriptors 2st component symmetry directional WHIM index / weighted by atomic electrotopological states 2.9183

E2s WHIM descriptors 2nd Component accessibility directional WHIM index / weighted by atomic electrotopological states 3.0706

ISH GETAWAY descriptors Standardized information content on the leverage equality 1.7718

HATS4m GETAWAY descriptors Leverage-weighted autocorrelation of lag 4 / weighted by atomic masses 3.2173

C-005 Atom-centred fragments Atom-centred fragments 2.0372

C-006 Atom-centred fragments Atom-centred fragments 2.3826

C-008 Atom-centred fragments Atom-centred fragments 2.7744

C-025 Atom-centred fragments Atom-centred fragments 2.4806

C-026 Atom-centred fragments Atom-centred fragments 3.2520

C-040 Atom-centred fragments Atom-centred fragments 3.5563

H-048 Atom-centred fragments Atom-centred fragments 1.9890

H-052 Atom-centred fragments Atom-centred fragments 2.3870
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published previously. Our model gives a high R2, Q2, 
2
adjustedR  and lowest MSE, RMSE, MAE. According to 

these results, our model can be used for predicting plasma 
protein binding for new drugs saving amounts of money 
and time.

Applicability domain
A clearly defined applicability domain is recommended 
as the principle in OECD41 guidelines. In this work, 
we analyzed the domain of applicability with different 
approaches reported in Table 7 with the results. The 
proposed approaches’ algorithm and method can be 
found in the literature.42,43

The number of samples inside the applicability domain 
varied depending on the method used. Euclidean distance 
(95 percentile) and Classical KNN (Euclidean distance, 
k = 5) identified two test samples out of the domain of 
applicability. KNN (Euclidean distance k = 25) showed 
one of the test samples out of the applicability domain. 
Bounding box considered 03 test samples out of the 
applicability domain as shown in Figure 4. Although our 
points are far from the rest of the observations, they are 
close to the regression fitted line because they have a small 
residual, we speak of good leverage points. These results 
show that the model can be used to predict plasma protein 
binding for new compounds that have not been tested.

Conclusion
In this study, we constructed a QSAR model to predict 
277 human plasma protein binding. The feature selection 
strategy by a Filter method has produced 55 inputs, which 
were used to train a FFNN for predictions. Examination 
of the estimates of external and internal criteria indicated 
that the QSAR model developed is robust, externally 
predictive, and distinguished by a good applicability 
domain. The external accuracy of the validation set was 
calculated by the Q2 and RMSE which are equal to 0.966 
and 0.063 respectively. 98.30% of the external validation set 
is correctly predicted. According to the OECD principle, 
we can say that this QSAR model can be used to predict 
the fraction of human plasma protein binding for drugs 
that have not been tested to avoid chemical synthesis and 
reduce expansive laboratory tests.
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Descriptor Type Description VIF

O-057 Atom-centred fragments Atom-centred fragments 2.2844

O-060 Atom-centred fragments Atom-centred fragments 2.7103

N-072 Atom-centred fragments Atom-centred fragments 2.5844

N-075 Atom-centred fragments Atom-centred fragments 2.0612

Inflammat-80 Molecularproperties Ghose-Viswanadhan-Wendoloskiantiinflammatory at 80% (drug-like index) 2.6589

Hypertens-80 Molecularproperties Ghose-Viswanadhan-Wendoloski antihypertensive at 80% (drug-like index) 2.8495

Hypnotic-80 Molecular properties Ghose-Viswanadhan-Wendoloski hypnotic at 80% (drug-like index) 2.4199

Neoplastic-50 Molecular properties Ghose-Viswanadhan-Wendoloski antineoplastic at 50% (drug-like index) 1.8707

Table 3. Continued.

Table 4. Selected criteria of the different multi-layer perceptron for Filter 
method

Number of hidden neurons R(all) 2
trainR 2Q MSE (validation)

5 0.849 0.743 0.707 0.039

10 0.857 0.729 0.664 0.032

15 0.870 0.774 0.743 0.031

20 0.872 0.780 0.714 0.038

25 0.917 0.839 0.780 0.026

30 0.957 0.918 0.882 0.020

35 0.955 0.953 0.818 0.024

40 0.990 0.981 0.989 0.002

45 0.944 0.901 0.875 0.014

50 0.832 0.694 0.714 0.027

Table 5. External and internal criteria of the model

Parameters Value
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R (all) 0.991

2
trainR 0.981

Q2 0.989

MSE 0.002

MAE 0.028

RMSE 0.039
2
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Q2 0.966

MSE 0.004

MAE 0.042

RMSE 0.063
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experimental values for training and test sets
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