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Introduction
Formulations containing phytomolecules have flooded 
the market as they promise effective and safe treatment 
and prevention of various pathological states particularly, 
lifestyle diseases that require lifelong medication. Despite 
the wide-acceptability and usage of phytomolecules, their 
clinical advantage remains underutilized largely due to 
their complex structure, poor solubility, and instability in 
the biological milieu that affects their bioavailability and 
therapeutic advantage. 

Rutin (RT, 2-(3,4-dihydroxyphenyl)-4,5-dihydroxy-3-
[3,4,5-trihydroxy-6-[(3,4,5-trihydroxy 6methyl-oxan-2-yl)
oxymethyl]oxan-2-yl]oxy-chromen-7-one) and quercetin 
(QU, 3,3′,4′,5,7‐pentahydroxyflavone) are polyphenolic 
flavonoid compounds that are widely distributed in plants 
and have wide therapeutic applications due to their quenching 

property.1-3Another phytomolecule, Thymoquinone (TQ, 
2-isopropyl-5-methyl-1, 4-benzoquinone), is the main 
active constituent of the volatile oil, obtained from the seeds 
of Nigella sativa (Ranunculaceae) and holds tremendous 
potential as a therapeutic phytomolecule.4 

Traditionally, the oral route of drug administration 
for pharmacologically active compounds is preferred, 
as it holds many advantages like patient compliance, 
ease of use, safe, cost-effective, etc. In cases of RT, QU, 
TQ, their pharmacological utilization following oral 
administration is restricted due to poor solubility and 
dissolution at physiological pH and poor absorption 
and bioavailability.5,6 One of the reasons behind low oral 
bioavailability of complexly structured active molecules 
is low permeation across intestinal epithelium, a critical 
rate-limiting step.7 
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Abstract
Purpose: The clinical use and efficacy of phytomolecules are often hampered as their complex 
structure, poor aqueous solubility and low biological stability restricts their intestinal permeability 
which results in low oral bioavailability. Rutin (RT), quercetin (QU), thymoquinone (TQ) are few 
of such potent and therapeutically versatile phytomolecules that await maximal utilization. To 
address this lacuna, an attempt was made to develop a single strategy for enhanced intestinal 
permeation that can be applied to diverse phytomolecules. 
Methods: A simple idea with easy-to-apply method was developed that involved preparing 
nanoparticles of the phytomolecules RT, QU, TQ using Eudragit matrix (RT-PNP, QU-PNP, TQ-
PNP) and examined for particle characteristics, EE, in vitro release and kinetics. Phytomolecule 
loaded nanoparticle (PNPs) were encapsulated in HPMC grade capsule shell and evaluated for 
intestinal permeability by everted gut sac method. 
Results: The average particle sizes of RT-PNP, QU-PNP, TQ-PNP were 446 ± 0.152, 39.6 ± 0.006 
and 186 ± 0.513 nm, polydispersity indices were < 0.5 with negative zeta potential. The % release 
of respective phytomolecule from RT-PNP, QU-PNP, TQ-PNP was significantly higher (P < 0.05) 
at pH 6.8 than pH 1.2. PNPs followed Higuchi kinetics with non-Fickian diffusion mechanisms. 
The apparent intestinal permeability (Papp) of RT-PNP, QU-PNP, TQ-PNP were 14.45 ± 4.85, 
12.96 ± 1.73 and 30.87 ± 8.75 µg/cm2, respectively, significantly ( < 0.5) greater vs RT, QU, TQ, 
respectively. CLSM confirmed significantly higher (P < 0.05) intestinal permeation of RT-PNP, 
QU-PNP, TQ-PNP vs RT, QU, TQ, respectively.
Conclusion: Developed PNPs appear to be a good approach to increase the permeability of 
hydrophobic phytomolecules.
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Active research is being conducted to develop strategies 
to enhance the intestinal permeability of active molecules, 
one of which is the development of nanoparticle-based 
formulation.8,9 Oral polymeric nanoparticles have attracted 
considerable attention as novel drug delivery carriers as 
they are implicated to enhance the bioavailability, stability 
and efficacy of incorporated drugs.10 As compared to 
colloidal carriers, the polymeric nanoparticles are resistant 
to degradation in the gastrointestinal tract and can protect 
encapsulated drugs from the gastrointestinal environment. 

Therefore, development of polymeric nano sized 
delivery system is one of the most promising areas for 
oral drug delivery of the phytomolecules as it can be 
adopted to provide targeted delivery, with improved 
aqueous solubility of complex phytomolecules. Eudragit 
based polymer matrix are commonly used for enteric 
coating and also for preparation of controlled-release 
dosage forms.11 Eudragit RL100 and Eudragit RS100 are 
copolymers of ethyl acrylate, methyl methacrylate, and a 
low content of a methacrylic acid ester with quaternary 
ammonium groups. The ammonium groups are present 
as salts and make the polymers permeable across the cell 
membrane following drug delivery.12,13 

In the present study, a novel strategy has been adopted 
and applied to prepare and optimize nanoformulations of 
RT, QU and TQ with improved intestinal permeability. 

Materials and Methods
Chemicals 
RT and QU were purchased from Loba Chemie PVT. Ltd, 
India. TQ (purity > 98%) and polyvinyl alcohol (PVA) 
were purchased from Sigma-Aldrich, Germany. 

Optimization parameters 
Calibration curve
The standard stock solution (0.1 mg/mL) of RT was 
prepared in methanol while those of QU, TQ were prepared 
in ethanol. The standard stock solutions were serially 
diluted (2–20 μg/ mL) in respective solvents and the 
concentration versus absorbance calibration curves of RT, 
QU, TQ were measured at 268, 374, 260 nm, respectively 
(Thermo Fisher Scientific, AquaMate 800, USA).

For the purpose of, in vitro release the standard stock 
solution of RT, QT, TQ were prepared in phosphate buffer 
(pH 6.8), serially diluted (2–20 μg/mL) and plotted at 268, 
374, 260 nm, respectively.

Solubility 
The solubility of RT, QU, TQ were determined in different 
solvents (n-octanol, methanol, ethanol, dichloromethane 
(DCM) and water) by the shake flask method. Briefly, 
surplus amounts of RT, QU, TQ were added to each of 
the solvent (5 mL), vortexed (15 minutes), continuously 
mixed (37 °C, 24 hours), filtered (0.45μm) and the amount 
of dissolved phytomolecule was determined from the 
calibration curves as at Section 2.2.1.14 

Partition coefficient 
The partition coefficients (log p) of RT, QU, TQ were 
determined as ratio of concentration of the respective 
phytomolecule in n-octanol to concentration of the 
phytomolecule in water at 37 ± 0.5 °C using the calibration 
curves as at Section 2.2.1.15,16 

Effect of polymer concentration on percentage yield, drug 
entrapment efficiency and percentage drug loading 
For the preparation of phytomolecule loaded nanoparticles 
(PNPs) of RT, QU, TQ, and the respective phytomolecules 
were added to the polymers in a fixed ratio (1:5). For the 
purpose of optimization, the polymers Eudragit RS100 
and Eudragit RL100 were used in three different ratios 
(30:70, 50:50, 70:30), while keeping the amount of stabilizer 
constant (PVA, 0.25% w/v) so that three batches of PNPs 
of each phytomolecule, namely, RT-PNP (1A, 1B, 1C), QU-
PNP (2A, 2B, 2C), TQ-PNP (3A, 3B, 3C) were prepared. 

Preparation of phytomolecule loaded nanoparticles and 
formulation development
In accordance with the reported solvent evaporation 
method, the RT-PNP, QU-PNP, TQ-PNP were prepared 
and optimized as detailed in Section 2.2.4.17,18 Briefly, 
RT, QU, TQ were dissolved in methanol, ethanol, DCM 
(1:1), respectively. The optimized polymer ratio (Eudragit 
RS100: RL100: 30:70) was dissolved in ethanol (5 mL) with 
stirring (30 minutes). The organic phase was prepared by 
mixing dissolved phytomolecule with polymer solution. 
The aqueous phase was prepared by mixing double 
distilled water (50 mL) with PV (0.25%). Next, the 
organic phase was added dropwise into the aqueous phase 
with continuous stirring (2 hours, 40 °C). The resultant 
dispersion was sonicated, frozen (−20 °C, 12 hours) and 
lyophilized. Finally, lyophilized freeze dried powder of 
RT-PNP, QU-PNP, TQ-PNP were filled in HPMC grade 
capsule shell and marked as RT-For, QU-For, TQ-For, 
respectively. Blank formulations were also prepared using 
the same procedure sans RT, QU, TQ. 

The optimized batches of RT-PNP, QU-PNP, TQ-PNP 
were deduced from the effect of polymer concentration on 
percentage yield, entrapment efficiencies and percentage 
drug loading. 

Characterization of phytomolecule loaded nanoparticles
Determination of the percentage yield
The freeze-dried RT-PNP, QU-PNP, TQ-PNP were 
collected and weighed accurately. The percentage yield 
was calculated as the ratio of the weight of PNPs to total 
weight of phytomolecules and polymers.19 

Determination of percentage of entrapment efficiency and 
percentage drug loading 
To determine the amount of phytomolecule entrapped in 
the PNPs, the RT-PNP, QU-PNP, TQ-PNP were separated 
from the dispersion containing free phytomolecule 
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by centrifugation. Following solvent evaporation, the 
obtained dispersion was centrifuged (12 000 rpm, 30 
minutes at 4 °C) and the amount of free phytomolecules 
(RT, QU, TQ) in the supernatant was measured using 
calibration curves as at Section 2.2.1. The amount of 
phytomolecule entrapped into PNP was calculated as 
the difference between the phytomolecule used for the 
formulation and the amount of phytomolecule in the 
supernatant. The entrapment efficiency (EE%) was 
calculated as the ratio of difference between total amount 
of phytomolecule added and free phytomolecule to the 
total amount of phytomolecule added.20 The weighed 
amount of final freeze dried RT-PNP, QU-PNP, TQ-PNP 
were dissolved into the acetone and analysed as detailed 
in Section 2.2.1 

The percentage phytomolecule loading was calculated 
by the formula: 

Phytomolecule loading = Amount of phytomolecule 
entrapped/(Amount of phytomolecule added) + (Amount 
of Excipients added)

Determination particle size, polydispersity index and zeta 
potential 
The freeze dried RT-PNP, QU-PNP, TQ-PNP were 
resuspended separately, in distilled water and diluted 
up to 40 times. The obtained diluted suspensions were 
analyzed for particle size and polydispersity index (PDI) 
using dynamic light scattering (Zeta-Sizer, Malvern, Nano 
Series ZS90, Malvern Instruments, Ltd., UK). The zeta 
potential of RT-PNP, QU-PNP, TQ-PNP were determined 
by placing the diluted sample in elecrophoretic cell of the 
same instrument.21 

Transmission electron microscopy
The transmission electron microscopy (TEM) of RT-PNP, 
QU-PNP, TQ-PNP was performed by negative staining 
with phosphotungstic acid (PTA). A drop of dispersion, 
as prepared in Section 2.3 was placed on a carbon-coated 
copper grid and air-dried (10 minutes), followed by the 
addition of a drop of PTA (1% w/v) and left undisturbed 
(3 minutes). The excess liquid was dabbed before TEM 
imaging (TECNAI 200 Kv TEM).22 

Differential scanning calorimetry analysis
The compatibilities of RT, QU, TQ with polymers were 
analysed (Shimadzu DSC-60, Tokyo, Japan). To achieve 
this, 5 mg of RT, QU, TQ, Eudragit RS100, Eudragit 
RL100, RT-PNP, QU-PNP, TQ-PNP were placed in 
separate aluminium pans and crimped. The sealed pans 
were heated under nitrogen atmosphere (10 mL/min) 
from 25 °C to 300 °C at a heating rate of 10 °C/min. An 
empty aluminium pan was used as the reference pan.23 

Nuclear magnetic resonance
The RT, QU, TQ, Eudragit RS100, Eudragit RL100, 

RT-PNP, QU-PNP, TQ-PNP were dissolved in deutero 
chloroform (CDCl3) and subjected to 1H-NMR for 
structural analysis (Bruker 700 MHz Ultra Shield 
NMR).24 

In vitro release study
In accordance with the standard protocols, the in vitro 
release from RT-For, QU-For, TQ-For were conducted. 
Briefly, the RT-For, QU-For, TQ-For were placed in buffer 
solutions simulating gastric (10 mL, pH 1.2) and intestinal 
(10 mL, pH 6.8) environment for 6 hours under standard 
conditions (37 °C ± 0.5 °C, 100 rpm). At predetermined 
time intervals (0, 15, 30, 45, 60, 90, 120 and 180 minutes), 
sample aliquots (2 mL) were withdrawn and equal 
volumes of fresh buffer solution were replaced to ensure 
the sink conditions.

The RT, QU, TQ (1 mg) were subjected to the same 
procedure and drug content was analyzed using 
calibration curves from Section 2.2.1. The cumulative 
release percentages were calculated as the ratio of the 
amount of phytomolecule released to the initial amount 
of phytomolecule in the capsule, at each time interval. The 
cumulative percentage of phytomolecule released versus 
time curves were plotted and the release efficiencies were 
calculated.25 

The following equation was used to calculate the 
cumulative percentage release:

Concentration of phytomolecule (µg/
mL) = (slope × absorbance) ± intercept

Amount of phytomolecule release (mg/ 
mL) = Concentration of phytomolecule × Dissolution bath 
volume × dilution factor/1000

Cumulative percentage = Volume of sample withdrawn 
(mL) × P (t – 1) + Pt release (%) / Bath volume (v)

Where Pt = Percentage release at time t and P (t – 
1) = Percentage release previous to ‘t’

Release kinetics
In order to understand the release kinetics and mechanism, 
the results of in vitro release studies of RT-PNP, QU-PNP, 
TQ-PNP were fitted to various kinetic equations such as 
zero order (cumulative % release vs. time), first order (log 
% drug remaining vs. time), Higuchi’s model (cumulative 
% drug release vs. square root of time) and Korsmeyer–
Peppas model (log of % drug release vs. log time) and R2 
values were determined.26,27 In the Korsmeyer–Peppas 
model, the n value was applied to determine the release 
mechanism as described below:

n < 0.5 (0.45)—quasi-Fickian diffusion,

n = 0.5 (0.45)—diffusion mechanism,



Enhanced intestinal permeability of phytomolecules

Advanced Pharmaceutical Bulletin. 2024;14(4) 873

0.5 (0.45) < n < 1—non-Fickian diffusion,

n = 1 (0.89)—case II transport (zero-order release),

n > 1 (0.89)—super case II transport 

Stability studies
Stability studies were performed to evaluate the effect of 
storage conditions on the physicochemical parameters 
of RT-For, QU-For, TQ-For. The optimized RT-For, 
QU-For, TQ-For were stored in sealed glass vials (40 
°C ± 2°C / 75% RH ± 5% RH) protected from light, for 
3 months. The stored and freshly prepared RT-For, QU-
For, TQ-For were evaluated for their physical appearance, 
entrapment efficiency (%), drug loading (%) and in vitro 
release profiles.

Ex-Vivo intestinal permeability study
Animals
Adult Wistar male albino rats (200–250 g) were maintained 
under standard laboratory conditions, (25 ± 2 °C, 55 ± 5%) 
and provided normal chow and filtered drinking water, 
ad libitum. The study was performed according to the 
protocol approved by the standing Institutional Animal 
Ethics Committee (IAEC 2019/II 09). 

Apparent permeability
In accordance with the reported protocols, the apparent 
permeability, Papp, for RT-PNP, QU-PNP, TQ-PNP 
were determined.28 After overnight fasting, the rats 
were anesthetized (Ketamine: xylazine::87:13 mg/kg) 
and midline abdominal incisions were made to excise 
intestine. The intestine was cut into equal segments (10 
cm), flushed with normal saline to clear the contents, 
and then immersed in ice-cold Krebs solution that was 
pregassed with carbogen. Each segment was inverted by 
gently pushing a smooth glass rod and then filled with 
2mL of Krebs solution. Both ends of each segment were 
secured with a thread forming an everted gut sac. The 
distended gut sac was placed in 50mL of Krebs-Ringer 
solution containing RT-PNP, QU-PNP or TQ-PNP (1 
mg), continually aerated with 5% CO2 and 95% O2 and 
maintained at 37 ± 0.5 °C. The sample aliquots (100 µL) 
were withdrawn from serosal solution at different time 
intervals (0, 5, 10, 15, 30, 60,120 and 160 minutes). 
The aliquots were assayed for the content of respective 
phytomolecule using calibration curves at Section 2.2.1. 
The same procedure was repeated with RT, QU, TQ (1 
mg). The apparent permeability, Papp was calculated as 
dQ/dt x1/AC, where dQ/dt is the permeability rate, C0 is 
the initial concentration over the mucosal side and A is 
the surface area.

Validation of ex-vivo gut permeation study by confocal laser 
scanning microscopy using rhodamine B as fluorescent dye 
Male albino wistar rats were anesthetized with Ketamine: 

xylazine::87:13 mg/kg, and 2 cm loops of ileum from the 
intestinal section were made and washed with Krebs–
Ringer solution (37 °C). Rhodamine B dye solution 
(0.5mL) and Rhodamine B loaded PNPs with dilution 
(10 M) were filled into the loop, ligated at both ends and 
kept for incubation into the phosphate buffer saline (pH 
6.8). After 1 hour, the section of the loop was removed 
and washed using Krebs–Ringer solution to remove excess 
amount of the dye and fixed. 

The extent of the penetration of Rhodamine B dye in the 
z-axis was analyzed by confocal laser scanning microscopy 
(CLSM, Zeiss LSM980).29 To calculate the fluorescence 
intensities, images were captured using a plan apochromat 
(40X, 0.95 NA objective). All fluorescence images were 
captured under identical settings for every experimental 
set. Images were captured at 1X and 2.5X optical zoom and 
the 2.5X images were used for quantification. Fluorescence 
intensities were calculated using ImageJ/Fiji software. All 
control and experimental tissue sections were processed 
in the same way. Maximum intensity projections (MIPs) 
were first generated followed by image thresholding. A 
binary mask was then created from the thresholded image 
and applied to the original image to extract the intensity 
density values from manually selected regions. 

Statistical analysis
The results of percentage yield, percentage entrapment 
efficiency, percentage drug loading, in vitro drug 
release, apparent permeability, were presented as the 
mean ± standard deviation (SD). Statistical analysis was 
performed with the unpaired Student’s t test to compare 
the means between two groups using the software Graph 
Pad Prism ver5.0 (San Diego, CA, USA). For CLSM, 
error bars in the histograms represent standard error of 
the mean (SEM). A value of P < 0.05 was considered as 
statistically significant. *P < 0.05 and ***P < 0.001. 

Results and Discussion
Calibration Curves of rutin, quercetin, thymoquinone 
The standard curves of concentration versus absorbance 
of RT, QU, TQ showed a linear relationship and R2 were 
0.953, 0.945, 0.924, respectively. The R2 value of RT, QU, 
TQ in phosphate buffer (pH 6.8) were 0.953, 0.945, 0.924, 
respectively. 

Solubility of rutin, quercetin and thymoquinone
The aqueous solubility of RT, QU, TQ were 0.2, 0.1, 0.2 
mg/mL respectively. The ethanol solubility of RT, QU, 
TQ were 0.5, 0.7, 0.9 mg/mL, respectively. The solubility 
of RT,QU,TQ were higher in ethanol than water, that 
make a case for adopting pharmaceutical approaches to 
enhance their aqueous solubility, as desirable following 
oral administration. 

Partition coefficient
The partition coefficients (P) of RT, QU, TQ were 0.69, 
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0.35, 0.30, respectively indicating that they are sparingly 
hydrophilic in nature. As the partition coefficient is 
an important criteria that determines the partitioning 
of the molecules across the membranes in the body, a 
pharmaceutical approach may be adopted to circumvent 
the associated challenges of poor absorption and 
permeability.

Optimization of ratio of Eudragit RL100 and Eudragit 
RS100 for polymeric matrix
The phytomolecule-polymer concentration was fixed 
at 1:5 in the organic phase, while PVA was constant at 
0.25% in the aqueous phase. The effects of different ratios 
of Eudragit RL100 and Eudragit RS100 on entrapment 
efficiency (EE %), drug loading (DL %) and yield (%) are 
tabulated (Table 1). The EE% and yield% were decreased 
when the ratio of the Eudragit RS100: Eudragit RL100 was 
less than 70:30.

Eudragit RS has fewer quaternary ammonium groups 
(4.5 to 6.8%) than Eudragit RL (8.8 to 12%), which makes 
the latter hydrophilic. The availability of quaternary 
ammonium groups in Eudragit RL100, as opposed to 
Eudragit RS100, may have raised the EE% when the 
concentration of former was increased from 30% to 70%.30 

Optimization of PNP batches from percentage yield, 
encapsulation efficiency and drug loading
The % yield, EE% and DL% are important factors for 
optimizing nano-based carriers.31 The % yield, EE% and 

DL% of 3 batches each of RT-PNP, QU-PNP, TQ-PNP are 
tabulated in Table 2. The % yield of batches 1-A, 2-A and 
3-B were 87, 91.02 and 75% respectively which was highest 
among all the prepared respective PNP-batches. The EE% 
of batches 1-A, 2-A and 3-B was 76.32, 73.28 and 60.76 % 
respectively (Table 2). The DL% of batches 1-A, 2-A and 
3-B was 69.38, 66.61 and 55.24% respectively (Table 2). 
Based on these results, the batches 1-A, 2-A, 3-B of RT-
PNP, QT-PNP, TQ-PNP, respectively were optimized and 
selected for further studies.

It is well established that EE% and DL% are high when 
both polymer and phytomolecules have a high affinity to 
the same solvent. In this instance, RT, QT, TQ are poorly 
water soluble but possess high affinity to the same organic 
solvent in which the polymer was dissolved, thereby 
ensuring that there was no leakage of the hydrophobic 
phytomolecules to the aqueous phase during nanoparticles 
preparation resulted in high EE% and DL%.32 These 
pharmaceutical factors improved the entrapment of RT, 
QT, TQ into the polymer matrix.33 

Particle size, polydispersibility index and zeta potential
The particle size is considered as an important parameter as 
it affects EE%, release, solubility, absorption, bioavailability 
as well as the stability of the formulations.34,35 The particle 
sizes of RT-PNP, QU-PNP, TQ-PNP, were 412.4, 156 and 
400 nm, respectively. This shows the developed PNPs 
were in the nanometric size range. 

The homogeneity of particle size distribution of batches 

Table 1. Composition of phytomolecules loaded PNPs batches

Phytomolecules PNPs Batch no. Polymer combination (RS:RL) Solvents (5mL) Drug polymer ratio Stabilizing agent (PVA)

RT

Batch 1-A 30:70 Methanol 1:5 0.25%

Batch 1-B 70:30 Methanol 1:5 0.25%

Batch 1-C 50:50 Methanol 1:5 0.25%

QT

Batch 2-A 30:70 Ethanol 1:5 0.25%

Batch 2-B 70:30 Ethanol 1:5 0.25%

Batch 2-C 50:50 Ethanol 1:5 0.25%

TQ

Batch 3-A 30:70 DCM 1:5 0.25%

Batch 3-B 70:30 DCM 1:5 0.25%

Batch 3-C 50:50 DCM 1:5 0.25%

Table 2. EE%, DL% and yield % of different PNPs batches

Phytomolecules PNPs Batches No. Yield % Percentage entrapment efficiency (EE%) %Drug loading

RT

Batch 1-A 87% 76.32 69.38

Batch 1-B 83.38% 62.22 56.56

Batch 1-C 74% 73.15 66.5

QT

Batch 2-A 91.02% 73.28 66.62

Batch 2-B 75% 67.85 61.68

Batch 2-C 72.83% 57.38 52.16

TQ

Batch 3-A 81% 57.28 52.07

Batch 3-B 75% 60.76 55.24

Batch 3-C 70% 56.75 51.59
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1-A, 2-A, 3-B of RT-PNP, QU-PNP, TQ-PNP were 0.35, 
0.5 and 0.4, respectively, that was < 0.5, indicating size 
distribution within a narrow range. The zeta potential 
indicates the surface charge of the prepared PNPs and 
is an important factor for predicting the stability of the 
PNPs.36 The zeta potential of batches 1-A, 2-A, 3-B of RT-
PNP, QU-PNP, TQ-PNP, were -18 mV, -26 mV, -56 mV, 
respectively. Higher negative zeta potential value is known 
to indicates good physical stability of the nanoparticles 
which stabilize the colloidal system as it overcomes the 
particle aggregation due to repulsive forces.37 Usually, 
the possibility of particle aggregation is much lower for 
charged particles with zeta potential > |20|.38 In the present 
study, the formulations of 1-A, 2-A, 3-B of RT-PNP, QU-
PNP showed good physical stability.

Differential scanning calorimetry analysis
Differential scanning calorimetry (DSC) is one of the 
most reliable technique to study compatibility, physico-
chemical interactions between drug and excipient and 
assesses the physical state of the drug in the final developed 
formulation.39,40 The DSC thermograms clearly show the 
melting peak of blank formulation at 348.02 °C, RT at 
175.10 °C, and 226.90 ˚C, RT-PNP at 165.09 °C and 289.06 
°C, QT at 175.10 °C, QT-PNP at 383.56 °C and 385.81 °C, 
TQ at 97.33 °C and TQ-PNP at 351.20 °C and 418.37 °C.

The sharp melting endothermic peaks of RT, QU, TQ 
were not detected in the respective thermogram of PNPs, 
indicating the absence of phytomolecules in a crystalline 
state. It may be concluded that, RT, QU, TQ were present 
in an amorphous state, following loading in Eudragit 
based polymeric nanoparticles, and may have dispersed 
homogeneously in the polymeric matrix.41 

Transmission electron microscopy
The TEM images of RT-PNP, QU-PNP, TQ-PNP showed 
the presence of spherical PNPs with smooth surfaces and 
presence of well-dispersed nanoparticles sans aggregation, 
embedded within a polymeric matrix (Figure 1a-1d). On 
a scale of 1, 0.1, 0.2 µm, the average particle sizes of RT-
PNP, QU-PNP, TQ-PNP were 446 ± 0.152, 39.6 ± 0.006 
and 186 ± 0.513 nm, respectively (Figure 1a-1d). The 
larger particle size of RT-PNP may be attributed to the 
complex structure of the RT and availability of quaternary 
ammonium groups but low acrylic content of Eudragit 
RL 100 versus Eudragit RS 100. This causes an increase in 
the viscosity of the polymer organic phase solution which 
hinders its dispersibility into the aqueous phase, which 
may result in the formation of large size nanoparticles.42 

The surfaces of RT-PNP, QU-PNP, TQ-PNP were of non-
homogenous texture confirming that RT, QU, TQ were 
dispersed throughout the polymeric matrix.

Figure 1. TEM images (Micrographs) (a) Blank formulation consist Eudragit polymer matrix, and appeared to be hollow without phytomolecules. (b) Morphology 
of RT-PNP, (c) QT-PNP and (d) TQ-PNP with nano scale
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Nuclear magnetic resonance 
The 1H NMR spectrum of a molecule provides the primary 
information about its structure, conformation, physical 
form (crystalline/amorphous) etc. The 1H NMR spectrum 
of blank-formulation, RT-PNP, QT-PNP, TQ-PNP showed 
characteristic peaks indicative of molecular dispersion of 
RT, QU, TQ in the polymeric matrix (Figure 2a-2d).

In vitro drug release
The in vitro drug release was performed to evaluate the 

target release of RT, QU, TQ from RT-PNP, QU-PNP, TQ-
PNP to the intestine. The batches 1-A, 2-A 3-B of RT-PNP, 
QU-PNP, TQ-PNP, respectively were selected for in vitro 
drug release study as they possessed the highest EE%, % 
yield as well as smallest particle size diameter.

In simulated gastric fluid (pH 1.2), the dissolution of 
RT, RT-PNP, QT, QT-PNP, TQ and TQ-PNP upto 2 hours, 
were 5.544 ± 2.84, 17.08 ± 6.39, 18.55 ± 4.49, 27.6 ± 2.74, 
51.34 ± 1.124 and 49.08 ± 1.35 %, respectively (Figure 3a-3c). 
In simulated intestinal fluid (pH 6.8), the dissolution of 

Figure 2. 1H NMR spectra (a) Blank formulation (without phytomolecules), (b) RT-PNP, (c) QT-PNP, and (d) TQ-PNP

Figure 3. In-vitro release of (a) RT, (b) QT, (c) TQ; at stomach simulated fluid (pH 1.2) and intestinal simulated fluid at (pH 6.8)
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RT, RT-PNP, QT, QT-PNP, TQ and TQ-PNP upto hours, 
were 30.8 ± 7.75, 60.37 ± 10.08, 27.6 ± 2.7, 66.9 ± 10.31, 
49.08 ± 1.35 and 62.09 ± 6.46 %, respectively (Figure 3a-3c).

After 2 hr, the rate of releases of RT, RT-PNP, QT, 
QT-PNP, TQ, TQ-PNP and RT-PNP were 19.5 ± 0.54, 
45.07 ± 0.89, 13.91 ± 4.69, 45.4 ± 6.72, 27.71 ± 3.27 and 
32.95 ± 0.89, respectively which was twofold higher at 
intestinal fluids (pH 6.8) (Table 3). The batches 1-A, 2-A 
and 3-B of RT-PNP, QU-PNP, TQ-PNP, showed initial 
burst release upto 30 minutes followed by gradual release 
of RT, QU, TQ, maximum upto 2.5 hours, respectively, 
from the Eudragit polymer matrix at intestinal pH. 

The polymer ratio Eudragit RS100: RL100:: 30:70, 
exhibited controlled release of phytomolecules, as they 
can swell yet remain insoluble at physiological pH values 
and have strong electrostatic contact, which affects 
the release.43 Eudragit RS can be attributed to the low 
permeability of the polymer, which posed a significant 
hindrance to fluid penetration and passive drug diffusion 
and the release of phytomolecules from the unique 
polymer matrix may be attributed to ammonium groups 
present in salt form and makes the polymers porous with 
slow swelling of the matrix at intestinal pH 6.8, followed 
by dissolution of the phytomolecule in the intestinal fluid 
that was not seen at gastric pH.44 This confirms that the 
unique ratio of Eudragit polymers is an effective matrix 
for intestinal drug release (Figure 3).

The release of RT, QU, TQ from RT-PNP, QU-PNP, 
TQ-PNP increased at higher pH i.e., intestinal simulated 
media, and achieved the objective of the formulation.

Drug release kinetics
Mathematical modelling of the release profiles of 

phytomolecule with different kinetic equations and the 
regression coefficients (R2) for RT-PNP, QU-PNP, and 
TQ-PNP were calculated (Table 3). The optimized batches 
1-A, 2-A, 3-B of RT-PNP, QU-PNP, TQ-PNP showed 
uniform release in terms of their correlation coefficients 
for Higuchi diffusion controlled mode as 0.972, 0.980, 
0.929, respectively (Table 4; Figure 4a-4i). The Higuchi 
order release kinetic model exhibited highest R2 value for 
RT-PNP, QU-PNP, and TQ-PNP as compared to other 
applied kinetics model. The ‘n’ values of RT-PNP, QU-
PNP, and TQ-PNP were 0.337, 0.419, 0.33, respectively, 
which demonstrated that release of RT, QU, TQ from 
the developed PNPs, was through Fickian diffusion45 
(Figure 4a-4i). 

Based on the results, it may be proposed that the 
mechanism of release of RT, QU, TQ from the Eudragit 
polymer matrix may be combination of slow swelling 
(polymer relaxation) and gradual erosion (polymer 
dissolution) at intestinal but not gastric pH.46,47 

Stability study
Optimized batches (1-A, 2-A, 3-B) of RT-PNP, QU-PNP, 
TQ-PNP, were subjected to stability study and compared 
against freshly prepared batches for EE%, DL% and in 
vitro release of RT, QU, TQ (Table 5; Figure 5a-5f).

After 3 months of storage, neither aggregation nor 
irregularity was observed, that may be due to the presence 
of stabilizer.48 The EE%, DL% and in vitro release of RT, 
QU, and TQ from stored and freshly prepared RT-PNP, 
QU-PNP, and TQ-PNP were not significantly different. 

Ex-vivo intestinal permeability 
The apparent permeation coefficients of RT, QU, TQ, 

Table 3. The % of phytomolecules release (in vitro release profile)

Time (h) RT QT TQ RT-PNP QT-PNP TQ-PNP

0.5 1.13 ± 0.73 16.87 ± 2.47 40.38 ± 0.96 2.0551.079 21.73 ± 4.10 28.66 ± 1.18

1 15.19 ± 8.48 5.6 ± 0.3 6.51 ± 2.68 15.57 ± 8.06 11.5 ± 4.38 19.32 ± 5.33

1.5 11.7 ± 0.24 13.36 ± 3.0 18.48 ± 2.29 18.83 ± 5.62 20.87 ± 1.51 26.28 ± 6.79

2 19.5 ± 0.54 13.91 ± 4.69 27.71 ± 3.27 45.07 ± 0.89 45.40 ± 6.72 32.95 ± 0.89

2.5 13.33 ± 4.23 11.02 ± 2.21 32.23 ± 3.62 48.27 ± 5.62 40.69 ± 0.37 44.95 ± 2.46

3 17.91 ± 10.5 12.57 ± 1.62 36.86 ± 4.28 53.28 ± 1.98 32.74 ± 7.07 44.89 ± 9.77

3.5 11.08 ± 0.11 19.08 ± 1.46 42.63 ± 6.26 57.2 ± 1.16 24.31 ± 0.70 42.24 ± 1.65

Table 4. Best fit model for PNPs-formulation batch

Formulation
Zero order First order Higuchi matrix Peppas plot

N Best fit model
(r2) (r2) (r2) (r2)

RT-PNPs (pH 1.2) 0.392 0.788 0.875 0.592 0.177 Higuchi

RT-PNPs (pH 6.8) 0.929 0.831 0.972 0.831 0.337 Higuchi

QT-PNPs (pH 1.2) 0.936 0.764 0.980 0.764 0.419 Higuchi

QT-PNPs (pH 6.8) 0.936 0.764 0.980 0.764 0.419 Higuchi

TQ-PNPs (pH 1.2) 0.654 0.542 0.654 0.555 0.185 Zero

TQ-PNPs (pH 6.8) 0.902 0.703 0.905 0.666 0.257 Higuchi

N: Higuchi mechanism slope equation line.
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RT-PNP, QU-PNP, TQ-PNP across the small intestine at 
160 minutes, were 4.52 ± 0.612, 9.07 ± 3.04, 23.84 ± 2.4, 
13.1 ± 4.82, 16.6 ± 6.01, 32.78 ± 8.88 µg/cm2, respectively 
(Figure 6a-6c). The intestinal permeation of RT-PNP, QU-

PNP, TQ-PNP were significantly (P < 0.05) higher than 
RT, QU, TQ (Figure 6). The higher intestinal permeability 
has been largely attributed to the small size of PNPs which 
increases contact surface area and prolongs intestinal drug 
residence time. In addition, Eudragit RL100 and Eudragit 
RS100 bypass the gastric pH and permeable in digestive 
fluids and positively charged facilitates muco-adhesive to 
the intestinal epithelial layer and deep penetration into 
the intervillous space leading to a higher diffusion rate 
of the drug.49,50 In addition, reduction in particle size can 
cause augmented dissolution and saturation solubility 
which increases the concentration gradient between the 
intestinal epithelial cells and the underlying mesenteric 
circulation resulting in improved phytomolecules 
absorption.51 PVA as surfactant used in the formulation 
could also have contributed to the enhanced permeability 
because they are surface-active agents capable of altering 
membrane fluidity leading to improved drug absorption 
across the gut.52 The CLSM was used to visualize and 
further confirm the intestinal permeability of the RT-PNP, 
QU-PNP, and TQ-PNP (Figure 6d-6f). The intestinal 
tissue was observed along the ‘z’ axis to evaluate the depth 
of fluorescence permeated through the layers of intestinal 

Figure 4. In-vitro release kinetics (a) zero order release of RT-PNP, (b) QT-PNP, (c) TQ-PNP. (d) First order release of RT-PNP (e) QT-PNP, (f) TQ-PNP. (g) Higuchi 
release of rutin-PNPs, (h) QT-PNP, (i) TQ-PNP 

Table 5. EE% and DL% of optimized PNPs batches after storage condition

Phytoconstituents loaded 
nanoparticles (PNPs)

Days
Percentage 
entrapment 

efficiency (EE%)

Drug 
loading (%)

RT-PNPs

7 60.38 54.89

15 58.98 53.62

30 56.78 51.62

90 45.28 41.16

QT-PNPs

7 85.45 77.68

15 73.28 66.61

30 61.85 56.23

90 52.20 47.45

TQ-PNPs

7 70.25 63.86

15 59.52 54.11

30 56.73 51.57

90 45.87 41.70
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section. The depth of permeation of RT-PNP, QU-PNP, 
TQ-PNP were increased significantly (P < 0.05) (Figure 6). 
The deeper permeation of fluorescence might be the direct 
consequence of PNPs as well as modulation of intestinal 
epithelium by polymer used in nanoparticle formulation. 
The results from the CLSM study further indicate that the 
intestinal permeation of RT, QU, and TQ was improved 
from developed PNPs.

Conclusion
In this study, we prepared Eudragit based freeze dried 
nanoparticles (PNPs) encapsulated in a capsule as a 
final formulation system. The high % yield and EE% can 
be attributed to the optimized percentage of Eudragit 
RS100:RL 100::30:70, depending on its quaternary 
ammonium salt. The optimized PNPs showed good 
physiochemical stabilities and exhibited maximal releases 
of phytomolecules in the simulated intestinal fluid. 
The spherical sizes obtained in nanometric range were 
responsible for their high permeation across the intestinal 
epithelium. The developed PNPs appear to be a good 
approach to increase the permeability of the hydrophobic 

phytomolecules such as RT, QT and TQ. 
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