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Introduction
Parkinson’s disease (PD) is the second most common 
neurodegenerative disease caused by the loss of 
dopaminergic neurons.1-3 In 2016, it was estimated that PD 
affected 6.1 million people worldwide, up from 2.5 million 
in 1990, and this figure is predicted to more than double 
by 2040.4 Moreover, PD is present in approximately 3% of 
individuals aged 65 and above, with the largest number of 
cases reported in those over 70 years old.5

Clinically, symptoms of PD can be categorized as 
non-motor signs and motor symptoms. The non-motor 
symptoms are more common and emerge years before 
motor symptoms.6 Non-motor symptoms comprise loss of 
sense of smell, sensory disturbances (such as pain), sleep 
disorders, autonomic disorders (orthostatic hypotension), 
gastrointestinal disorders (constipation), urogenital 
disorders, sexual dysfunction, as well as cognitive deficits 
and dementia.7 Motor symptoms include bradykinesia, 
tremors at rest, rigid muscles, impaired posture, and 
imbalance. In addition to the main symptoms, patients 
may show other motor symptoms like micrography, 
freezing, masked face, decreased blink rate, dysphagia, 
and softened voice.8 

Pathologically, the key characteristics of PD are the 
damage to dopaminergic neurons in substantia nigra 
pars compacta (SNpc) and ventral tegmental area 
(VTA), depletion of dopamine in the striatum, and 
the presence of Lewy bodies in the cytoplasm formed 

mainly by the α-synuclein (α-syn) protein. PD affects 
various neurotransmitters aside from the dopamine 
system, such as noradrenaline, serotonin, glutamate, 
γ-aminobutyric acid (GABA), acetylcholine, and 
neuropeptides. The development of PD may also be 
caused by the degeneration of cholinergic neurons in the 
meynert nucleus, norepinephrinergic neurons in the locus 
cereus, and serotoninergic neurons in the raphe nuclei.9 
Non-motor symptoms caused by non-dopaminergic 
neurotransmitter system dysfunction are unresponsive to 
dopaminergic therapy.10

Along with genetic factors, inflammation, oxidative 
stress, mitochondrial dysfunction, and cytotoxic factors,11,12 
metabolism-related dysfunction is also involved in the 
pathophysiology of PD.13 Evidence shows that impaired 
regulation of glucose metabolism, which occurs in early 
PD, reduces antioxidant capacity and neuronal survival.14 
Furthermore, during the initial stages of PD, oxidative 
stress, a crucial characteristic of metabolic syndrome, leads 
to mitochondrial structural abnormalities and mutations 
in mitochondrial DNA, which worsen oxidative stress and 
ultimately cause neuronal death.15

Energy dysregulation is implicated as a possible trigger 
for PD, indicating that a deeper understanding of the 
molecular pathways controlling energy balance could lead 
to identifying therapeutic targets. The AMP-activated 
protein kinase (AMPK) signaling pathway regulates 
metabolism, cell growth, and autophagy,16 and serves as 
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a metabolic energy sensor and controls both lipid and 
carbohydrate metabolism inside the cell.17,18 Moreover, 
inhibiting AMPK expression or activity results in an 
increase in pro-inflammatory cytokines such as interleukin 
(IL)-1, IL-6, and tumor necrosis factor (TNF)-α,19 whereas 
stimulating AMPK pathway has been shown to boost 
neuroprotection.20 AMPK is also involved in regulating 
macroautophagy,21 mitochondrial biogenesis,22 and gene 
expression.23 

Energy balance in cells is maintained by AMPK, 
which inhibits energy consumption and activates energy 
production processes in response to specific conditions 
to restore ATP levels.24 The mitochondrial oxidative-
phosphorylation (OxPh) pathway is commonly used to 
produce ATP from glucose. Hence, increasing AMPK 
activity is a viable strategy to avoid bioenergetics failure 
and boost energy levels in vulnerable neurons.25 AMPK 
stimulates glucose transport through glucose membrane 
vectors and the breakdown of stored glycogen in the 
cytoplasm.25,26 AMPK also provides substrates for other 
OxPh sources like fatty acids (FA) and glutamine.27 During 
calorie restriction, AMPK acutely increases the uptake 
and transfer of FAs to the mitochondria for catabolism, 
oxidation, and energy production. Long-term activation 
of AMPK can influence energy metabolism by activating 
regulatory factors like forkhead box transcription factors 
(FOXO) and peroxisomal proliferator-activated receptor-
gamma coactivator (PGC)-1 α for energy production and 
consumption.28-30

Furthermore, AMPK regulates cellular ATP production 
and energy levels by restricting anabolic processes.24 
AMPK inhibits processes that require ATP, like new protein 
production and cell growth, to maintain the ATP level in 
energy-constrained conditions.31 The mammalian target 
of rapamycin complex (mTORC)-1 is an essential cellular 
protein that promotes protein synthesis and growth and 
induces nutrient signals.24 Evidence shows that AMPK 
inhibits mTORC-1 through activating tuberous sclerosis 
complex (TSC)-2 and inhibiting regulatory-associated 
protein of mTOR (RAPTOR).32,33 Also, AMPK has the 
ability to decrease protein production by inhibiting the 
synthesis of ribosomal RNA.34

AMPK effect on mitochondrial function 
Cell metabolism relies on organelles called mitochondria, 
which provide energy through the OxPh process. The 
OxPh generates additional substances, particularly 
reactive oxygen species (ROS), that can negatively affect 
mitochondrial function when produced excessively. 
The decrease in cellular energy production following 
mitochondrial dysfunction creates a vicious cycle of 
chronic ROS production and worsens mitochondrial 
dysfunction.35 Therefore, cells’ essential functions are to 
control mitochondrial health, biogenesis, fission-fusion 
dynamics, and mitochondrial autophagy (mitophagy).36 
The process of mitochondrial quality control declines 

with age, particularly in those with PD.37,38 Additionally, 
accumulated α-syn may be the reason for mitochondrial 
damage in PD.39,40

Mitochondria can change their structure, size, and 
shape through repetitive cycles of fission and fusion.41 
Mitochondrial dynamics can be influenced by calcium 
homeostasis, apoptosis, and respiration. Genetic mutations 
or exposure to toxins can lead to changes in mitochondrial 
dynamics, causing neurodegenerative disorders. The 
fusion of mitochondria is accomplished by two groups of 
GTPases: mitofusins (MFN1 and MFN2) located in the 
outer mitochondrial membrane and optic atrophy (OPA)-
1 located in the inner mitochondrial membrane.42 Fission 
is another alteration in mitochondrial dynamics where 
dynamin-related protein (DRP)-1 is the key factor.43 

Dopaminergic neurons in the SNpc have limited 
mitochondrial content and rely heavily on energy 
balance for survival.44 Sporadic and familial forms of PD 
affect diverse aspects of mitochondria, including their 
bioenergy capacity, quality control, life cycle, morphology 
(fission and fusion), transportation, and control of cellular 
apoptosis pathways.45 Furthermore, PINK1 and PARKIN 
genes play a key role in mitochondrial function and 
quality control as they detect damage in mitochondria and 
facilitate mitophagy to eliminate and replace dysfunctional 
mitochondrial components.46,47 Ubiquitination of MFN1 
and MFN2 proteins, which are involved in mitochondria 
fusion, depends on the Parkin/PINK1 pathway, wherein 
PINK1 phosphorylates MFN2, resulting in Parkin 
recruitment and protein ubiquitination.48 This process 
is essential to identify mitochondria for degradation 
through mitophagy and prevent them from reintegrating 
into the mitochondrial network. However, this process is 
disturbed by PD, leading to the accumulation of abnormal 
mitochondria and respiratory dysfunction. Moreover, 
loss of DRP-1 in dopaminergic neurons leads to the 
degeneration of SN neurons in mice and a Parkinson’s-
like phenotype due to depletion of axonal mitochondria.49 

One of the primary regulators of mitochondrial 
biogenesis is a transcriptional activator called PGC-1.50 
According to prior studies, PD causes a decline in the 
expression of PGC-1 and its downstream genes responsible 
for controlling cellular bioenergy and mitochondrial 
biogenesis.51,52 Interestingly, overexpression of PGC-1 
can prevent dopaminergic neuron death caused by α-syn 
overexpression or rotenone-induced damage, potentially 
improving PD-like pathologies.52 

As AMPK is vital for intracellular energy metabolism 
in response to energy depletion, it is expected that AMPK 
has a significant impact on mitochondrial homeostasis. 
An in vitro study has shown that α-syn overexpression 
reduces AMPK activity, leading to a decrease in cellular 
resistance to α-syn.53 A deficiency in AMPK activity 
can lead to reduced mitochondria and abnormal 
mitochondrial biogenesis due to disruption of the AMPK/
PGC-1 axis, putting dopaminergic neurons at risk of 
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degeneration and causing symptoms similar to PD.54,55 
However, pharmacological AMPK activation provides 
neuroprotection.55

Through activating PGC-1α, AMPK promotes 
mitochondrial biogenesis, activating mitochondrial 
transcription factor A (TFAM), leading to increased 
transcription and replication of mitochondrial DNAs.56,57 
Furthermore, AMPK enhances mitochondrial fusion, 
leading to the development of extensive and highly 
branched mitochondrial networks in a PGC-1-dependent 
way.58,59 Besides, AMPK activates mitochondrial fission 
factor (MFF) to promote mitochondrial fission but inhibits 
mTORC1 to suppress it.60,61 Therefore, it seems that the 
role of AMPK in intervening mitochondrial homeostasis 
is context-dependent based on cellular energy status. In 
mild energy depletion, it may stimulate fusion to boost 
energy production, but under prolonged and intense 
cellular stress, it may trigger fission to promote mitophagy 
and initiate mitochondrial biogenesis to substitute the 
impaired ones.

AMPK also facilitates mitochondrial function by 
controlling the direct phosphorylation of target proteins 
and transcriptional regulation of the relevant genes.62 
Mitophagy is a physiological process that eliminates 
damaged mitochondria while promoting mitochondrial 
biogenesis pathways to replenish mitochondrial levels.63,64 
Through the phosphorylation of Unc-51-like autophagy 
activating kinase (ULK)-1, AMPK promotes mitophagy 
by facilitating autophagosome formation and directing 
damaged mitochondria to lysosomes.65 AMPK activation 
also couples mitochondria fission with mitophagy by 

phosphorylating MFF and activating DRP-1 to maintain 
energy bioavailability and high-quality mitochondria.66,67 

The mitochondrial electron transport chain is the major 
source of ROS, and cells rely on antioxidant mechanisms 
to prevent damage from ROS and maintain redox 
homeostasis. Proper cellular function and metabolic stress 
adaptation necessitate the regulation of ROS generated 
by mitochondria.68,69 Damage to essential cellular 
components caused by excessive free radical production 
and impaired redox balance in neurons contributes to the 
degeneration of dopaminergic neurons in the SN. The low 
glutathione levels, high levels of oligomeric α-syn, high 
iron and calcium contents, mitochondrial dysfunction, 
and dopamine degradation and oxidation are responsible 
for ROS production in PD.70,71 Genetic mutations in SNCA, 
PARKIN, PINK1, LRRK2, FBXO7, ATP13A2, GIGYF2 and 
HTRA2 are also responsible for impairing mitochondrial 
function and morphology, leading to ROS formation.72 
The connection between oxidative stress and PD 
pathogenesis is backed up by neurotoxin-induced animal 
models (6-hydroxydopamine (6-OHDA), rotenone, and 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)), 
which result in ROS generation and gradual loss of 
nigrostriatal dopaminergic system.73-76

Aberrant production of ROS and imbalanced redox 
status activate AMPK to maintain redox homeostasis. 
AMPK promotes the expression of antioxidant enzymes 
such as glutathione peroxidase (GPx), superoxide 
dismutase (SOD), and catalase (CAT) to mitigate 
ROS generation by activating Sirt1/PGC-1α/FOXO-1 
pathway (Figure 1). However, pharmacological or genetic 

Figure 1. Activated AMPK suppresses oxidative stress pathways related to PD by activating PGC-1α and Sirt 1 pathways, resulting in increased antioxidant gene 
expression and inhibition of mitochondrial damages. ROS, Reactive oxygen species; AMPK, AMP-activated protein kinase; FOXO-1, Forkhead box class O family 
member proteins-1; Sirt 1, Sirtuin 1; PGC-1α, Peroxisome Proliferator-activated receptor-gamma coactivator-1; Nrf2, Nuclear factor E2-related factor 2; SOD, 
Superoxide dismutase; NQO-1, NAD(P)H quinone dehydrogenase 1; HO-1, Heme oxygenase-1; CAT, Catalase; GPx, Glutathione peroxidase
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inactivation of AMPK leads to elevated mitochondrial ROS 
levels, promoting cytotoxicity.69 Nuclear factor E2-related 
factor 2 (Nrf2) maintains redox balance and protects 
cells from oxidative damage. Nrf2 is usually kept in the 
cytoplasm during stress-free conditions, but it translocates 
to the nucleus on exposure to oxidative stress. Once 
bound to the antioxidant response element, it activates 
the expression of several antioxidative enzymes, including 
heme oxygenase-1 (HO-1), SOD, and GPx, which help to 
detoxify free radicals. Through phosphorylation, AMPK 
also enhances Nrf2 nuclear translocation, thus reducing 
ROS levels and inhibiting oxidative stress.77,78 Therefore, 
activating the AMPK pathway may serve as a therapeutic 
approach for inhibiting oxidative stress in PD.

Effect of AMPK on macroautophagy
Autophagy is a process that transfers waste products, 
cellular components, and large molecules to the lysosome 
for decomposition and ingestion.24 Autophagy disturbance 
is one of the etiologies of PD, leading to α-syn accumulation 
in the brain.79 Moreover, deleting essential genes involved 
in autophagy, such as autophagy-related gene-7 (ATG-7), 
can induce neurodegeneration similar to PD in mice.80 A 
recent study has shown that tricin, a natural flavonoid, 
can improve autophagy and ATG-7-dependent clearance 
of α-syn via an AMPK/mTOR pathway.81

There are three main ways to remove α-syn 
from neurons: the ubiquitin-proteasome system 
(UPS), chaperone-mediated autophagy (CMA), and 
macroautophagy.82 Removing α-syn oligomers requires 
macroautophagy-mediated degradation because UPS and 
CMA are ineffective. To accomplish this, autophagosomes 
are formed to separate cytoplasmic components and carry 
them to lysosomes.83,84 In both PD patients and animal 
models, macroautophagy is stimulated by transcription 
factor EB (TFEB), which mediates lysosomal biogenesis 
and macroautophagy development due to increased 
α-syn levels.85,86 In the PD mice model, overexpression 
of α-syn causes macroautophagy dysfunction and 
increases dopaminergic neuron degeneration in SNpc and 
movement disorders. These defects can be improved by 
overexpression of TFEB or Beclin-1 (another autophagy 
regulator), suggesting that macroautophagy regulation 
can be helpful in the PD to reduce α-syn accumulation 
and neuronal damage.86,87

Autophagy initiation is mainly driven by ULK-1, while 
the inhibition of ATG-13 phosphorylation by mTORC-1 
leads to a decrease in the ULK-1 complex activity, ultimately 
suppressing autophagy.88,89 ULK-1 factor initiates the 
formation and maturation of autophagosomes through 
the Beclin-1 phosphorylation.90 Evidence suggests that 
AMPK boosts autophagic degradation by activating ULK-
1 through phosphorylation and inhibiting mTORC1 and 
blocking its inhibitory effect on ULK-1.91 Moreover, AMPK 
promotes lysosomal biogenesis by increasing the activity 
of TFEB92 and improving the transcription of proteins 

required for macroautophagy by FOXO-3.93 Preclinical 
studies indicate that autophagy-promoting agents can 
improve α-syn clearance and provide neuroprotection.94 
Metformin has been shown to stimulate autophagy and 
protect nigrostriatal neurons in PD models by activating 
the AMPK/FOXO-3 pathway.53,95,96 Moreover, resveratrol 
exhibits neuroprotective properties in PD models by 
inducing autophagy via AMPK activation and mTOR 
inhibition.97,98 Therefore, AMPK-dependent stimulation 
of autophagy may hold promising potential for developing 
new therapeutic strategies in PD.

Effect of AMPK on genetic PD
Genetic PD is rare; however, several types are identified 
that account for almost 30% of familial cases.99 Genetic 
mutations in LRRK2, PARK2, PARK7, PINK1, or the 
SNCA gene can lead to familial cases of PD. Accumulating 
studies show that mutations in SNCA, GBA, and LRRK2 
genes result in overexpression of α-syn and increased 
secretion of pro-inflammatory cytokines, leading to the 
development of motor dysfunction.92,100-102 

PARK7 (also known as DJ-1) is the gene responsible 
for the expression of DJ-1 protein, and its mutation 
causes genetic form and early onset of PD.103 A critical 
function of DJ-1 is nuclear communication with 
mitochondria.104 The wild-type DJ-1 enzyme prevents 
glycolysis metabolite damage in cells metabolizing 
carbohydrates.105 It protects cells from oxidative stress-
induced cytotoxicity by enhancing Nrf2 transcriptional 
activity and preventing Nrf2 inactivation.106,107 Moreover, 
DJ-1 is one of the influential factors in cellular signals, 
including transcription of tyrosine hydroxylase, 
dopamine receptor, and p53 signaling pathway.104 PINK1 
is also transcriptionally up-regulated by Nrf2, which 
shields dopamine neurons from neurotoxicity induced 
by oxidative stress.106,107 AMPK can enhance Nrf2 nuclear 
translocation through phosphorylation and inhibiting 
oxidative stress.77,78

PARKIN, PINK1, LRRK2, and PARK7 genetic 
mutations cause mitochondrial morphology and 
function abnormalities.108 Point mutations in the PARK7 
(NM_007262.5) gene include p.Leu166Pro (c.497T > C), 
p.Ala104Thr (c.310G > A), p.Met26Ile (c.78G > A), 
p.Asp149Ala (c.446A > C), p.Glu64Asp (c.192G > C), 
p.Leu10Pro (c.29T > C), and p.Pro158del (c.471_473del).109 
Activation of AMPK by adaptor protein phosphotyrosine 
interacting with PH domain and leucine zipper (APPL)-
1, an endosomal adapter protein, can protect against the 
p.Leu166Pro (c.497T > C) mutation of the PARK7 gene.110 

Effect of AMPK on inflammation 
Both preclinical and clinical PD studies have proved that the 
onset and progression of PD involve neuroinflammation 
and immune dysfunction.111 The causes of inflammation 
in PD include exposure to heavy metals, environmental 
toxins, bacterial and viral infections, and pesticides.112 
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Microglia, a part of the innate immune system in the 
central nervous system (CNS), are categorized into M1 and 
M2 subtypes. The M2 phenotype has anti-inflammatory 
and cytoprotective properties, essential for maintaining 
CNS homeostasis. Upon microglia activation, the M2 
subtype is transformed into the M1 subtype, known to be 
cytotoxic and pro-inflammatory.113-115 In the pathology of 
PD, the accumulation of α-syn and the increase of ROS 
in dopaminergic cells promote neuronal death, followed 
by the release of damage-associated molecular patterns 
(DAMPs) from neurons, resulting in an increase in 
the activity of M1 microglia in the CNS.116 Preclinical 
PD models have shown that microglial activation and 
secretion of pro-inflammatory cytokines, particularly 
IL-6 and IL-1β, precede the degeneration of dopamine 
neurons.117,118 Additionally, there is a connection between 
pathological α-syn accumulation and the PD brain’s 
heightened inflammation.119,120

The blood-brain barrier becomes weaker when 
inflammation increases in the brain, leading to the 
penetration of harmful substances like ROS and NO, 
which cause further damage.121 In a 6-OHDA-induced PD 
model, the amount of pro-inflammatory cytokines such 
as IL-1, IL-6, TNF-α, and INF-γ were increased, while 
anti-inflammatory cytokines such as IL-10 was decreased, 
indicating dysregulation in the immune system and 
the occurrence of inflammation in the CNS.122 In basal 
condition, nuclear factor kappa B (NF-κB) is inactive, 
localizes in the cytoplasm, and tightly bound to an 
inhibitor of nuclear κB (IκB). Upon activation by DAMPs, 
IκB kinase (IKK) targets IκB for degradation, resulting in 
translocation of NF-κB to the nucleus, pro-inflammatory 
gene expression, and damage to dopaminergic neurons 
through impaired mitochondrial function and autophagy 
by suppressing Sirt1/FOXO-PGC-1α pathway.123,124

On the other hand, nuclear receptor-related protein 
1 (NURR1) controls the expression of genes essential 
for the survival of dopaminergic neurons and has the 
potential to inhibit NF-κB activity when activated.125 Nrf2 
transcription factor not only boosts antioxidative defense 
but also plays a critical role in regulating inflammation 
and has been substantiated to obstruct inflammatory 
responses prompted by inflammatory factors. Typically, 
Nrf2 is expressed at high levels in glial cells, and its 
activation reduces neuroinflammation.121 The survival of 
dopaminergic neurons is influenced by Nrf2 and NF-κB, 
which behave as antagonistic transcription factors. Nrf2 
negates NF-κB signaling, while NF-κB silences Nrf2 target 
genes and deprives it of necessary co-transcription factors. 
However, a lack of Nrf2 results in an increase in NF-κB 
levels through proteasome-mediated IκB degradation. 
Therefore, activation of the Nrf2 pathway can alleviate 
PD symptoms by reducing cellular damage from oxidative 
stress and neuroinflammation, as well as improving 
mitochondrial function.126,127

Evidence suggests that chronic inflammation leads 

to a gradual decrease in AMPK function,128 while an 
increase in AMPK activity encourages microglial anti-
inflammatory M2 polarization.129 Furthermore, AMPK 
suppresses NF-κB activation in the brain to inhibit 
inflammatory responses.130,131 In an MPTP-induced PD 
model, liraglutide was shown to modulate the AMPK/
NF-κB pathway, leading to improvements in PD-related 
motor symptoms, rescue of dopaminergic neurons, and 
diminished activated microglia in the SN.132 Another 
pathway by which AMPK regulates inflammation is 
sirtuin1 (Sirt1). Indole-3-carbinol was reported to activate 
the AMPK/Sirt1 pathway and reduce nervous system 
inflammation in PD model mice.133 Moreover, AMPK 
reduces inflammation by inhibiting NOX-mediated ROS 
production and decreasing nitric oxide synthase (iNOS)-
mediated nitric oxide (NO) production.134–137 AMPK also 
acts as a cofactor for Sirt1 activity and Sirt1 activation 
protects dopaminergic neurons through inhibiting iNOS, 
p53, and NF-κB expression, and increasing FOXO-3/
PGC-1α pathway.138–141 The next target of AMPK in nerve 
cells to deal with neuroinflammation is activation of 
Nrf2.142 As shown in Figure 2, AMPK activation through 
modulation of several pathways can protect dopaminergic 
neurons from inflammation. 

Effect of AMPK on cell survival and apoptosis
In PD, the activation of the intrinsic apoptotic pathway 
induces the death of dopaminergic neurons in the 
SNpc. Many studies suggest that PD is connected with 
mitochondrial-mediated apoptosis, leading to an increase 
in pro-apoptotic factors like BAX and cytochrome c, 
caspase-9, and caspase-3, and a decrease in anti-apoptotic 
factors such as Bcl-2 and Bcl-XL. As mentioned, PD is 
associated with a chain of events that drive cells toward 
apoptosis, including genetic mutation, accumulation 
of α-syn, neuroinflammation, ROS production, and 
mitochondrial dysfunction.48,143-145 Besides, genetic 
mutation of PD-related genes, namely Parkin, LRRK2, 
PINK1, and PARK7, contribute to mitochondrial 
impairment and apoptosis.99,143

AMPK plays a dual role in regulating cell death and 
survival, depending on the type of stress and cells, 
and duration of exposure.146-148 Some studies have 
shown that the activation of AMPK for a prolonged 
duration can activate c-Jun N-terminal protein kinase 
(JNK), leading to apoptosis in liver cells and pancreas 
beta cells.149,150 However, another study showed that 
activation of AMPK inhibited dexamethasone-induced 
apoptosis in thymocytes.151 Conversely, some studies 
suggest that the activation of AMPK-related pathways 
could prevent the apoptosis pathway, particularly in 
neurons, by correcting mitochondrial abnormalities. 
Furthermore, 5-aminoimidazole-4-carboxamide 
ribonucleoside (AICAR) triggers AMPK activation 
that prevents apoptosis while inhibiting AMPK activity 
induces cell apoptosis.152-156 Additionally, an in vitro 
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study demonstrated that disruption of the AMPK/Sirt1 
signaling pathway by sevoflurane caused an increase 
in the apoptosis rate in neural cells while promoting 
AMPK level can improve apoptosis.157 In the intracerebral 
hemorrhage model, activating the αVβ5/AMPK pathway 
by Irisin, a myokine, inhibited apoptosis in the brain.158 
In an MPTP-induced PD model, activation of the AMPK/
MAPK pathway by osmotin administration reduced α-syn 
and apoptosis-related proteins.159 Besides, treatment with 
the AMPK agonist, GSK621, attenuated mitochondrial 
dysfunction and apoptotic neuronal death in the SNpc 
in the MPTP-induced PD mice model by activating the 
AMPK/GSK-3β/PP2A.160 Therefore, the regulation of 
apoptosis by AMPK is a controversial topic that requires 
more study.

AMPK activation provides a significant neuroprotective 
effect and enhances cell survival against several cytotoxic 
agents. The mechanisms that AMPK activation may use 
to regulate PD-related pathology were summarized in this 
review (Table 1).

Conclusion
The pathophysiology of PD is complex and multifactorial, 
involving abnormalities in mitochondrial function 
and morphology, impaired energy metabolism, genetic 
mutation, aggregation of α-syn, resulting in loss of 
dopaminergic neurons. AMPK can regulate multiple 
biological functions, including mitochondrial homeostasis, 
mitophagy, autophagy, oxidative stress, inflammation, 
and apoptosis, by which effectively prevents PD-related 
pathology (Figure 3). To treat PD effectively, conducting 
additional preclinical research is necessary to gain a better 
understanding of the potential benefits and drawbacks 

of AMPK activation. This will help identify specific 
downstream pathways of AMPK and avoid activating any 
detrimental pathways.
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